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We study a class of growth processes in which clusters evolve via exchange of particles. We show
that depending on the rate of exchange there are three possibilities: I) Growth: Clusters grow
indefinitely; II) Gelation: All mass is transformed into an infinite gel in a finite time; and III)
Instant Gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The
large size tail of the scaling distribution is Φ(x) ∼ exp(−x2−ν), where ν is a homogeneity degree
of the rate of exchange. At the borderline case ν = 2, the distribution exhibits a generic algebraic
tail, Φ(x) ∼ x−5. In regime III, the gel nucleates immediately and consumes the entire system. For

finite systems, the gelation time vanishes logarithmically, T ∼ [lnN ]−(ν−2), in the large system size
limit N → ∞. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and
in electrostatically driven granular layers.
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I. INTRODUCTION

A multitude of growth phenomena in physical pro-
cesses are driven by exchange of particles between clus-
ters. Examples include droplet growth via evaporation
and re-condensation [1], island growth in deposition pro-
cesses [2], and phase ordering [3–5]. Exchange processes
have been also used to model social and economical sys-
tems including segregation of heterogeneous populations
[6], the distribution of wealth in a society [7], and growth
of urban populations [8].

In exchange processes, clusters are composed of ‘atoms’
(monomers). Monomers detach from one cluster and re-
attach to another cluster. We shall consider the detach-
ment controlled limit where the time scale for transport
between clusters is much faster then the time scale for
detachment. Exchange processes incorporate both re-
versible and irreversible features. Clusters may grow or
shrink, yet when a monomer attaches to another clus-
ter, its respective cluster disappears. This irreversible
step provides the mechanism for cluster growth. There-
fore, exchange-driven processes are fundamentally differ-
ent from irreversible growth processes, particularly ag-
gregation [9–12].

Such mass transfer processes are governed by an ex-
change kernel K(i, j) that represents the rate of transfer
of monomers from a cluster of size i to a cluster of size
j. Generally, the rate of monomer exchange between two
clusters depends on their sizes. Moreover, we consider the
case where there is no preferable direction for exchanges,
i.e., symmetric exchange kernels, K(i, j) = K(j, i). This
is unlike migration processes where the exchange is pref-
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erential (“big gets bigger” or “rich gets richer”). Migra-
tion underlies certain physical processes (e.g., coarsening
with conserved order parameter [3, 4]) as well as social
and economical processes [7, 8].
We investigate homogeneous exchange kernels,

K(ai, aj) = a2λK(i, j). In particular, we consider the
product kernel K(i, j) = (ij)λ and its generalization
K(i, j) = iνjµ + iµjν with ν + µ = 2λ and ν ≥ µ.
We obtain a complete description of the problem in
the asymptotic scaling regime. The overall range of
possible behaviors and the emergence of self-similar size
distributions are as in aggregation and migration pro-
cesses. However, there are quantitative and qualitative
differences. Unlike aggregation, the gelation transition
is complete, and unlike migration, the size distributions
are extended rather than compact.
We show that the behavior falls into three categories.

I) Growth: When ν < 2 and λ < 3/2, clusters grow indef-
initely. The typical cluster size grows algebraically with
time, k ∼ t1/(3−2λ), and the cluster size distribution is
given by a self-similar distribution with a stretched expo-
nential tail. II) Gelation: When ν < 2 and λ > 3/2, the
entire mass in the system is suddenly transformed into an
infinite gel at gelation time tc. The cluster mass diverges
algebraically near the gelation point, k ∼ (tc− t)1/(3−2λ),
and a scaling behavior similar to the one underlying the
growth phase is found. In the borderline case ν = 2 the
scaling function has an algebraic tail with a universal ex-
ponent Φ(x) ∼ x−5. Scaling breaks down in the special
point ν = µ = 2 where the distribution is log-normal. III)
Instant gelation: When ν > 2, the gelation time vanishes
logarithmically with the system size, tc ∼ [lnN ]

−(ν−2).
In particular, for an infinite system, gelation is instanta-
neous.
This paper is organized as follows. In the next section,

we define the exchange process. The governing equations
are analyzed using scaling techniques and exact solutions
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for the moments. We first analyze the product kernel
(Sec. III) and then, the generalized kernel (Sec. IV). The
gelation time in finite systems is investigated in Sec. V us-
ing heuristic arguments and numerical simulations. Ap-
plications to coarsening in the Ising model with infinite
range Kawasaki dynamics and in electrostatically driven
granular layers are briefly discussed in Sec. VI, and con-
clusions are given in Sec. VII.

