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Stationary velocity distributions in traffic flows
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We introduce a traffic flow model that incorporates clustering and passing. We obtain analytically the steady
state characteristics of the flow from a Boltzmann-like equation. A single dimensionless pard&weatgrt,
with ¢, the concentratiornyy the velocity range, ant, ! the passing rate, determines the nature of the steady
state. WherR<1, uninterrupted flow with single cars occurs. WHe 1, large clusters with average mass
(m)~R* form, and the flux isJ~R™?. The initial distribution of slow cars governs the statistics. When
Po(v)~v* asv—0, the scaling exponents ase=1/(u+2), a=1/2 whenu>0, anda=(u+1)/(n+2)
when u<0. [S1063-651X97)09112-5

PACS numbgs): 02.50-r, 05.40:+j, 89.40+k, 05.20.Dd

[. INTRODUCTION resume driving with their intrinsic velocitysee Fig. 1L We
assume a constant escape fgté. The actual collision and
Traffic flows are strongly interacting many-body systems.escape times are proportional to the car size and thus set to
They also present a natural testbed for theories and teclzero (these time scales should become important in heavy
niques developed for physical systems such as kinetic theotyaffic).
and hydrodynamics. Traffic systems have been receiving A heuristic argument suggests that a single dimensionless
much attention recently1], and a number of approaches parameter underlies the steady state. Consider a state where
were suggested including fluid mechaniigs-5], cellular au- the car concentration is,, and the typical intrinsic velocity
tomata[6—13, particle hoppingd14—17, and ballistic mo- range isv,. Let the steady state cluster density decy,
tion [18—22. The diversity of the approaches reflects thewhich implies the typical cluster sizém)=c,/c. If large
rich phenomenology which includes shock waves, clusteringglusters form,(m)>1, then the overall escape rate can be
and slowing down. Traffic networks can be viewed as low-estimated by m)t, *. Assuming that most collisions involve
dimensional systems. For example, rural traffic is intrinsi-fast cars and slow clusters, the typical collision rateusg.
cally one dimensional and urban grid traffic is two dimen-In the steady state, the number of cars joining and leaving
sional. This important simplifying feature makes analyticalclusters should balance and thusy/(cty)=vec or
treatment possible. c=(colvoto)Y? This heuristic argument gives the leading
Ballistic models are harder to simulate than cellular au-behavior of the average cluster size
tomata and particle hopping models. However, they are quite
realistic since time and space are treated as continuous vari- (m~RY? when R>1, (1)
ables. They can also prove useful for theoretical treatment. ) . )
An exactly solvable clustering process shows that extremal/he€reR is the ratio of the two elementary time sc?lles, the
properties of the velocity distribution determine the kinetic €5¢ape timées=to and the collision timé o= (covo)
behavior[18]. However, it results in ever-growing and ever- i
slowing jams with a trivial steady state in a finite system. In R= = Covoto. 2)
this study, we investigate more realistic situations where fast teol
cars can pass slow cars. This is motivated by and should be o , _ o
applicable to passing zones of one lane roadways as well 3¥€ €m this dimensionless quantity the “collision num-
multilane highways. Our goal is to determine analyticallyber', For large coII|S|qn numbers, Iarg.e.clusters occur ac-
statistical properties of the flow such as the flux, and characcording to Eq.(1), while for small collision numbers the
terize their dependence on the intrinsic velocity distribution &ffect of collisions is smal{m)=1+const<R. Analysis of
We start by formulating the model. Consider a One_the master equa_tlons detailed bg!ow confirms this heuristic
dimensional traffic flow with sizeless car&particles”)  Picture under quite general conditions.
moving with a constant velocity. We assume that cars have
intrinsic velocities by which they would drive on an empty
road. Initially, cars are randomly distributed in space and
they drive with their intrinsic velocities. However, the pres-
ence of slower cars forces some cars to drive behind a slower
car and therefore leads to the formation of clusters. Simple
collision and escape mechanisms are implemented. When a
cluster overtakes a slower cluster, a larger cluster forms. It FIG. 1. Space-time diagram of the traffic model. Formation of a
moves with the smaller of the two velocities. Meanwhile, all cluster with two fast cars is shown to the left and formation of a one
cars in a given cluster may escape their respective cluster ardr cluster and its breakup due to escape is shown to the right.
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The rest of this paper is organized as follows. In Sec. Il v
the master equations are used to derive analytical expressions Q(v)=R™*+ j dv'(v—v")P(v’), 5)
for various velocity distributions in the steady state. The 0
leading behavior in the limiting cases of light and heavyhich gives the cluster distribution by second differentiation
traffic is highlighted in Sec. Ill. Explicit expressions are writ-
ten for the special cases of uniform initial and final velocity P(v)=Q"(v). (6)
distributions as well as discrete distributions in Sec. IV. The
theoretical predictions compare well with actual traffic dataThence, the steady state conditi@h reduces to the second
presented in Sec. V. We close with some open problems, @rder nonlinear differential equation
discussion, and possible applications. Q(v)Q"(0) =R *Py(v). @)

