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Stationary velocity distributions in traffic flows
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We introduce a traffic flow model that incorporates clustering and passing. We obtain analytically the steady
state characteristics of the flow from a Boltzmann-like equation. A single dimensionless parameter,R5c0v0t0

with c0 the concentration,v0 the velocity range, andt0
21 the passing rate, determines the nature of the steady

state. WhenR!1, uninterrupted flow with single cars occurs. WhenR@1, large clusters with average mass
^m&;Ra form, and the flux isJ;R2g. The initial distribution of slow cars governs the statistics. When
P0(v);vm as v→0, the scaling exponents areg51/(m12), a51/2 whenm.0, anda5(m11)/(m12)
whenm,0. @S1063-651X~97!09112-5#

PACS number~s!: 02.50.2r, 05.40.1j, 89.40.1k, 05.20.Dd
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I. INTRODUCTION

Traffic flows are strongly interacting many-body system
They also present a natural testbed for theories and t
niques developed for physical systems such as kinetic th
and hydrodynamics. Traffic systems have been receiv
much attention recently@1#, and a number of approache
were suggested including fluid mechanics@2–5#, cellular au-
tomata@6–13#, particle hopping@14–17#, and ballistic mo-
tion @18–22#. The diversity of the approaches reflects t
rich phenomenology which includes shock waves, cluster
and slowing down. Traffic networks can be viewed as lo
dimensional systems. For example, rural traffic is intrin
cally one dimensional and urban grid traffic is two dime
sional. This important simplifying feature makes analytic
treatment possible.

Ballistic models are harder to simulate than cellular a
tomata and particle hopping models. However, they are q
realistic since time and space are treated as continuous
ables. They can also prove useful for theoretical treatm
An exactly solvable clustering process shows that extre
properties of the velocity distribution determine the kine
behavior@18#. However, it results in ever-growing and eve
slowing jams with a trivial steady state in a finite system.
this study, we investigate more realistic situations where
cars can pass slow cars. This is motivated by and shoul
applicable to passing zones of one lane roadways as we
multilane highways. Our goal is to determine analytica
statistical properties of the flow such as the flux, and cha
terize their dependence on the intrinsic velocity distributio

We start by formulating the model. Consider a on
dimensional traffic flow with sizeless cars~‘‘particles’’ !
moving with a constant velocity. We assume that cars h
intrinsic velocities by which they would drive on an emp
road. Initially, cars are randomly distributed in space a
they drive with their intrinsic velocities. However, the pre
ence of slower cars forces some cars to drive behind a slo
car and therefore leads to the formation of clusters. Sim
collision and escape mechanisms are implemented. Wh
cluster overtakes a slower cluster, a larger cluster forms
moves with the smaller of the two velocities. Meanwhile,
cars in a given cluster may escape their respective cluster
561063-651X/97/56~6!/6680~7!/$10.00
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resume driving with their intrinsic velocity~see Fig. 1!. We
assume a constant escape ratet0

21. The actual collision and
escape times are proportional to the car size and thus s
zero ~these time scales should become important in he
traffic!.

A heuristic argument suggests that a single dimension
parameter underlies the steady state. Consider a state w
the car concentration isc0 , and the typical intrinsic velocity
range isv0 . Let the steady state cluster density bec,c0 ,
which implies the typical cluster sizêm&5c0 /c. If large
clusters form,̂ m&@1, then the overall escape rate can
estimated bŷ m&t0

21. Assuming that most collisions involve
fast cars and slow clusters, the typical collision rate iscv0 .
In the steady state, the number of cars joining and leav
clusters should balance and thusc0 /(ct0)5v0c or
c5(c0 /v0t0)1/2. This heuristic argument gives the leadin
behavior of the average cluster size

^m&;R1/2 when R@1, ~1!

whereR is the ratio of the two elementary time scales, t
escape timetesc5t0 and the collision timetcol5(c0v0)21:

R5
tesc

tcol
5c0v0t0 . ~2!

We term this dimensionless quantity the ‘‘collision num
ber.’’ For large collision numbers, large clusters occur a
cording to Eq.~1!, while for small collision numbers the
effect of collisions is small̂ m&>11const3R. Analysis of
the master equations detailed below confirms this heuri
picture under quite general conditions.

