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We introduce a simple kinetic model describing the formation of a stochastic Cantor set in
arbitrary spatial dimension d. In one dimension, the model exhibits scaling asymptotic behavior.
For d > 1, the volume distribution is characterized by a single scale t−1/2, while other geometric
properties such as the length are characterized by an infinite number of length scales and thus
exhibit multiscaling.

The notion of a fractal has been widely used to de-
scribe self-similar structures [1]. The simplest way to
construct a fractal is to repeat a given operation over
and over again. The classical example of such a repet-
itive consruction is the Cantor’s “middle-third erasing”
set [1]. Recall the definition of this set: One divides an
interval into three equal intervals and then removes the
middle interval; on the next step, one repeats the same
procedure with the two remaining intervals; etc.. The
outcome of this process is a counterintuitive uncount-
able set having a measure (“length”) zero. The Can-
tor set turns out to be a perfect fractal of dimension
Df = ln(2)/ ln(3) ∼= 0.63093.

The Cantor set is a regular fractal. In contrast, self-
similar structures arising in nature are usually random.
Moreover, fractals are usually formed by continuous ki-
netic processes while the classical repetitive constructions
are discrete in time. In the present letter we introduce a
stochastic process which may be considered as a natural
kinetic counterpart to the original Cantor construction.
The resulting set turns out to be a random fractal of
dimension Df = (

√
17−3)/2 ∼= 0.56155. We also investi-

gate d-dimensional random Cantor sets and find that sev-
eral geometric characteristics such as the average length,
surface area, etc., are characterized by different scales.
In the following, the existence of multipole kinetic ex-
ponents characterizing the process, will be shortly called
multiscaling.

In one dimension, our model can be defined as fol-
lows. Starting with the unit interval [0:1], cracks are
deposited uniformly on the unit interval with unit rate.
When two cracks apear on the initial interval, the mid-
dle is removed immediately and two new intervals are
formed. The process continues independently for the sur-
viving intervals such that whenever a surviving interval
contains two cracks, the middle interval is removed. In
the classical Cantor process, after n stages we are left
with 2n intervals of length 3−n. In the stochastic process
the number of intervals and their lengths at time t are
in principle arbitrary. The distribution function P (x, t)
describing intervals of length x at time t satisfies the fol-
lowing linear evolution equation,

∂P (x, t)
∂t

= −x
2

2
P (x, t) + 2

1∫
x

dy(y − x)P (y, t), (1)

with the initial conditions P (x, 0) = δ(x − 1). The loss
term on the right-hand side represents the decrease of
intervals of length x, x-mers, due to the division process.
Each division event consists of choosing two points at
random and thus, the overall breakage rate is quadratic
in the interval length, while the factor 1/2 arises since the
two points are indistinguishable. The gain term repre-
sents the increase of x-intervals due to breakups of longer
intervals.

FIG. 1. Fig. 1 Illustration of the process in two dimension.

The formation of the random Cantor set is equivalent
to random sequential parking on a line with a uniform
distribution of lengths of parking intervals. While the lat-
ter problem has been investigated in Ref. [2], we present
an alternative solution method [3] that can be easily gen-
eralized to higher dimensions. This method focuses on
the leading asymptotic behavior of the moments of the
length distribution M(s, t), defined by

M(s, t) =

1∫
0

P (x, t)xs−1dx. (2)

The rate equation (1) yield the following kinetic equa-
tion for the moments,

∂M(s, t)
∂t

=
[
−1

2
+

2
s(s+ 1)

]
M(s+ 2, t). (3)

Asymptotically, the moments exhibit the power-law be-
havior

M(s, t) ' A(s)t−α(s). (4)

By inserting the anticipated power-law behavior into
Eq. (3) and solving the resulting difference equations one
gets
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α(s) =
s− β

2
, A(s) =

Γ(s)Γ
(
β + 1

2

)
Γ
(
s+β+1

2

)
Γ(β)

2(β−s)/2. (5)

In the above equation we have introduced a shorthand
notation β = (

√
17− 1)/2.