Il. THEORY The boundary conditions ar®(0)=R~! and Q'(0)=0.
The cluster concentration is found from the cluster velocity

In the following, it is convenient to introduce dimension- . = .~ "~ .
distribution using

less velocityv/vg—v, spacexcy—X, and timecguot—t
variables. This rescales the escape gt to the inverse %
collision numberR™ 1. Let P(v,t) be the density of clusters C=f dv P(v), 8
moving with velocityv at timet. Initially, isolated single 0
cars drive with their intrinsic velocities drawn from the dis-
tribution Py(v)=P(v,t=0). This intrinsic velocity distribu-
tion is normalized to unityfdvPq(v)=1. The flow is in-
variant under a velocity translation, and the minimal velocity %
is set to zero. <U>:C_1f dv vP(v). ©)
Initially, the velocities and the positions of the particles 0
are uncorrelated. Escape effectively mixes the positions and g4 may drive with a velocity smaller than their intrinsic
the velocities. Assuming that no spatial correlations developone, and it is natural to consider the joint velocity distribu-
a closed master equation for the velocity distribution of clus+;gp, P(v,0'), the density of cars of intrinsic velocity driv-
tersP(v,t) can be written ing with velocityv’. The master equation for the joint dis-
IP(v 1) tribution reads

ot

and the average cluster mass is simfiy)=c~’. Further-
more, the average cluster velocity is obtained from

=R Py(v)—P(v,1)] dP(v,v')

o —R P, )+ (w—v")P)P(v")
v
—P(v,t)f dv’(v—v")P(v' ). 3 ,
0 —P(v,v’)f dv"(v'=v")P(v")
0
The density of slowed down cars with intrinsic velocityis
Po(v)—P(v,t). Such cars escape their clusters with rate
R™!, and thus the escape term. Collisions occur with rate
proportional to the velocity difference as well as the product
of the velocity distributions. The integration limits ensure The first term accounts for loss due to escape, while the rest
that only collisions with slower cars are taken into account.of the terms represent changes due to collisions. For in-
Steady state is obtained by taking the long time limitstance, the last term describes events wheyecar driving
t—oo or d/dt=0. Since we are primarily interested in the with velocityv” is further slowed down after a collision with
steady state, we omit the time variatigv)=P(v,t=»). av’ cluster. One can verify that the total numbervotars,
Equating the right-hand side of the master equation to zero, a
relation between the intrinsic car distribution and steady state Po(v)=P(v)+ f dv'P(v,0"), (11)
cluster distribution emerges, 0

=P [ -0 P, 10

v , , is conserved by the evolution Eq®) and(10).
P(v)| 1+R 0 do’(v—=v")P(v") |=Po(v). (4) At the steady state, the joint distribution satisfies
Given the intrinsic velocity distribution this relation gives P,0")QM")=(—v")P)P")+Qv.v")P )(’12)

the final cluster velocity distribution only implicitly. In con-
trast, the inverse problem is simpler as knowledge of theptained using the definition @(v) and the joint auxiliary
final distribution, the observed quantity in real traffic flows, fynction
gives explicitly the intrinsic distribution. We confirm that in
the limit R—c, all clusters move with the minimal velocity , v ,
P(v)— &(v), while in the limit R—0, all cars move with Q(v.v )=L,dW(W—v )P(v,W). (13)
their intrinsic velocityP(v)— Py(v).