FIG. 1. Space-time diagram of the traffic model. Formation o
cluster with two fast cars is shown to the left and formation of a o
car cluster and its breakup due to escape is shown to the right
6680 © 1997 The American Physical Society
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56 6681STATIONARY VELOCITY DISTRIBUTIONS IN . . .
The rest of this paper is organized as follows. In Sec
the master equations are used to derive analytical expres
for various velocity distributions in the steady state. T
leading behavior in the limiting cases of light and hea
traffic is highlighted in Sec. III. Explicit expressions are wr
ten for the special cases of uniform initial and final veloc
distributions as well as discrete distributions in Sec. IV. T
theoretical predictions compare well with actual traffic da
presented in Sec. V. We close with some open problem
discussion, and possible applications.

II. THEORY

In the following, it is convenient to introduce dimensio
less velocityv/v0→v, spacexc0→x, and timec0v0t→t
variables. This rescales the escape ratet0

21 to the inverse
collision numberR21. Let P(v,t) be the density of cluster
moving with velocity v at time t. Initially, isolated single
cars drive with their intrinsic velocities drawn from the di
tribution P0(v)[P(v,t50). This intrinsic velocity distribu-
tion is normalized to unity,*dvP0(v)51. The flow is in-
variant under a velocity translation, and the minimal veloc
is set to zero.

Initially, the velocities and the positions of the particl
are uncorrelated. Escape effectively mixes the positions
the velocities. Assuming that no spatial correlations deve
a closed master equation for the velocity distribution of cl
tersP(v,t) can be written

]P~v,t !

]t
5R21@P0~v !2P~v,t !#

2P~v,t !E
0

v
dv8~v2v8!P~v8,t !. ~3!

The density of slowed down cars with intrinsic velocityv is
P0(v)2P(v,t). Such cars escape their clusters with ra
R21, and thus the escape term. Collisions occur with r
proportional to the velocity difference as well as the prod
of the velocity distributions. The integration limits ensu
that only collisions with slower cars are taken into accou

Steady state is obtained by taking the long time lim
t→` or ]/]t50. Since we are primarily interested in th
steady state, we omit the time variableP(v)[P(v,t5`).
Equating the right-hand side of the master equation to zer
relation between the intrinsic car distribution and steady s
cluster distribution emerges,

P~v !F11RE
0

v
dv8~v2v8!P~v8!G5P0~v !. ~4!

Given the intrinsic velocity distribution this relation give
the final cluster velocity distribution only implicitly. In con
trast, the inverse problem is simpler as knowledge of
final distribution, the observed quantity in real traffic flow
gives explicitly the intrinsic distribution. We confirm that i
the limit R→`, all clusters move with the minimal velocit
P(v)→d(v), while in the limit R→0, all cars move with
their intrinsic velocityP(v)→P0(v).

It is convenient to transform the integral equation~4! into
a differential one. Consider the auxiliary function
I
ns

e
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Q~v !5R211E
0

v
dv8~v2v8!P~v8!, ~5!

which gives the cluster distribution by second differentiati

P~v !5Q9~v !. ~6!

Thence, the steady state condition~4! reduces to the secon
order nonlinear differential equation

Q~v !Q9~v !5R21P0~v !. ~7!

The boundary conditions areQ(0)5R21 and Q8(0)50.
The cluster concentration is found from the cluster veloc
distribution using

c5E
0

`

dv P~v !, ~8!

and the average cluster mass is simply^m&5c21. Further-
more, the average cluster velocity is obtained from

^v&5c21E
0

`

dv vP~v !. ~9!

Cars may drive with a velocity smaller than their intrins
one, and it is natural to consider the joint velocity distrib
tion P(v,v8), the density of cars of intrinsic velocityv driv-
ing with velocity v8. The master equation for the joint dis
tribution reads

]P~v,v8!

]t
52R21P~v,v8!1~v2v8!P~v !P~v8!

2P~v,v8!E
0

v8
dv9~v82v9!P~v9!

1P~v8!E
v8

v
dv9~v92v8!P~v,v9!. ~10!