II. EXCHANGE PROCESSES

We consider the following elementary exchange pro-
cess. The system consists of an ensemble of clusters and
clusters evolve via transfer of a single monomer from one
cluster to another. Symbolically,

(i, j)
K(i,j)
−→ (i± 1, j ∓ 1) (1)

with i and j the number of particles in each cluster and
K(i, j) the exchange kernel. In an exchange event, a clus-
ter is equally likely to gain or to lose a particle. Since
the exchange process is unbiased, the matrix of transi-
tion rates is symmetric: K(i, j) = K(j, i). Unbiased
exchanged processes were studied in [7] and more sys-
tematically in Refs. [13, 14].
Let Ak(t) be the density of clusters containing k

monomers at time t. It evolves according to the following
rate equation

dAk

dt
=
∑

i,j

AiAjK(i, j) [δk,i+1 + δk,i−1 − 2δk,i] . (2)

This equation assumes perfect mixing, or equivalently,
absence of spatial correlations. We restrict our attention
to monodisperse initial conditions, Ak(0) = δk,1. The ex-
change process has a single conservation law. As reflected
by the evolution equations, the total mass is conserved,
M1 = 1 with Ma =

∑

n kaAk(t) the moments of the
size distribution. It is natural to consider homogeneous
kernels, K(ai, aj) = a2λK(i, j) with 2λ the homogene-
ity degree and we present results for the product kernel
K(i, j) = (ij)λ and the generalized homogeneous kernel
K(i, j) = iνjµ + iµjν with µ+ ν = 2λ. The special case
µ = 1 was studied in ref. [13].

III. THE PRODUCT KERNEL

For the product kernel, K(i, j) = (ij)λ, the rate equa-
tions (2) read

dAk

dt
=Mλ

[

(k + 1)λAk+1 + (k − 1)
λAk−1 − 2k

λAk

]

with the boundary condition A0 ≡ 0. These evolution
equations demonstrate the diffusive character of the ex-
change process. Absorbing the factor Mλ into the time

variable

τ =

∫ t

0

dt′ Mλ(t
′) (3)

we recast the governing equations into

dAk

dτ
= (k + 1)λAk+1 + (k − 1)

λAk−1 − 2k
λAk . (4)

Alternatively, one can study integer moments of the size
distribution. The total density obeys d

dτ M0 = −A1, the

total mass is conserved d
dτ M1 = 0, and higher integer

moments satisfy the following hierarchy of equations

dMn

dτ
= 2

[n/2]
∑

l=1

(

n

2l

)

Mn−2l+λ. (5)

Only for integer values of the homogeneity index is this
hierarchy closed. We employ different approaches for dif-
ferent λ’s. For λ < 2, we perform a scaling analysis of
the rate equations and for λ ≥ 2, we analyze the moment
equations. This general analysis is augmented by exact
solutions for the integer values λ = 0, 1, and 2.

A. Scaling (λ < 2)

When λ < 2, dimensional analysis of Eq. (4) shows
that the typical cluster size grows as

k ∼ τα, with α =
1

2− λ
. (6)

Using dτ
dt =Mλ ∼ τα(λ−1), the growth of the typical scale

is expressed in terms of the physical time

k ∼







tβ λ < 3/2,
exp(const.× t) λ = 3/2,
(tc − t)β 3/2 < λ < 2.

(7)

The dynamical exponent is β = (3 − 2λ)−1. As long as
λ < 3/2, clusters grow indefinitely and the characteristic
size grows algebraically with time. For λ > 3/2, a gela-
tion transition occurs, i.e., the system develops a giant
cluster in a finite time tc.
We seek a scaling solution of the rate equations

Ak(τ) ' τ−2αΦ
(

k τ−α
)

. (8)

Mass conservation dictates the normalization J1 = 1
where Ja =

∫

dxxa Φ(x) is the ath moment of the scaling
distribution. Technically, the scaling function describes
the behavior in the limits k →∞, τ →∞ with the vari-
able x = kτ−α fixed. Thus, we consider the continuum

limit of the rate equation ∂
∂τA(k, τ) =

∂2

∂k2

[

kλA(k, τ)
]

.
The scaling function satisfies the second order linear dif-
ferential equation

(2− λ)
d2

dx2
[

xλΦ(x)
]

+ x
d

dx
Φ(x) + 2Φ(x) = 0. (9)
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Multiplying this equation by x, employing the identities
x2Φ′ + 2xΦ = (x2Φ)′, xΨ′′ = (xΨ)′′ − 2Ψ′, and integrat-
ing once yields (2− λ)

[

(xλ+1Φ)′ − 2xλΦ
]

+ x2Φ(x) = 0.
Integrating a second time gives the scaling function:

Φ(x) = C x1−λ exp

[

−
x2−λ

(2− λ)2

]

(10)

with C = (2 − λ)−2/(2−λ)/Γ
(

1
2−λ

)

found from the con-

dition J1 = 1. The nature of the scaling function differs
from that found for migration where K(l,m) = 0 for
l < m [8]: Exchange is characterized by extended dis-
tributions, while migration is characterized by compact
distributions.
There are two important cases [7, 13] for which the

rate equations can be solved exactly. When the exchange
kernel is independent of the cluster size (λ = 0), the rate
equation is d

dτ Ak = Ak+1 + Ak−1 − 2Ak and the cluster
size distribution is [7]