It is convenient to transform the integral equati@ghinto  Although the collision numbeR does not appear in E¢L2)
a differential one. Consider the auxiliary function explicitly, it enters througlQ(v) andP(v).
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Combining Eq.(12) with Egs.(13) and(6), and using the In summary, for arbitrary intrinsic velocity distributions,
relationshipP(v,v')=3d?Q(v,v")/dv'? yields the entire steady state problem is reduced to the nonlinear

second order differential equatidi). Given Q(v), steady

d d Qv,v") state characteristics such &uv), P(v,v'), J, and G(v)
- 2 r — -~ | = — /! ! ’ ’ ’ ’
v’ [Q ") v’ Qv') (0=v")P@)P@"). can be calculated using the explicit formul@s, (17), (19),
(14 and(21), respectively.
Integrating twice over’ gives the joint auxiliary function in Il LIMITING CASES

terms of the single variable functions
Although one cannot solve E¢7) analytically in general,

v du v it is still possible to obtain the leading behavior in the limits
Q(v,v'):P(v)Q(v’)JU, mfudw(v—w)P(w). of R0 AR g

(15
A. Low collision numbers
The boundary conditionQ(v,v)=(d/dv')Q(v,v")|, =, . .
=0 were used to obtain this expression. Furthermore, inte(—:or-ll:[?olIir('ja%zeimggglov\‘/’vecEg;agg(rzrs)t't?w'rri'tetgiv)C(zlsis;on'
1 v _ — (v _ " y
gir\?g;)n by parts of  dw(v —w)P(w)=J,dw(v —w)Q"() perturbation expansion iR:

P(v)=Py(v) 1—Rfovdv’(v—v')P0(v’) . (22

v du
Q(v,v’)=P(U){Q(U)Q(v’)fv, m—(v—v’)}-
(16) In this limit, the auxiliary function is roughly constant
Substituting Eq.(16) into Eq. (12) and then replacing®Q RQ(v)=1, and Eq.(17) gives the joint distribution to first

with R™'P, we find a relatively simple expression for the order inR,
joint velocity distribution P(v,0")=R(v—0")Po(v)Pg(v"). 29
Po(v)Po(v’) fu du The final densit
Plv,v')= ; _ 1 y and flux are
(U v Q(U ) o [RQ(U)]Z ( 7)

c=1-¢R, J=Jp— IR, (249
Another interesting quantity is the flux or the average ve-
locity given by J=[dv[vP(v)+ [gdw wP(v,w)]. From with c;=[dvPy(v)f{dv’ (v—v')Po(v’), Jo=Mq, Iy
the definition of the joint auxiliary function, the second inte- =M, — Mf [M, are the moments of the intrinsic velocity

gral is identified withQ(v,0), implying distribution M,=fdv v"Py(v)]. The coefficient J;=0
equals the width of the initial velocity distribution. This
_ " gives a simple intuitive picture: the larger the initial velocity
= + . . ) L
J fo do[vP(v)+Qv.0] (18) fluctuations, the smaller the flux. By either substituting the

joint velocity distribution into the definition ofG(v), or
The integrand can be considerably simplified using (&6), from Eq. (21), the car velocity distribution is
Q(0)=R™ %, and Eq.(7). The termvP(v) cancels and we

find a useful expression for the flux,

G(v)=Py(v) 1+RJ:dv’(v’—v)P0(v’) . (25

° v du
J=] dv P f —_——. 19 . . . .
fo v Po(v) o [RQu)]? (19 As the integral is over the entire velocity range, the orider
correction is positive for small and negative for large. In
One can also ask for the actual velocity distribution ofother wordsG(v)>Py(v) whenv<uv,.. The crossover ve-