The first term accounts for loss due to escape, while the
of the terms represent changes due to collisions. For
stance, the last term describes events where av car driving
with velocity v9 is further slowed down after a collision with
a v8 cluster. One can verify that the total number ofv cars,

P0~v !5P~v !1E
0

v
dv8P~v,v8!, ~11!

is conserved by the evolution Eqs.~3! and ~10!.
At the steady state, the joint distribution satisfies

P~v,v8!Q~v8!5~v2v8!P~v !P~v8!1Q~v,v8!P~v8!,
~12!

obtained using the definition ofQ(v) and the joint auxiliary
function

Q~v,v8!5E
v8

v
dw~w2v8!P~v,w!. ~13!

Although the collision numberR does not appear in Eq.~12!
explicitly, it enters throughQ(v) andP(v).
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Combining Eq.~12! with Eqs.~13! and~6!, and using the
relationshipP(v,v8)5]2Q(v,v8)/]v82 yields

]

]v8 FQ2~v8!
]

]v8

Q~v,v8!

Q~v8! G5~v2v8!P~v !P~v8!.

~14!

Integrating twice overv8 gives the joint auxiliary function in
terms of the single variable functions

Q~v,v8!5P~v !Q~v8!E
v8

v du

Q2~u!
E

u

v
dw~v2w!P~w!.

~15!

The boundary conditionsQ(v,v)5(]/]v8)Q(v,v8)uv85v
50 were used to obtain this expression. Furthermore, i
gration by parts of*u

vdw(v2w)P(w)5*u
vdw(v2w)Q9(w)

gives

Q~v,v8!5P~v !FQ~v !Q~v8!E
v8

v du

Q2~u!
2~v2v8!G .

~16!

Substituting Eq.~16! into Eq. ~12! and then replacingPQ
with R21P0 we find a relatively simple expression for th
joint velocity distribution

P~v,v8!5
P0~v !P0~v8!

Q~v8!
E

v8

v du

@RQ~u!#2 . ~17!

Another interesting quantity is the flux or the average
locity given by J5*dv@vP(v)1*0

vdw wP(v,w)#. From
the definition of the joint auxiliary function, the second int
gral is identified withQ(v,0), implying

J5E
0

`

dv@vP~v !1Q~v,0!#. ~18!

The integrand can be considerably simplified using Eq.~16!,
Q(0)5R21, and Eq.~7!. The termvP(v) cancels and we
find a useful expression for the flux,

J5E
0

`

dv P0~v !E
0

v du

@RQ~u!#2 . ~19!

One can also ask for the actual velocity distribution
cars defined via

G~v !5P~v !1E
v

`

dw P~w,v !. ~20!

Substituting the joint velocity distribution allows us to e
press the car velocity distribution via single variable dis
butions

G~v !5P~v !F11RE
v

`

dw P0~w!E
v

w du

@RQ~u!#2G .
~21!

The car velocity distribution satisfies the normalization co
ditions 15*dv G(v) andJ5*dv vG(v).
e-

-

f

-

-

In summary, for arbitrary intrinsic velocity distributions
the entire steady state problem is reduced to the nonlin
second order differential equation~7!. Given Q(v), steady
state characteristics such asP(v), P(v,v8), J, and G(v)
can be calculated using the explicit formulas~6!, ~17!, ~19!,
and ~21!, respectively.

III. LIMITING CASES

Although one cannot solve Eq.~7! analytically in general,
it is still possible to obtain the leading behavior in the lim
of R→0 andR→`.

A. Low collision numbers

To analyze the flow characteristics in the collisio
controlled regime,R!1, we use Eq.~4! to write P(v) as a
perturbation expansion inR:

P~v !>P0~v !F12RE
0

v
dv8~v2v8!P0~v8!G . ~22!

In this limit, the auxiliary function is roughly constan
RQ(v)>1, and Eq.~17! gives the joint distribution to first
order inR,

P~v,v8!>R~v2v8!P0~v !P0~v8!. ~23!

The final density and flux are

c>12c1R, J>J02J1R, ~24!

with c15*dvP0(v)*0
vdv8(v2v8)P0(v8), J05M1 , J1

5M22M1
2 @Mn are the moments of the intrinsic velocit

distribution Mn5*dv vnP0(v)#. The coefficient J1>0
equals the width of the initial velocity distribution. Thi
gives a simple intuitive picture: the larger the initial veloci
fluctuations, the smaller the flux. By either substituting t
joint velocity distribution into the definition ofG(v), or
from Eq. ~21!, the car velocity distribution is

G~v !>P0~v !F11RE
0

`

dv8~v82v !P0~v8!G . ~25!