Eq. (4) implies that in the long-time limit P (x, t) ap-
proaches the scaling form,

P (x, t) ' tβ/2Φ
(
x
√
t
)
, (6)

with the scaling function Φ(z) being the inverse Mellin
transform of A(s). In the limit of small z,Φ(z) ap-
proaches a constant while in the large-z limit, Φ(z) ∼
z−β exp(−z2/2).

Furthermore, the total number of intervals N(t),
N(t) ≡ M(1, t), grows as t(β−1)/2, while the typical
interval size 〈x〉, 〈x〉 = M(2, t)/N(t), decays as t−1/2.
This simple scaling relation follows directly from the rate
equations, since the loss rate is quadratic in the interval
length. However, it is interesting that the simple rate
equation (1) leads to non-trivial asymptotic exponents.

Knowledge of the asymptotic behavior of the average
length and the average number enables calculation of the
fractal dimension. Since N ∼ 〈x〉−(β−1), the fractal di-
mension of the stochastic Cantor set is given by

Df = β − 1 = (
√

17− 3)/2 ∼= 0.56155. (7)

The above dimension is smaller than the fractal dimen-
sion of the classic Cantor set, Df = ln 2/ ln 3 ∼= 0.63093.

We turn now to the general d-dimensional version
of the model. In two dimensions, the model de-
scribes the formation of the stochastic Cantor gas-
ket. The governing rule of the model is sketched in
Fig. 1 for the two-dimensional situation. Denote by
P (x, t),x = (x1, . . . , xd), the distribution function for
(hyper)rectangles of size x1× . . .×xd. The rate equation
governing P (x, t), is given by a straightforward general-
ization of Eq. (1),

∂P (x, t)
∂t

=
P (x, t)

2d

d∏
j=1

x2
j + (8)

(
3d − 1

) 1∫
x1

. . .

1∫
xd

P (y, t)
d∏
j=1

(yj − xj)dyj .

Similarly, the moments of the distribution function
P (x, t),

M(s, t) =

1∫
0

. . .

1∫
0

P (x, t)
d∏
j=1

x
sj−1
j dxj , (9)

satisfy the kinetic equation

∂M(s, t)
∂t

=

− 1
2d

+
(
3d − 1

) d∏
j=1

1
sj(sj + 1)

M(s + 2, t),

(10)

where s = (s1, . . . , sd) and 2 = (2, . . . , 2).
A surprising feature of Eq. (10) is that it implies the

existence of an infinite number of conservation laws: on
the hypersurface

∏d
j=1 sj(sj + 1) = 2d

(
3d − 1

)
, the mo-

ments M(s, t) are independent of time. Thus the com-
petition between creation and destruction of the (hy-
per)rectangles gives birth to an infinite number of inte-
grals of motion. Similar hidden conserved integrals have
been found in recent studies of multidimensional frag-
mentation [3,4]. In contrast to the fragmentation prob-
lem where at least one integral - the total volume - is
an obvious conserved quantity, in the present model we
could not physically explain the appearance of any con-
served integral in any dimension.

These integrals play an important role in the dynamics
of the system, e. g ., they are responsible for the absence
of scaling solutions to Eq. (8). Indeed, trying a scaling
solution of the form P (x, t) = twQ(tzx), one derives in-
finitely many scaling relations, w = z

∑
sj , which should

be valid for all points s on the hypersurface. This in-
finite set of scaling relations cannot be satisfied by just
two scaling exponents, w and z.

In analogy with one-dimensional case, one can expect
a power-law behavior of the moments in the general d-
dimensional situation: M(s, t) ∼ t−α(s) as t → ∞. Sub-
stituting this asymptotic form into Eq. (10) we obtain
the difference equation for the exponent α(s),

α(s) + 1 = α(s + 2). (11)

In addition, on the hypersurface
∏

1≤j≤d sj(sj + 1) =
2d
(
3d − 1

)
, one has α(s) = 0. The solution to Eq. (11)

with this boundary condition is given by the formal ex-
pression

α(s) ≡ α(s∗ + k2) = k, (12)

where the point s∗ lies on the hypersurface. Geomet-
rically, the exponent α(s) gives a (normalized) distance
from the point s to the hypersurface in the 1 = (1, . . . , 1)
direction.