cars defined via locity equals the average intrinsic velocity=Jy,=M, as
seen from Eq(25).
G(v)= P(v)+J dw P(w,0). 20 . We conclude that the collision-controlled limit is weakly
v interacting, explicit expressions for the leading corrections of

the steady state properties are possible.
Substituting the joint velocity distribution allows us to ex-
press the car velocity distribution via single variable distri- B. Large collision numbers

butions -
The analysis in the complementary escape-controlled re-

gime, R>1, is more subtle since the condition
. Rfgdv’ (v —v")Po(v')<1 is satisfied only for small veloci-
21) ties. No matter how largR is, sufficiently slow cars are not
affected by collisions, an®(v) is given by Eq.(22) when
The car velocity distribution satisfies the normalization con-U<li*- The threshold velocity* =v* (R) is estimated from
ditions 1= fdv G(v) andJ= [dv vG(v). Rfg dv(v* —v)Po(v)~1.

G(v)=P(v)

* w du
”RL dw PO(W)L [RQU)T2




It is useful to consider algebraic intrinsic distributions

Po(v)=(u+1)v#, u>-1 (26)

in the velocity rangd0:1] with the prefactor ensuring unit

normalization. For such distributions, the threshold velocityIO

decreases with growing according tov* ~R™Y(»*2)_ For
v>v*, the integral in Eq(4) dominates over the constant
factor andRP(v) [gdv’ (v —v")P(v') ~v*. Anticipating an
algebraic behavior for the cluster velocity distribution,
P(v)~R%? whenv>v*, gives different answers for posi-
tive and negatives. The leading behavior far>v* can be
summarized as follows:

R*l/(,u,+2)vp,fl1 M<0
P(v)~3 R Y In(w/v*)] Y2 u=0 (27
R™M2ymi2-1, w>0.

The small and large velocity componentsRfv) match at
the threshold velocityP(v*)~Pg(v*). Careful analysis,
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velocity v with the marginal velocity*. No flux reduction
occurs when the intrinsic distribution is dominated by fast
cars, i.e., in the limiju—oe. In the other extreme, the maxi-
mal flux reductionJ~R ™! is realized whernu— — 1.

The car velocity distribution is strongly enhanced in the
w velocity limit, as seen by evaluating E(®1),

*

G(v)~R#+DIe+2)y 11— constcv# 1), :
(31)

v<<v

As a check of self-consistency, one can verify that
1~ [§*dv G(v), and J~v*~[§*dv v G(v). Near the
maximal velocity, the car velocity distribution approaches
the cluster distributiorG(v)=P(v).

In summary, asR—o the solution to the differential
equation(7) exhibits a boundary layer structure. Inside the
boundary layery <v*, the cluster velocity distribution is
only slightly affected by collisions, while in the outer region
v>v*, the cluster velocity distribution is much smaller than
the intrinsic velocity distribution. The threshold velocity

detailed in the following section, is needed to get the logais determined by the small velocity behavior of the intrinsic

rithmic corrections in the borderline cage=0. Substituting
the leading asymptotic behavior of EQ7) into Eq.(8), the
average cluster size is found,

R(M*l)/(ﬂ+2), u<0
(my~4 (RIR)Y2 u=0 (28)
RY2, u>0.

Similarly, the average cluster velocity defined in Ef) is
evaluated,

RM/(M+2)’ w<O0
(v)~ 1/In R, u=0 (29
const, u>0.

Two distinct regimes of behavior emerge. For0, car-
cluster collisions dominate while fop<<O cluster-cluster

velocity distribution, and for the algebraic distributiof&6)

we have foundv* ~R™ Y20, The behavior detailed
above in the escape-controlled limit is not restricted to purely
algebraic distributions but is quite general. We conclude that
a single parameter

. Jd
pu=lim vglnpo(v) (32

v—0

determines the behavior &-—oc. In short, extreme statistics
underlie the escape-limited flow properties. Additionally, an
interesting transition between a slow and a fast velocity
dominated flow occurs gt =0.