Ak = e−2τ [Ik−1(2τ)− Ik+1(2τ)] , (11)

where In is the modified Bessel function of order n [15].
In agreement with the general scaling analysis, the typ-
ical scale grows diffusively, k ∼ τ 1/2, and the scaling
function is given by Φ(x) = (4π)−1/2x exp(−x2/4).
For the pure product kernel (λ = 1), the rate equa-

tions read d
dtAk = (k + 1)Ak+1 + (k − 1)Ak−1 − 2kAk

(in this case t = τ). Substituting the mass-conserving
ansatz Ak = (1 − u)2uk−1 reduces the infinite set of
rate equations into a single ordinary differential equation
d
dtu = (1 − u)2 subject the initial condition u(0) = 0.
The size distribution in this case is [13]

Ak =
tk−1

(1 + t)k+1
. (12)

The typical cluster size grows ballistically, k ∼ t, and the
scaling function is purely exponential, Φ(x) = e−x, again
in agreement with the above scaling results.
When 3/2 < λ < 2, an infinite cluster is formed at

some finite time tc, termed the gelation time. The gela-
tion time depends on the initial condition and its de-
termination requires the full time dependent behavior.
Even without knowing the gelation time exactly, one can
describe the behavior in the pregel stage since the size
distribution still admits the scaling form (10). Thus, for
all λ < 2 we have

Ak(τ) ' C k1−λτ−
3−λ
2−λ exp

[

−
k2−λ τ−1

(2− λ)2

]

. (13)

From this equation we see that Ak → 0 in the limit
τ →∞ (t→ tc). In other words, the gelation is complete
at the gelation point: Ak(t) = 0 for t ≥ tc. This surpris-
ing behavior is akin to a first order phase transition. By
contrast, gelation in aggregation processes [16, 17] is sim-
ilar to a continuous transition – at the gelation point, the
gel has an infinitesimal fraction of the entire mass, then

the gel continuously grows and finite clusters disappear
only when t =∞.
Complete gelation can be alternatively shown as fol-

lows. Let us assume that the cluster size distribution
approaches a constant Ak → A∗

k > 0 as τ → ∞. From
Eqs. (4), the quantities Bk ≡ kλA∗

k satisfy the discrete
Laplace equation Bk+1 +Bk−1 − 2Bk = 0 for k > 1 and
B2 = 2B1. Solving recursively yields Bk = kB1 = kA∗

1

or A∗
k = k1−λA∗

1. Mass conservation,
∑

k kA∗
k = 1, im-

plies A∗
1 = 0, and thence A∗

k = 0 for all k, i.e., complete
gelation.

B. Multiscaling (λ = 2)

In this special case, the moment equations (5) are
closed for n ≥ 2. For example

dM2

dτ
= 2M2,

dM3

dτ
= 6M3, (14)

dM4

dτ
= 12M4 + 2M2.

The solutions to these equations are combinations of ex-
ponentials: M2 = e2τ , M3 = e6τ , M4 =

6
5e
12τ − 1

5e
2τ ,

etc. The physical time t = 1
2 [1 − e−2τ ] is found from

t =
∫ τ

0
dsM−1

2 (s) so

M2 = (1− 2t)−1,

M3 = (1− 2t)−3, (15)

M4 =
6

5
(1− 2t)−6 −

1

5
(1− 2t)−1.

Therefore, the gelation time is tc = 1/2. Asymptotically,
the first term in (5) dominates: d

dτ Mn ' n(n− 1)Mn im-
plying Mn ∼ exp[n(n − 1)τ ] for n > 1. Close to the
gelation time (t→ tc), the moments diverge according to

Mn(t) ∼ (tc − t)−n(n−1)/2. (16)

Hence moments exhibit multiscaling asymptotic behav-

ior, i.e., properly normalized momentsM
1/n
n /M1 diverge.

To determine the asymptotic form of the size distribu-
tion we treat k as a continuous variable. For λ = 2,

Eq. (4) becomes ∂
∂τAk =

∂2

∂k2 [k
2Ak]. This equation is

equidimensional in k [15] thereby suggesting use of the
variable ξ = ln k instead of k. Making the transformation
from Ak(t) to A(ξ, τ) defined via Akdk = A(ξ)dξ, we re-
cast above equation for Ak(t) into the following constant
coefficients diffusion-convection equation

(

∂

∂τ
−

∂

∂ξ

)

A(ξ, τ) =
∂2

∂ξ2
A(ξ, τ). (17)

With the initial conditions A(ξ, 0) = δ(ξ), the solution
reads A(ξ, τ) = (4πτ)−1/2 exp[−(ξ+τ)2/(4τ)]. The orig-
inal distribution Ak = k−1A(ξ) is log-normal