For ordinary scaling distributions the exponent α(s)
should be linear in the variable

∑
sj . This property is

equivalent to the existence of a single length scale in the
system. However, in our stochastic process the exponent
α(s) is a function of all of its variables. This manifests
the non-trivial scaling properties of the process. On the
other hand, since all the moments still show a power-law
behavior we conclude that the model exhibits a multi-
scaling asymptotic behavior.

As a manifestation of the existence of multiple length
scales in the system let us consider the ratio of the aver-
age volume 〈V 〉, 〈V 〉 = M(2, t)/N(t), to the dthpower of
the average length 〈l〉, 〈l〉 = M(2, 1, . . . , 1, t)/N(t). For
scaling distributions characterized by a single scale, the
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ratio 〈V 〉/〈l〉d cannot depend on time. Compute now this
ratio for the present system. First using Eq. (12) we
derive the asymptotic behavior of the total number of
(hyper)rectangles N(t), N(t) ≡M(1, t):

N(t) ∼ t(βd−1)/2, βd =

√
1 + 24(1− 3−d)1/d − 1

2
.

(13)

In the above equation βd is the larger root of the equation
[βd(βd + 1)]d = 2d(3d − 1). Analogously, one finds that
M(2, t) ∼ t(βd−2)/2 and that M(2, 1, . . . , 1, t) ∼ t(γd−1)/2

with γd being the largest positive root of algebraic equa-
tion (γd+1)(γd+2)[γd(γd+1)]d−1 = 2d

(
3d − 1

)
. Finally

we obtain

〈V 〉
〈l〉d
∼ t−µd , µd =

1 + d(γd − βd)
2

, (14)

indicating that the ratio depends on time. Computing the
exponent µd yields µd=0, 0.05534, 0.06566, and 0.07054
for d=1,2,3, and 4, respectively.

Note that in the limit of infinite dimension the expo-
nent saturates at µ∞ = 1

2 −
3
5 ln 2 ∼= 0.0841117. Since the

exponent µd measures the deviation between the asymp-
totic behavior of the length and the volume we conclude
that this discrepancy becomes more pronounced as the
spatial dimension increases. It is also easy to find that
different directions behave independently in the limit of
infinite dimension. Mathematically, it follows from the
relation

〈
∞∏
j=1

x
nj
j 〉 =

∞∏
j=1

〈xnjj 〉, (15)

which is valid if nj = 0 for all indices j except a finite
number. Thus the average of a finite product decouples
onto a product of single-variable averages. However, fur-
ther decoupling is impossible: e. g., 〈x2〉 6= 〈x〉2. The
general asymptotic formula for the nthmoment in the
limit d� 1 reads:

〈ln〉 ∼ t−νn , νn =
3
5d

ln
[(

1 +
n

2

)(
1 +

n

3

)]
. (16)

This equation again indicates the presence of an infinite
number of length scales.

In principle, it is possible to write down an explicit
solution to Eq. (10) in terms of the generalized hyper-
geometric function 2dF2d and then obtain a formal ex-
pression for the distribution function P (x, t) by perform-
ing the inverse d-fold Mellin transform. However, such
a complete solution is very cumbersome even in one di-
mension [2]. Thus, we restrict ourselves to the volume
distribution function P (V, t),

P (V, t) =

1∫
0

. . .