IV. EXAMPLES

Although the above analysis is quite general, it applies

collisions dominate. The scaling argument given in the Intro-gnly to the limiting values ofR. To examine intermediate

duction assumes the former picture, and thus it does not holgenavior, it is also useful to obtain explicit solutions for

in general A posterior one can extend the scaling argumentsome special cases. Below, we consider two relevant cases:

to the x<0 regime. The argument becomes involved, andniform Py(v) and P(v). We also obtain explicit expres-
we do not present it here. Interestingly, in the cluster-clustekjons in the case of discrete velocity distributions.
dominated regime, the scaling behavior for the average clus-

ter size,(m)~R* with a=(u+1)/(n+2), is identical to
thekinetic scaling,{m)~ (cquot) * with the samey, found in
the no passing limif18]. This suggests an analogy between We now consider the case of a uniform intrinsic distribu-
the dimensionless collision numb&=cyv gty and the di- tion, Py(v)=1 for 0O<v<1. This case appears to be the
mensionless timegugt. On the other hand, the steady statemost relevant to real traffic flows since the intrinsic velocity
behavior is much richer as it is characterized by two regimeslistribution should be regular near the minimal velocity. In-
of behavior and different exponents. tegrating QQ"=R™! subject to the boundary conditions
The flux can be evaluated in a similar fashion using Eq.Q(0)=R™* and Q'(0)=0 givesQ’= 2R 1In(RQ). Sec-

A. Uniform intrinsic distribution

(19, ond integration gives
J~v*~RMnrt2), (30) RQ d
1 _, R 33
Interestingly, the flux is proportional to the threshold veloc- 1 V2Inq

ity v*. As a result, the flux exponent=1/(u+2) is a regu-
lar function of x unlike the cluster size exponeat Equation  and thus implicitly determine®(v). Evaluating the leading
(30) is also consistent with identification of the crossoverbehavior wherR>1, we find
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FIG. 3. The joint velocity distribution for the uniform final dis-

FIG. 2. Velocity distributions in the case of a uniform initial tribution case withR=10.

distribution Py(v) =1, for R=10.

R 1 - The overall initial concentration is unity, thereby relatiRg
(m)= IR’ (v)= nrR' = Var (349 andc via 1=c+ 2R The flux is calculated from Eq19),

Figure 2 shows the velocity distribution obtained numeri-
cally using Egs.(33) and (21) for R=10. For v<v*, (3+)\)\/Xtan*1\/X+)\—ln(1+)\)
G(v)>Py(v), and forv>v*, G(v)=P(v)<Py(v). The J= 3R ,
calculated distributions are consistent with the predictions,

G(0)~RY? andv* ~R~ %2 The car velocity distribution is
linear near the origin in agreement with E§L).

(36)

with A=3 Rc=(3/2)[ V1+2R/3—1]. These explicit solu-

B. Uniform cluster distribution tions agree with our low and higlﬁzz predic’[ion\:,/.4 For in-
, ] . o stance, wherR>1 we find(m)~R"“andJ~R™ " If we
Consider the uniform final cluster distributid®(v)=c. look at the initial distribution,Py(v)=(6/R)Y2+3v2, then

This inverse problem is simple as all quantities can be obthe constant part is negligible and the distribution corre-
tained explicitly. From Eq.(5), the auxiliary function is  gponds to theu=2 case of the power-law distributia26).
Q(v)=R 1+ 3cv? and from Eq.(7) the initial distribution  For this case the size exponentds= 1/2 and the flux expo-

reads nentisy=1/4, see Eq928) and(30), in agreement with our
1 findings.
_ + 2 SubstitutingPy(v) andQ(v) in Eq. (17) and performing
Po(v)=c| 1+ 2 Ro } (35 the integration gives the joint distribution

(v—v")(1=Nvv')
1+Np'?