Ak(τ) ' (4πτ)
−1/2e−τ/4k−3/2 exp

[

−
(ln k)2

4τ

]

. (18)
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Again, the distribution vanishes at the transition point,
i.e., the gelation transition is complete. Moreover, the
mass distribution is algebraic, Ak(t) ∼ M0(t) k

−3/2 for

sufficiently small masses, k ¿
√

ln 1
1−2t . The total den-

sity vanishes quite slowly near the transition point

M0(t) ∼ (1− 2t)
1/8

(

ln
1

1− 2t

)−1/2

. (19)

We note that the density follows a different law than the
one characterizing higher than first moments (16).
The size distribution does not follow a scaling behavior

asymptotically and the log-normal distribution is respon-
sible for the multiscaling behavior (16) of the moments.
This differs from aggregation processes where the mo-
ments diverge as Mn(t) ∝ (tc − t)−αn with the exponent
αn linear in n [16].

C. Instant Gelation (λ > 2)

Gelation is now instantaneous and complete, that is
Ak(t) = 0 for all k when t > 0. To prove this assertion
we assume the opposite and arrive at a contradiction.
Our analysis follows the ingenious argument devised by
van Dongen [17] in the context of aggregation processes.
The moments Mn with integer n ≥ 2 evolve according

to (5). The first term in the summation yields a lower
bound for their growth rate

dMn

dτ
≥ n(n− 1)Mn−2+λ ≥ n(n− 1)(Mn)

1+Λ (20)

with Λ = λ−2
n−1 . The second inequality follows from the

Jensen’s inequality as shown below. Consider the auxil-
iary functionsMn, evolving according to

dMn

dτ
= n(n− 1)(Mn)

1+Λ . (21)

Solving this equation subject to the initial condition
Mn(0) = 1 yieldsMn = [1− n(λ− 2)τ ]−1/Λ. Therefore,
Mn → ∞ as τ → τn = [n(λ − 2)]

−1. Since Mn ≥ Mn,
the moment Mn diverges at least at τn. The series of
times τn set an upper bound for the gelation time τc
since all moments should be finite for τ < τc. As τn → 0
when n → ∞, we conclude that τc = 0 and thence, the
gelation time vanishes tc = 0.
The inequality Mn−2+λ ≥ (Mn)

1+Λ with Λ = λ−2
n−1 is

derived as follows. Let the parameters pj ≥ 0 satisfy
∑

j pj = 1 and let Φ(x) be a convex function. A convex
function satisfies the Jensen inequality

∞
∑

j=1

pjΦ(xj) ≥ Φ

( ∞
∑

j=1

pjxj

)

. (22)

First, we substitute the coefficients pj = jAj (from
mass conservation

∑

j jAj = 1) and the convex function

Φ(x) = x1+Λ (Λ > 0 for λ > 2) into the Jensen inequal-
ity. Then, choosing xj = jn−1 and using the relations
∑

pjxj =
∑

jnAj = Mn and
∑

pjΦ(xj) = Mn−2+λ we
indeed obtain the above inequality.

IV. GENERALIZED KERNELS

The rates K(i, j) underlying exchange processes are
typically homogeneous functions of i and j (at least
for large i and j). We restrict ourselves to such ker-
nels. Apart from the homogeneity degree 2λ, homo-
geneous kernels are characterized by an additional ex-
ponent ν defined through the asymptotic K(1, j) ∼ jν

as j À 1. For i ¿ j the exchange kernel scales as
K(i, j) = i2λK(1, j/i) ∼ iµjν with 2λ = ν + µ. There-
fore, we consider a specific generalization of the product
kernel that exhibits these homogeneity properties

K(i, j) = iνjµ + iµjν . (23)

More precisely, the asymptotics K(i, j) ∼ iµjν occurs
for i ¿ j if ν ≥ µ; since the kernel is symmetric, we
can assume that ν ≥ µ without loss of generality. We
expect that the homogeneity indices govern the overall
qualitative behavior (growth, gelation, instant gelation),
while the precise form of the kernel controls quantitative
characteristics such as the size distribution.
For this exchange kernel, the rate equations (2) become

dAk

dt
= Mµ [(k + 1)

νAk+1 + (k − 1)
νAk−1 − 2k

νAk]

+ Mν [(k + 1)
µAk+1 + (k − 1)

µAk−1 − 2k
µAk] .