As the integral is over the entire velocity range, the ordeR
correction is positive for smallv and negative for largev. In
other wordsG(v).P0(v) when v,vc . The crossover ve-
locity equals the average intrinsic velocityvc5J05M1 , as
seen from Eq.~25!.

We conclude that the collision-controlled limit is weak
interacting, explicit expressions for the leading corrections
the steady state properties are possible.

B. Large collision numbers

The analysis in the complementary escape-controlled
gime, R@1, is more subtle since the conditio
R*0

vdv8(v2v8)P0(v8)!1 is satisfied only for small veloci-
ties. No matter how largeR is, sufficiently slow cars are no
affected by collisions, andP(v) is given by Eq.~22! when
v!v* . The threshold velocityv* [v* (R) is estimated from

R*0
v* dv(v* 2v)P0(v);1.
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56 6683STATIONARY VELOCITY DISTRIBUTIONS IN . . .
It is useful to consider algebraic intrinsic distributions

P0~v !5~m11!vm, m.21 ~26!

in the velocity range@0:1# with the prefactor ensuring uni
normalization. For such distributions, the threshold veloc
decreases with growingR according tov* ;R21/(m12). For
v@v* , the integral in Eq.~4! dominates over the constan
factor andRP(v)*0

vdv8(v2v8)P(v8);vm. Anticipating an
algebraic behavior for the cluster velocity distributio
P(v);Rsvd whenv@v* , gives different answers for pos
tive and negativem. The leading behavior forv@v* can be
summarized as follows:

P~v !;H R21/~m12!vm21, m,0

R21/2v21@ ln~v/v* !#21/2, m50

R21/2vm/221, m.0.

~27!

The small and large velocity components ofP(v) match at
the threshold velocity,P(v* );P0(v* ). Careful analysis,
detailed in the following section, is needed to get the lo
rithmic corrections in the borderline casem50. Substituting
the leading asymptotic behavior of Eq.~27! into Eq. ~8!, the
average cluster size is found,

^m&;H R~m11!/~m12!, m,0

~R/ lnR!1/2, m50

R1/2, m.0.

~28!

Similarly, the average cluster velocity defined in Eq.~9! is
evaluated,

^v&;H Rm/~m12!, m,0

1/ln R, m50

const, m.0.

~29!

Two distinct regimes of behavior emerge. Form.0, car-
cluster collisions dominate while form,0 cluster-cluster
collisions dominate. The scaling argument given in the Int
duction assumes the former picture, and thus it does not
in general.A posteriori, one can extend the scaling argume
to the m,0 regime. The argument becomes involved, a
we do not present it here. Interestingly, in the cluster-clus
dominated regime, the scaling behavior for the average c
ter size,^m&;Ra with a5(m11)/(m12), is identical to
thekineticscaling,^m&;(c0v0t)a with the samea, found in
the no passing limit@18#. This suggests an analogy betwe
the dimensionless collision numberR5c0v0t0 and the di-
mensionless timec0v0t. On the other hand, the steady sta
behavior is much richer as it is characterized by two regim
of behavior and different exponents.

The flux can be evaluated in a similar fashion using E
~19!,

J;v* ;R21/~m12!. ~30!

Interestingly, the flux is proportional to the threshold velo
ity v* . As a result, the flux exponentg51/(m12) is a regu-
lar function ofm unlike the cluster size exponenta. Equation
~30! is also consistent with identification of the crossov
y

-

-
ld
t
d
r
s-

s

.

-

r

velocity vc with the marginal velocityv* . No flux reduction
occurs when the intrinsic distribution is dominated by fa
cars, i.e., in the limitm→`. In the other extreme, the max
mal flux reductionJ;R21 is realized whenm→21.

The car velocity distribution is strongly enhanced in t
low velocity limit, as seen by evaluating Eq.~21!,

G~v !;R~m11!/~m12!vm~12const3vm11!, v!v* .
~31!