P(v,v")=2R"1\? +2R™I\N¥(1+Nv?)[tan 1N YD) —tan t(A Y ")]. (37

A direct integration of the joint distribution confirms the con- as well. Here we quote the results in terms of the original
servation law(11), thus providing a useful check of self- (nondimensionleggjuantities. Consider the intrinsic velocity
consistency. The joint velocity distribution is linear in the distribution

velocity difference for smald andv’. This is reminiscent of

n
the small collision number behavior of E(®3). As the ve- _ _
locity difference increases, significant curvature develops Po(”)‘i; Gio(v —vi), (38)
(see Fig. 3.

with v1<v,<---<v,. We denote byp; the discrete coun-
terpart of the cluster velocity distribution, e.g.,

The results formulated for continuous distributions can beP(v)=="_,p;5(v —v;). The steady state condition of Eq.
used to study the special case of discrete velocity distributiofd) reads

C. Discrete velocity distribution
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We were able to collect data primarily in the dilute limit.
According to Eq.(24), (m)=1+consXR whenR<1. The
velocity rangevy was much smaller than the typical velocity
and thusl «cqv yn, With v, the minimal velocity on the
road. Thus the main quantity which varies with the flux is the
concentration, and the collision numbRe= cougtgoccoxl is
proportional to the flux. In other words, the theory predicts
that in the low flux(or collision number limit, the average
mass grows linearly with the fluxm)=1+constxl. The
observations agree with this prediction as for sufficiently
small fluxes,| <4 cars/min, there is a linear dependence be-
tween the average cluster size and the flsee Fig. 4 We
conclude that at least for low collision numbers, the theoret-
ical predictions concerning the cluster size agree with actual

0.0 2.0 40 6.0 8.0 10.0 traffic data.

| {cars/min)

4.0 -

30 -

<m>

2.0

VI. DISCUSSION
FIG. 4. The average cluster sizm) as a function of the flux. . . C .
The data were obtained from 20 hours of observations of over 5000 A,Enf Importantt pr?pert¥, thié%lg]steNr ?lze”dlsttrrllbutllon, IS 3b-
cars. Each data point represents an average over roughly 500 cap ’n rlom_ our]; re? ment so .I a uraly, d € Séze an
and the error bars account for the standard deviation between diF— e velocity of a cluster are strongly correlated and one must

ferent measurements. considerP(v), the distribution of clusters of sizen and
velocity v. The joint cluster size-velocity distribution obeys
i—1 the master equation
Pi 1+tozl (vi—vj)Pj|=C;i- (39 Plv)
a o = ROUMPra(0) = (M= 1)Pr(v)]
Substituting the intrinsic velocity distribution and solving it- 1
eratively, we get +R™ " 6maPo(v) = P(v)]=F(v)Pr(v)
o m
P1=Cy, +J dv'(v'—v) >, Pi(v)Pm_j(v), (41
v j=1

)

= - (40)  which applies for allm=1. Terms proportional tR ! ac-
1+cy(va—vilto

count for escape, while the rest represent collisions. The fac-
tor F(v)=[¢dv’|[v—v’|P(v’) measures the overall colli-

P2

ps= Cs sion rate experienced by cluster, and is reminiscent of
3 Co(vg—va)ty ' kinetic theory. Summing Eqs41), one recovers the rate
1+Cl(v3_vl)t0+1+Cl(v2_vl)t0 equation(3) for P(v)==,Pn(v). On the other hand, inte-

gration over the entire velocity range does not reduce Egs.
etc. Rather than a solution to a differential equation, the41) to a closed system of rate equations for the cluster size
steady state solution is in the form of an explicit continueddistribution P,= [dvP(v). Therefore the entire joint dis-
fraction. This expression involves the initial distribution and tribution is needed to determirfe,,. Additionally, we note
the velocity differences, and can be useful to analyze data ithat in Egs.(3) and(10), the integration limits include only
a histogram form. In a similar way, explicit expressions canslower velocities, a feature that considerably simplifies the
be obtained for the rest of the steady state properties. analysis. This property is lost for Eqgll), thereby putting
analytical solution out of reach.
V. RURAL TRAFFIC OBSERVATIONS Nevertheless, a leading order analysis is still possible for

low collision numbers. In the limiR<1, we find
To compare the theoretical predictions with actual traffic

flows, we collected data in a rural one lane road where pass- Py(0)=Po(v)
ing is allowed. We chose a road near Los Alamos that was as ! 0
uniform as possible: over a long stretch it did not contain

junctions, stop signs, or stop lights. The number of cars and . c o, ,

Jthe number o?clugsters passi?wg% given point in each direction P2(v)=RPo(v) fv dv’ (v’ =v)Po(v’), (42)

in a fixed time interval was recorded, thereby measuring the

flux and the average cluster size, respectively. The data were Pn(v)=R™ 1P (v).