The following generalization of the modified time variable

τ =

∫ t

0

dt′
√

Mν(t′)Mµ(t′) (24)

handles the two indices symmetrically. In terms of this
time, the evolution equations are

dAk

dτ
= R [(k + 1)νAk+1 + (k − 1)

νAk−1 − 2k
νAk]

+ R−1 [(k + 1)µAk+1 + (k − 1)
µAk−1 − 2k

µAk] ,

with R =
√

Mµ/Mν . Of course, the dynamics conserve

mass: d
dτ M1 = 0. Higher integer moments evolve accord-

ing to

dMn

dτ
= 2

[n/2]
∑

l=1

(

n

2l

)

[

RMn−2l+ν +R−1Mn−2l+µ

]

. (25)

When ν < 2, the scaling analysis follows closely the
product kernel case. The overall growth laws (6) and (7)
remain unchanged and the homogeneity degree λ charac-
terizes the scaling behavior. However, we shall see that
the individual indices ν and µ play an important role
since they dictate the range for which this law holds.
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We seek a scaling solution of the form (8). The scaling
function Φ(x) satisfies

d2

dx2

[

(

Uxν + V xµ
)

Φ(x)
]

+ x
d

dx
Φ(x) + 2Φ(x) = 0 (26)

with the constants U = α−1A and V = α−1A−1 deter-
mined from the ratio A =

√

Jµ/Jν . The scaling function
reads

Φ(x) = C
x

Uxν + V xµ
exp

[

−

∫ x

0

dy
y

Uyν + V yµ

]

. (27)

The scaling solution involves three parameters U , V ,
and C. Substituting U = α−1A and V = α−1A−1 into
the equality A =

√

Jµ/Jν yields a closed equation for the
parameter A. Once A is determined, the parameters U
and V follow, and finally, the amplitude C is found from
the normalization J1 = 1.
We now illustrate this procedure for the special case

(ν, µ) = (1, 0), i.e., for the pure sum kernelK(i, j) = i+j.
In this case, the integral on the right-hand side of Eq. (27)
is readily computed. Using U = 3A

2 and V = 3
2A we

arrive at

Φ(x) = C x
(

1 +A2x
)a−1

exp
[

−aA2x
]

(28)

with a = 2
3A

−3. Substituting (28) into the right-hand

side of the equality A =
√

J0/J1 transforms it into
the equation ( ea )

a Γ(a, a) + a−1 = 1, involving the incom-
plete gamma function (see Appendix A). The amplitude
is then explicitly evaluated to give C = aA6. From the
above transcendental equation we find a ∼= 2.82649, and
hence A ∼= 0.428397, C ∼= 0.0174713. Interestingly, there
is a nontrivial algebraic correction to the leading expo-
nential behavior, Φ(x) ∼ xa exp(−aAx) for large x [18].
On the boundary ν = 2 separating regime III from the

two other regimes, the solution of Eq. (27) significantly
simplifies. We find A = 1/[2(2 − µ)], U = 1/4, and
V = 1/(2− µ)2; consequently, the scaling function is

Φ(x) = C x1−µ

[

1 +
x2−µ

4(2− µ)2

]−1− 4

2−µ

. (29)

The constant C = 2 [2(2− µ)]
−1− 2

2−µ [B( 1
2−µ ,

3
2−µ )]

−1 is

expressed in terms of the beta function. Remarkably, the
scaling function (29) exhibits a universal large-x asymp-
totic behavior

Φ(x) ∼ x−5 . (30)

Hence the size distribution is algebraic, Ak(τ) ∼ τ3α k−5,
with α = (2− λ)−1 = 2/(2− µ). With this algebraic di-
vergence, sufficiently small moments are characterized by
ordinary scaling behavior while higher moments exhibit
multiscaling behavior:

Mn ∼

{

τα(n−1) n < 4,
ταn(n−1)/4 n > 4.

(31)

This behavior follows from the leading term in the mo-
ment equation (25), viz. d

dτ Mn = n(n − 1)MnR. With

R =
√

Mµ/M2 ' Aτ−1 and A = α/4, this equation be-

comes d
dτ Mn =

αn(n−1)
4τ Mn, leading to the multiscaling

behavior (31).
The determination of A in the general situation re-

quires numerical evaluation, yet the form and nature of
the size distribution is clear. For example, the minimal
(maximal) index governs the distribution of small (large)
clusters. Indeed, from Eq. (27), the extremal behaviors
are

Φ(x) ∼

{

x1−µ x¿ 1,
exp[−x2−ν ] xÀ 1.