As a check of self-consistency, one can verify th
1;*0

v* dv G(v), and J;v* ;*0
v* dv v G(v). Near the

maximal velocity, the car velocity distribution approach
the cluster distributionG(v)>P(v).

In summary, asR→` the solution to the differentia
equation~7! exhibits a boundary layer structure. Inside t
boundary layer,v,v* , the cluster velocity distribution is
only slightly affected by collisions, while in the outer regio
v.v* , the cluster velocity distribution is much smaller tha
the intrinsic velocity distribution. The threshold velocityv*
is determined by the small velocity behavior of the intrins
velocity distribution, and for the algebraic distributions~26!
we have foundv* ;R21/(m12)→0. The behavior detailed
above in the escape-controlled limit is not restricted to pur
algebraic distributions but is quite general. We conclude t
a single parameter

m5 lim
v→0

v
]

]v
lnP0~v ! ~32!

determines the behavior asR→`. In short, extreme statistic
underlie the escape-limited flow properties. Additionally,
interesting transition between a slow and a fast veloc
dominated flow occurs atm50.

IV. EXAMPLES

Although the above analysis is quite general, it appl
only to the limiting values ofR. To examine intermediate
behavior, it is also useful to obtain explicit solutions f
some special cases. Below, we consider two relevant ca
uniform P0(v) and P(v). We also obtain explicit expres
sions in the case of discrete velocity distributions.

A. Uniform intrinsic distribution

We now consider the case of a uniform intrinsic distrib
tion, P0(v)51 for 0,v,1. This case appears to be th
most relevant to real traffic flows since the intrinsic veloc
distribution should be regular near the minimal velocity. I
tegrating QQ95R21 subject to the boundary condition
Q(0)5R21 and Q8(0)50 gives Q85A2R21ln(RQ). Sec-
ond integration gives

E
1

RQ dq

A2 lnq
5vAR, ~33!

and thus implicitly determinesQ(v). Evaluating the leading
behavior whenR@1, we find
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^m&.A R

lnR
, ^v&.

1

lnR
, J.A p

2R
. ~34!

Figure 2 shows the velocity distribution obtained nume
cally using Eqs.~33! and ~21! for R510. For v!v* ,
G(v)@P0(v), and for v@v* , G(v)>P(v)!P0(v). The
calculated distributions are consistent with the predictio
G(0);R1/2 and v* ;R21/2. The car velocity distribution is
linear near the origin in agreement with Eq.~31!.

B. Uniform cluster distribution

Consider the uniform final cluster distributionP(v)5c.
This inverse problem is simple as all quantities can be
tained explicitly. From Eq.~5!, the auxiliary function is

Q(v)5R211 1
2 cv2 and from Eq.~7! the initial distribution

reads

P0~v !5cF11
1

2
Rcv2G . ~35!

FIG. 2. Velocity distributions in the case of a uniform initia
distributionP0(v)51, for R510.
n-
f-
e

p

b
tio
-

s,

-

The overall initial concentration is unity, thereby relatingR

andc via 15c1 1
6 Rc2. The flux is calculated from Eq.~19!,

J5
~31l!Altan21Al1l2 ln~11l!

3R
, ~36!

with l5 1
2 Rc5(3/2)@A112R/321#. These explicit solu-

tions agree with our low and highR predictions. For in-
stance, whenR@1 we find ^m&;R1/2 and J;R21/4. If we
look at the initial distribution,P0(v)>(6/R)1/213v2, then
the constant part is negligible and the distribution cor
sponds to them52 case of the power-law distribution~26!.
For this case the size exponent isa51/2 and the flux expo-
nent isg51/4, see Eqs.~28! and~30!, in agreement with our
findings.

SubstitutingP0(v) andQ(v) in Eq. ~17! and performing
the integration gives the joint distribution

FIG. 3. The joint velocity distribution for the uniform final dis
tribution case withR510.
P~v,v8!52R21l2
~v2v8!~12lvv8!

11lv82 12R21l3/2~11lv2!@ tan21~l1/2v !2tan21~l1/2v8!#. ~37!
nal
y

.,
.