then histogrammed, and the cluster gjm® was plotted as a

function of the fluxl (the observed flux should be distin- Heuristically, clusters witim cars are created iy—1 col-
guished from the flux which is in a reference frame moving lisions and a factoR is generated in each collision. Al-
with the slowest car We verified that the behavior was in- though the function®,(v) are quite complicated, the over-
dependent of the traffic direction as well as the time of dayall prefactor R""! suggests an exponential cluster size
The former test confirms that the road is indeed uniform. distribution in the dilute limit.

l—Rf dv'|v—v'|Po(v")],
0
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In the special case of a bimodal velocity distribution, aallowed only in a fractiorr of the road. We expect that for
solution is possible. The structure of clusters here is simpletegular distribution of these passing segments the problem
A cluster of sizem consists of a leading slow car ant—1  should reduce to the homogeneous case with a renormalized
fast cars behind it. The rate equatittl) simplifies consid- ~ collision numberR/r. The most challenging question ap-
erably, and a Poisson size distribution is found,,  Pears to be the role played by the escape mechanism. We
xe~ffm"=1/(m—1)!. The collision rate f is equal to the con5|der§d the case wh_ere g_II cars are equally I|!<ely to es-
product of the escape time, the velocity difference, and th&€apPe. This assumption simplified the master equation consid-

fast car concentration. This steady state distribution satisfig@raPly as the escape term is lineaFi(v), and thus is exact.
a detailed balance condition as the escape rate and the coli'® complementary case where only the first car in the clus-
sion rate are equal microscopicallym¢1)P, =fP,, ;. ter can escape is interesting as well. For low collision hum-

Thus an equilibrium steady state is reached. However, iIt‘[)ers, large clusters are unlikely, and the behavior is indepen-

L . . dent of the escape mechanism. However, for high collision
general, a nonequilibrium steady state is approached with the .
. . numbers the escape mechanism becomes weaker and larger
collision rate and the escape rate balancing only macroscopis; X
clusters should form. Indeed, a scaling argument along the

cally. This is seen by noting that the cluster size may in-; : ! .
crease by an arbitrary number due to collisions, but can dellnes of Eq.(1) gives(m)~R in the car-cluster dominated

crease only by one due to escape. reglIrr1nc(:e(.)nclusion despite the simplifying assumptions made
Further investigation of the collision term in the rate X P P 9 P '

equation will be useful as well. In the no escape casé[he sug_gested mod_gl resultg in .r(_-:‘ali.stic behavior. The overall
R 1=0, the exact Boltzmann equation picture is both familiar and intuitive: due to the presence of

' slower cars, clusters form and the overall flux is reduced.
IP(v,1) v Our theory is in qualitative agreement with rural traffic ob-
Q= P(v,t)j dv'(v—v")Py(v") (43 servations in the dilute case. For heavy traffic, the character-

0 istics of the flow are solely determined by the distribution of

slow cars. A single dimensionless parameter, the collision
numberR, ultimately determines the nature of the steady
ﬁéate. The stationary distributions obtained analytically pro-
Iv|de a simple practical recipe for calculating the flow prop-
r(i\erties for arbitrary intrinsic distributions. It will be interest-
ing to analyze velocity distributions from actual traffic data
using these theoretical tools.

is different from our master equation d(v') replaces
P(v',t) in the integrand 18]. This seemingly small differ-
ence is important as it shows that the system remembers t
initial state. We argue that escape, no matter how smal
induces mixing and acts to erase this memory, and therefo
Eq. (3). It still remains, however, to establish quantitatively
how appropriate this mean field assumption is.

'The model and the regultg prgsenteq above can be gener- ACKNOWLEDGMENTS
alized to study other traffic situations. First, a multilane flow
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