(32)

Apart from the point (ν, µ) = (2, 2), the scaling solution
holds for all other µ < 2. As in the product kernel case,
growth occurs when λ < 3/2 and gelation occurs when
3/2 < λ < 2.
For ν > 2, the scaling solution (27) predicts Φ ∼ x1−ν

for large x. Such behavior is inconsistent since the mo-
ment Jν diverges and instead, instantaneous gelation oc-
curs. The moments Mn with n > 1 satisfy Eq. (25) and
the first term in the summation yields a lower bound for
the moment growth d

dτ Mn ≥ Rn(n − 1)Mn−2+ν . Keep-
ing only this term and absorbing the factor R into the
time variable, the previous proof applies. Thus, gelation
is instantaneous.
Instant gelation arises when ν > 2, so it does not hap-

pen if for instance the exchange rate grows no faster than
the mass, ν ≤ 1 (this condition is satisfied for the ex-
change processes discussed below in Sec. VI). In some
situations, however, the condition ν ≤ 1 may be violated.
We merely mention that in aggregation — processes re-
alized via collisions and thus with rates whose growth is
more restricted than in exchange — kernels with ν > 1
do appear in several applications ranging from the coa-
lescence of raindrops [19–21] to the coalescence of plan-
etesimals into planets [22] and stars into black holes [23].
To summarize, there are 3 types of behaviors, deter-

mined by the homogeneity degrees µ and ν (Fig. 1):

I Growth. The cluster size grows indefinitely, and the
size distribution obeys scaling.

II Gelation. The cluster size diverges in a finite time
and the size distribution follows a scaling solution
near the gelation time. Gelation is complete.

III Instant Gelation. The cluster size distribution van-
ishes for all t > 0.

The cluster size distribution exhibits a scaling behav-
ior in regimes I and II. Scaling behavior underlies the
system everywhere except for regime III and the point
(2, 2). In the bulk of regimes I and II the size distribu-
tion is a stretched exponential, while in the boundary
with region III, the cluster size distribution has an alge-
braic tail. Last, at the point (µ, ν) = (2, 2) scaling breaks
down and the distribution is log-normal.
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FIG. 1: The three types of behaviors: Scaling (I), Ordinary
gelation (II), and Instant gelation (III).

V. THE GELATION TIME

Instantaneous gelation is certainly counter intuitive: A
finite time singularity that occurs at time t = +0 ! In-
stantaneous gelation was investigated exclusively in the
context of aggregation [12, 17, 24–28]. For infinite sys-
tems, it is impossible to quantify the difference between
two instant gelling systems. Finite systems, on the other
hand, naturally quantify how fast a system gels.
Consider a system consisting initially of N monomers.

In a finite time tN , all mass in the system condenses
into a single ‘runaway’ cluster. How does the average
gelation time TN = 〈tN 〉 depend on N? When growth or
ordinary gelation occurs, the answer follows from our pre-
vious analysis. In the scaling regime, the growth law (7)
indicates that the condensation time grows algebraically
with the system size, TN ∼ N1/β . In the case of ordi-
nary gelation, the average gelation time saturates at an
N -independent value: TN → tc. The interesting case is
instant gelation where the gelation time vanishes in the
thermodynamic limit, TN → 0 as N →∞.
For simplicity, we discuss the product kernel. The van-

ishing gelation time is ultimately related to the short time
behavior. Early on, loss terms in the rate equation (4)
are negligible and to leading order d

dtAj
∼= (j +1)λAj+1,

where we tacitly assumed τ ≡ t. For the initial condition
Aj(0) = δj,1, the leading order behavior of the density is

Aj+1
∼= (j!)λ−1 tj . (33)

In a finite system consisting initially of N monomers,
a j-mer first appears at time tj ≈ (j!)−(λ−1)/jN−1/j ,
estimated from NAj(tj) = 1. For example, the first
dimer and trimer appear at times t2 = N−1 and t3 =
2−(λ−1)/2N−1/2, respectively. By definition, the times
increase monotonically, tj+1 > tj , yet the above esti-
mates increase monotonically only for sufficiently small

j < j∗. From tj∗ = tj∗+1, we obtain the extremum
j∗ = (λ− 1)

−1 lnN using the Stirling formula. The cor-
responding time T∗ ≡ tj∗ is

T∗ ∼

(

λ− 1

lnN

)λ−1

. (34)

For later times, t À T∗, the rate equations should be
modified to account for the finiteness of the system (see
e.g. [29, 30]) since significant statistical fluctuations are
induced by large runaway clusters that take over (even-
tually only one such cluster remains). The critical size of
such clusters is j∗ ∼ (λ−1)

−1 lnN . As a complete analyt-
ical solution seems out of reach, we proceed heuristically
by focusing on the leading cluster that eventually grows
to be the gel. Since it exchanges monomers back and
forth with other clusters its growth mechanism is diffu-
sive. For an ordinary diffusive process, d

dt 〈k〉 = 0, while
d
dt 〈k

2〉 = D. In our case, D = kλ with the typical size

k2 ≡ 〈k2〉. Therefore, the typical size of the runaway
cluster grows according to

dk

dt
= kλ−1. (35)

Integrating this rate equation from the critical size k = j∗
to the system size k = N gives the gelation time

TN = T∗ +
1

λ− 2

[

1

jλ−2∗

−
1

Nλ−2

]

. (36)

Since j∗ = (λ − 1)−1 lnN , the duration of the latter
growth phase is much larger than that of the nucleation
phase, TN À T∗. Therefore, the gelation time vanishes
logarithmically