A direct integration of the joint distribution confirms the co
servation law~11!, thus providing a useful check of sel
consistency. The joint velocity distribution is linear in th
velocity difference for smallv andv8. This is reminiscent of
the small collision number behavior of Eq.~23!. As the ve-
locity difference increases, significant curvature develo
~see Fig. 3!.

C. Discrete velocity distribution

The results formulated for continuous distributions can
used to study the special case of discrete velocity distribu
s

e
n

as well. Here we quote the results in terms of the origi
~nondimensionless! quantities. Consider the intrinsic velocit
distribution

P0~v !5(
i 51

n

cid~v2v i !, ~38!

with v1,v2,•••,vn . We denote bypi the discrete coun-
terpart of the cluster velocity distribution, e.g
P(v)5( i 51

n pid(v2v i). The steady state condition of Eq
~4! reads
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piF11t0(
j 51

i 21

~v i2v j !pj G5ci . ~39!

Substituting the intrinsic velocity distribution and solving
eratively, we get

p15c1 ,

p25
c2

11c1~v22v1!t0
, ~40!

p35
c3

11c1~v32v1!t01
c2~v32v2!t0

11c1~v22v1!t0

,

etc. Rather than a solution to a differential equation,
steady state solution is in the form of an explicit continu
fraction. This expression involves the initial distribution a
the velocity differences, and can be useful to analyze dat
a histogram form. In a similar way, explicit expressions c
be obtained for the rest of the steady state properties.

V. RURAL TRAFFIC OBSERVATIONS

To compare the theoretical predictions with actual tra
flows, we collected data in a rural one lane road where p
ing is allowed. We chose a road near Los Alamos that wa
uniform as possible: over a long stretch it did not cont
junctions, stop signs, or stop lights. The number of cars
the number of clusters passing a given point in each direc
in a fixed time interval was recorded, thereby measuring
flux and the average cluster size, respectively. The data w
then histogrammed, and the cluster size^m& was plotted as a
function of the fluxI ~the observed fluxI should be distin-
guished from the fluxJ which is in a reference frame movin
with the slowest car!. We verified that the behavior was in
dependent of the traffic direction as well as the time of d
The former test confirms that the road is indeed uniform

FIG. 4. The average cluster size^m& as a function of the fluxI .
The data were obtained from 20 hours of observations of over 5
cars. Each data point represents an average over roughly 500
and the error bars account for the standard deviation between
ferent measurements.
e

in
n

s-
as

d
n
e
re

.

We were able to collect data primarily in the dilute limi
According to Eq.~24!, ^m&>11const3R when R!1. The
velocity rangev0 was much smaller than the typical veloci
and thusI}c0vmin , with vmin the minimal velocity on the
road. Thus the main quantity which varies with the flux is t
concentration, and the collision numberR5c0v0t0}c0}I is
proportional to the flux. In other words, the theory predic
that in the low flux~or collision number! limit, the average
mass grows linearly with the flux,̂m&>11const3I. The
observations agree with this prediction as for sufficien
small fluxes,I ,4 cars/min, there is a linear dependence b
tween the average cluster size and the flux~see Fig. 4!. We
conclude that at least for low collision numbers, the theor
ical predictions concerning the cluster size agree with ac
traffic data.

VI. DISCUSSION

An important property, the cluster size distribution, is a
sent from our treatment so far@23#. Naturally, the size and
the velocity of a cluster are strongly correlated and one m
considerPm(v), the distribution of clusters of sizem and
velocity v. The joint cluster size-velocity distribution obey
the master equation

]Pm~v !

]t
5R21@mPm11~v !2~m21!Pm~v !#

1R21dm,1@P0~v !2P~v !#2F~v !Pm~v !

1E
v

`

dv8~v82v !(
j 51

m

Pj~v8!Pm2 j~v !, ~41!

which applies for allm>1. Terms proportional toR21 ac-
count for escape, while the rest represent collisions. The
tor F(v)5*0

`dv8uv2v8uP(v8) measures the overall colli
sion rate experienced by av cluster, and is reminiscent o
kinetic theory. Summing Eqs.~41!, one recovers the rate
equation~3! for P(v)5(mPm(v). On the other hand, inte
gration over the entire velocity range does not reduce E
~41! to a closed system of rate equations for the cluster s
distribution Pm5*dvPm(v). Therefore the entire joint dis
tribution is needed to determinePm . Additionally, we note
that in Eqs.~3! and ~10!, the integration limits include only
slower velocities, a feature that considerably simplifies
analysis. This property is lost for Eqs.~41!, thereby putting
analytical solution out of reach.