1∫
0

P (x, t)δ

 d∏
j=1

xj − V

 d∏
j=1

dxj , (17)

for which we can derive more complete results. The mo-
ments of the volume distribution function P (V, t) are
just the diagonal moments M(s, . . . , s; t). Asymptoti-
cally, they exhibit the power-law behavior

M(s, . . . , s; t) ' Ad(s)t(βd−s)/2, (18)

with prefactor Ad(s) satisfying the difference equation

Ad(s+ 2) = Ad(s)2d−1(s− βd)
[
1− 2d(3d − 1)

sd(s+ 1)d

]−1

,

(19)

and the boundary condition Ad(s = βd) = 1.
Eq. (18) indicates that in the long-time limit the vol-

ume distribution function approaches the scaling form

P (V, t) ' tβd/2Φd
(
V
√
t
)
, (20)

with Φd(z) being the inverse Mellin transform of Ad(s).
The most interesting asymptotic behavior of Φd(z) may
be found from the corresponding asymptotics of Ad(s).
By solving Eq. (19) asymptotically we obtain

Ad(s) ∼
{
s−βd/22ds/2Γ

(
s
2

)
, for s→∞,

s−d, for s→ 0.
(21)

By performing the inverse Mellin transform we find the
following limiting behaviors of the scaling function Φd(z):

Φd(z) ∼
{
z−βd exp(−z2/2d), for z →∞,
lnd−1(1/z), for z → 0.

(22)

Hence for all d > 1 the volume distribution function di-
verges logarithmically in the small-volume limit.

Compare now the asymptotic behavior (13) for the
number of (hyper)rectangles with 〈V 〉 ∼ t−1/2 for
their average volume. These asymptotics imply N ∼
〈V 〉−(βd−1) providing the following value of the fractal
dimension of the d-dimensional stochastic Cantor set:

Df = d(βd − 1) = d

√
1 + 24(1− 3−d)1/d − 3

2
. (23)

Hence Df
∼= 1.860804, 2.954859, 3.985106 for d=2, 3,

4, respectively. For comparison: the regular Cantor
set has dimension Df = ln(3d − 1)/ ln 3, i. e., Df

∼=
1.89279, 2.96565, 3.98869 for d=2, 3, 4, respectively. It is
easy to check that the fractal dimension of the stochas-
tic Cantor set is always smaller than the corresponding
value for regular set.

Formally, the moments provide a complete analytical
description of the division process. However, the snap-
shot of the system at the later stages remains intriguing.
Figure 2 represents a single realization of the process at
time t = 1000. A simple Monte Carlo algorithm was
chosen where pairs of points are deposited on the unit
square with unit rate. If both points belong to the same
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rectangle, then that rectangle is divided into 9 rectangles
as illustrated in Figure 1. Finally, the central rectangle is
removed from the system. In Figure 2 the existing rect-
angles are shaded. This unexpectedly rich pattern arising
in such a simple kinetic process can be viewed as a conse-
quence of the fact that the process is not fully self-similar.
Instead, the pattern is formed of sets of different scales
which are spatially interwoven. Figure 2 also shows that
a number of removed rectangles have large aspect ratio.
This qualitative observation is in a good agreement with
a power-law behavior of the moments of aspect ratio,
〈(x1/x2)n〉 ∼ tλn with λn = −α(1+n, 1−n)−(β2−1)/2.
One can check that λn ≥ 0 and hence the aspect ratio
grows with time.

In conclusion, we have investigated a kinetic process
describing the formation of stochastic counterparts to the
Cantor set (d = 1), Cantor gasket (d = 2), Cantor cheese
(d = 3), etc.. In the long-time limit, the volume of these
stochastic Cantor sets is characterized by the single scale
t−1/2. The volume distribution function exhibits a weak
logarithmic singularity near the origin. Similar logarith-
mic singularity has been observed recently in multidimen-
sional fragmentation [3]. We have found that other ge-
ometrical characteristics such as the average length, the
surface area, etc., decay nonuniversally in time because
of the existence of an infinite amount of different scales,
i . e., due to multiscaling. We have shown that the in-
trinsic reason for multiscaling is the existence of infinitely

many hidden conservation laws. This feature again re-
sembles multidimensional fragmentation prosesses [3,4].
Finally, we have found that the fractal dimension charac-
terizing stochastic Cantor set in d dimensions is always
smaller than its classic counterpart.
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Figure Captions
Figure 2. Realization of the process on a unit square

at time t = 1000.
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