TN ∼ (lnN)
−(λ−2) , (37)

in the thermodynamic limit. A straightforward extension
of the above argument to the generalized exchange kernel
(23) gives TN ∼ (lnN)

−(ν−2).
Therefore, in a finite system it may be difficult to dis-

tinguish instantaneous gelation from the ordinary one.
We verified the logarithmic law (37) numerically for λ = 3
(Fig. 2). To probe fluctuations in the gelation time, we
examined the variance. We observed that the normal-
ized variance σ2N = 〈t2N 〉/〈tN 〉

2 − 1 vanishes logarith-
mically in the thermodynamic limit (Fig. 2). The dis-
tribution of normalized gelation times becomes trivial
P (tN/TN ) → δ(z − 1) implying that the gelation time
is a self-averaging quantity.
We also examined the gelation time in two other

growth processes, namely aggregation [9–11] and addi-
tion [31, 32]. The above heuristic picture yields a simi-
lar logarithmic law albeit with a different exponent [28].
Self-averaging is observed numerically as well, and we
conclude that the behavior found for exchange processes
is generic.
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FIG. 2: The system size dependence of the gelation time.
Shown are the average gelation time TN and the normalized
variance σN versus the system size. The Monte Carlo simu-
lation results correspond to an average over 103 independent
realizations of the exchange process with λ = 3.

VI. APPLICATIONS TO COARSENING

In exchange processes, a monomer detaches from a
cluster and subsequently re-attaches to another clus-
ter. This elementary mechanism underlies a number of
growth and coarsening processes. We apply our general
theory to two coarsening processes.

A. Infinite range Ising-Kawasaki model

Consider the model proposed by Schelling [6] that
mimics segregation in initially homogeneous systems. In
its simplest version, the segregation model is defined on
a lattice completely filled by two species. Any two dis-
similar particles can exchange locations if this move does
not increase the total number of broken bonds (dissimilar
nearest neighbors). This model is essentially the Ising
model with Kawasaki zero-temperature spin exchange
dynamics [33–35]. In contrast with the usual local (typ-
ically nearest-neighbor) exchanges, exchange in the seg-
regation model is non-local. This process is still not a
mean-field one as broken bonds are counted locally.
To appreciate the difference between the nearest-

neighbor and infinite range zero-temperature Kawasaki
dynamics recall that subject to local exchange, the Ising
system freezes. This is obvious in one dimension where a
string of alternating domains each of length ≥ 2 could not
further evolve and it remains true in higher dimensions
[36]. By contrast, the Ising model with infinite range
zero-temperature Kawasaki dynamics coarsens. In one
dimension, the domain size distribution can be obtained
analytically [37]. The situation in higher dimensions is
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FIG. 3: Decay of the energy versus time in the Ising-Kawasaki
model with infinite range exchange. The inset shows the local
slope −d lnE(t)/d ln t versus time t.

an open question [33–35].

We considered the limit of a vanishing fraction of one
of the two phases. While interesting on its own, this
case is also relevant to sociological applications. In this
limit, domains of the minority phase are isolated and the
process is essentially an exchange process with a product
kernel K(i, j) = (ij)λ. The dependence of the number
of exchange candidates (i.e., spins in domain walls that
can lower their energy by hoping to a different cluster)
on the cluster size dictates the homogeneity degree. For
spherical clusters, only perimeter spins may exchange.
Since the island size and the surface size grow with the
radius according to k ∼ Rd and σ ∼ Rd−1 ∼ k(d−1)/d,
respectively, one has λ = (d− 1)/d. Hence β = d/(d+2)
[recall that the exponent β is defined via k ∼ tβ and equal
to β = 1/(3 − 2λ), Eq. (7)]. The dynamical exponent
(defined through R ∼ tz) is therefore z = 1/(d + 2).
If the islands are polygons, a distinct possibility on a
lattice, then only corner spins are active so λ = 0, and
consequently β = 1/3 and z = 1/(3d). Both estimates
agree with the exact result in one dimension [37].

To examine these predictions, we performed large scale
Mote Carlo simulations of the Ising model with infi-
nite range Kawasaki exchange dynamics in two dimen-
sions. The efficient simulation method keeps track only
of boundary spins. The simulation data in Fig. 3 corre-
sponds to an average over 102 independent realizations
in a square lattice of 6000 × 6000 sites with minority
spin concentrations of ρ = 0.01 and 0.02. The density
of broken bonds (i.e., the energy) E(t) provides a con-
venient measure for the domain growth law. If n is the
density of minority domains, then conservation of the
total number of minority spins gives nRd ∼ const, and
using compactness of the domains we get E ∼ nRd−1

from which E ∼ R−1 ∼ t−z. Our numerical simulations
show a very slow growth law for the typical domain size.
The simulations exclude the former circular domain sce-
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FIG. 4: A snapshot of a small part of the system at the late
stage of evolution (t = 106).

nario z = 1/(d+ 2) = 1/4 and give support to the latter
square domain scenario z = 1/(2d) = 1/6. Additionally,
we verified that the shape of the domains is not circular,
but rather close to rectangular with a mostly straight
edges (Fig. 4). Thus, the growth may not necessarily fol-
low from curvature considerations. We conclude that the
growth law is dimension dependent, at least in the limit
of vanishing minority concentration.