Nevertheless, a leading order analysis is still possible
low collision numbers. In the limitR!1, we find

P1~v !>P0~v !F12RE
0

`

dv8uv2v8uP0~v8!G ,
P2~v !>RP0~v !E

v

`

dv8~v82v !P0~v8!, ~42!

Pm~v !>Rm21P̃m~v !.

Heuristically, clusters withm cars are created bym21 col-
lisions and a factorR is generated in each collision. Al
though the functionsP̃m(v) are quite complicated, the over
all prefactor Rm21 suggests an exponential cluster si
distribution in the dilute limit.

0
ars,
if-



a
pl

th
fi

co

,
t

o
in
d

te
s

t
a
fo
ly

n
w
ca
e
g

r
lem
lized
-
We
es-
sid-
.
lus-
m-
en-
ion
arger
the

de,
rall
of

ed.
b-
ter-
of
ion
dy
ro-
p-
t-
ta

ns.
r

6686 56E. BEN-NAIM AND P. L. KRAPIVSKY
In the special case of a bimodal velocity distribution,
solution is possible. The structure of clusters here is sim
A cluster of sizem consists of a leading slow car andm21
fast cars behind it. The rate equation~41! simplifies consid-
erably, and a Poisson size distribution is found,Pm
}e2 f f m21/(m21)!. The collision rate f is equal to the
product of the escape time, the velocity difference, and
fast car concentration. This steady state distribution satis
a detailed balance condition as the escape rate and the
sion rate are equal microscopically, (m21)Pm5 f Pm21 .
Thus an equilibrium steady state is reached. However
general, a nonequilibrium steady state is approached with
collision rate and the escape rate balancing only macrosc
cally. This is seen by noting that the cluster size may
crease by an arbitrary number due to collisions, but can
crease only by one due to escape.

Further investigation of the collision term in the ra
equation will be useful as well. In the no escape ca
R2150, the exact Boltzmann equation

]P~v,t !

]t
52P~v,t !E

0

v
dv8~v2v8!P0~v8! ~43!

is different from our master equation asP0(v8) replaces
P(v8,t) in the integrand@18#. This seemingly small differ-
ence is important as it shows that the system remembers
initial state. We argue that escape, no matter how sm
induces mixing and acts to erase this memory, and there
Eq. ~3!. It still remains, however, to establish quantitative
how appropriate this mean field assumption is.

The model and the results presented above can be ge
alized to study other traffic situations. First, a multilane flo
can be treated as a system of coupled one lane flows. Es
naturally couples neighboring lanes. Second, a natural g
eralization is to heterogeneous situations where passin
m

r.
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allowed only in a fractionr of the road. We expect that fo
regular distribution of these passing segments the prob
should reduce to the homogeneous case with a renorma
collision numberR/r . The most challenging question ap
pears to be the role played by the escape mechanism.
considered the case where all cars are equally likely to
cape. This assumption simplified the master equation con
erably as the escape term is linear inP(v), and thus is exact
The complementary case where only the first car in the c
ter can escape is interesting as well. For low collision nu
bers, large clusters are unlikely, and the behavior is indep
dent of the escape mechanism. However, for high collis
numbers the escape mechanism becomes weaker and l
clusters should form. Indeed, a scaling argument along
lines of Eq.~1! gives ^m&;R in the car-cluster dominated
regime.

In conclusion, despite the simplifying assumptions ma
the suggested model results in realistic behavior. The ove
picture is both familiar and intuitive: due to the presence
slower cars, clusters form and the overall flux is reduc
Our theory is in qualitative agreement with rural traffic o
servations in the dilute case. For heavy traffic, the charac
istics of the flow are solely determined by the distribution
slow cars. A single dimensionless parameter, the collis
numberR, ultimately determines the nature of the stea
state. The stationary distributions obtained analytically p
vide a simple practical recipe for calculating the flow pro
erties for arbitrary intrinsic distributions. It will be interes
ing to analyze velocity distributions from actual traffic da
using these theoretical tools.
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