B. Coarsening of thin granular layers

In electrostatically driven granular layers, clusters nu-
cleate around large grains [38]. When charged grains
oscillate back and forth between the two bounding plates
due to the oscillating electric field, they may scatter of the
plate or collide with other particles. Consequently, indi-
vidual grains may transfer from one cluster to another.
Naively, the rate of hoping into and out of a cluster is
proportional to its area. Therefore, the homogeneity de-
gree is unity, λ = 1, implying β = 1 and a dynamical
exponent of z = 1/d. In two dimensions, this prediction
is consistent with the experimental observation z = 1/2
[38].
To further test the exchange driven growth theoreti-

cal predictions, we examined the experimentally observed
cluster size distributions. First, we checked that the size
distributions at different times are identical once the av-
erage cluster size is set to unity, thereby verifying the self-
similar behavior. Given the relatively small number of
available clusters, experimental data from different stages
during the coarsening process were aggregated into a sin-
gle data set by setting the average cluster size (or area) to
unity. To further improve the statistics, we examined the
cumulative size distribution, Ψ(x) =

∫∞

x
dyΦ(y). The

theory (12) predicts a purely exponential distribution,
Ψ(x) = Φ(x) = exp(−x). The experimental distribution
represents roughly 103 clusters obtained from 20 differ-
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FIG. 5: The cumulative cluster area distribution Ψ(x) versus
the normalized area x. The inset magnifies the tail of the
distribution (same axis labels as the main figure).

ent snapshots during a single realization of the coarsening
process in which the total number of clusters decreased
appreciably from 200 to 10.
Comparing the theoretical and experimental size dis-

tributions, exchange driven growth provides a useful ap-
proximation (see Fig. 5). For instance, the normalized
variance, defined via σ2 = J2/J

2
1 − 1, is experimen-

tally found to be σ = 0.80 ± 0.05 compared with the
theoretical value σ = 1. Although exchange of indi-
vidual grain does underlie the experimental coarsening
process, the exchange usually involves only neighboring
clusters. Thus, the mean-field exchange driven growth
process where exchange can occur between any two clus-
ters is only an approximation. Further, more extensive
experimental data is needed to resolve the relevance of
spatial correlations.

VII. CONCLUSIONS

We have shown that kinetics of exchange processes are
classified by the homogeneity indices of the governing
rates. There are three possible regimes including indef-
inite growth, gelation in a finite time, and instant gela-
tion. Scaling behavior underlies the first two regimes.
The size distributions are generally extended, decaying
exponentially or algebraically for large sizes, in contrast
with migration processes.
We also studied the gelation time in finite systems and

found that it decays rather slowly, following an inverse
logarithmic law. It would be interesting to determine
further temporal characteristics in the instant gelation
regime [28]. While instant gelation may seem unphysical,
there is no obvious restriction on the homogeneity indices
that forbids instant gelation. The finite system size or
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physical restrictions on the aggregate sizes may cause a
system that technically is in the instant gelation regime
to gel only in a finite time and therefore characterization
of the instant gelation regime may still be practically
relevant.
Our description was on a mean-field level where all

pairs of clusters in the system are equally likely to in-
teract. It will be interesting to incorporate spatial fluc-
tuations into this description. The nature of the spa-
tial fluctuations depends on the mechanism for trans-
porting monomers from one cluster to the other. For
diffusive transport, one can incorporate effective fluxes

into clusters, using the standard techniques developed
for reaction-diffusion processes.
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APPENDIX A: THE CASE (ν, µ) = (1, 0)

Substituting Eq. (28) into A2 = J0/J1 yields

1 =

∫∞

0
dxx2 (1 + x)b−1 e−ax

∫∞

0
dxx (1 + x)b−1 e−ax

with b = a. Evaluation of the ratio of the integrals is
performed as follows

1 = −
d

da
ln

[
∫ ∞

0

dxx (1 + x)b−1 e−ax

]

∣

∣

∣

a=b

= −
d

da
ln

[

−
d

da

(
∫ ∞

0

dx (1 + x)b−1 e−ax

)]

∣

∣

∣

a=b

= −
d

da
ln

[

−
d

da

(

eaa−b Γ(b, a)
)

]

∣

∣

∣

a=b

=
a−2 + eaa−a−1 Γ(a, a)

a−1
.


