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The role of the passing mechanism in traffic flows is examined. Specifically, we consider passing
rates that are proportional to the difference between the velocities of the passing car and the passed
car. From a Boltzmann equation approach, steady state properties of the flow such as the flux,
the average cluster size, and the velocity distributions are found analytically. We show that a
single dimensionless parameter determines the nature of the flow and helps distinguish between
dilute and dense flows. For dilute flows, perturbation expressions are obtained, while for dense
flows, a boundary layer analysis is carried out. In the latter case, extremal properties of the initial
velocity distribution underly the leading scaling asymptotic behavior. For dense flows, the stationary
velocity distribution exhibits a rich “triple deck” boundary layer structure. Furthermore, in this
regime fluctuations in the flux may become extremely large.
PACS numbers: 02.50-r, 05.40.+j, 89.40+k, 05.20.Dd

I. INTRODUCTION

Traffic flows display a variety of cooperative behaviors
similar to nonequilibrium driven systems such as gas and
granular flows [1–4]. Typically, only a few major char-
acteristics of the interparticle interaction are responsible
for such collective phenomena. Therefore, it is impor-
tant to use models that are as simple as possible. Such a
strategy has proven useful in studying traffic flows, where
the ultimate goal is understanding complex phenomena
such as slowing down, traffic jams, synchronized flows,
and phase transitions [1,5].

Theoretical approaches to modeling traffic flows are
quite diverse and include fluid mechanics [2,3,6,7], cel-
lular automata [8–16], particle hopping [17–20], kinetic
theory [4,7,21], and ballistic motion [22–27]. In the hy-
drodynamic description, space and time are both con-
tinuous variables, while in cellular automata they are
both discrete. Moreover, the former is a macroscopic
approach, while the latter is microscopic. Kinetic theory
and especially ballistic motion models can help bridge
this gap as they are formulated on a microscopic level,
but lead naturally to a macroscopic theory. In our previ-
ous studies, a Boltzmann equation was derived for traffic
flows in no-passing zones of one lane roadways [24], and
then generalized to passing zones as well [25]. A transi-
tion from a low-density “laminar” flow to a high-density
“congested” flow was generally found. This transition as
well as other statistical properties are well described by
a single dimensionless parameter, R, termed the collision
number.

In our former study [25], a constant passing rate was
assumed. However, a passing rate that increases with ve-
locity difference is more realistic as faster drivers tend to
pass more often than slower drivers. Therefore, we study
the complementary case where the passing rate is linear
in the velocity difference. Our goal is to examine the
role played by the passing mechanism. While the gov-
erning equations become more complicated, a formal an-

alytical solution is still possible. Although certain quan-
titative features such as the scaling exponents change,
the qualitative picture remains the same. Interestingly,
this accelerated passing mechanism leads to a triple deck
(a boundary layer accompanied by an additional inner
layer) structure of the car velocity distribution.

II. THEORY

In the ballistic motion model, fluctuations in the veloc-
ity of a single isolated car are neglected. We thus consider
a one-dimensional traffic flow where size-less cars (“par-
ticles”) move with a constant velocity. Initially, cars are
randomly distributed in space and they move with their
intrinsic velocities. The presence of slower cars forces
some cars to drive behind a slower car and therefore leads
to the formation of clusters. When a cluster overtakes a
slower cluster, a larger cluster forms and its velocity is
the smaller of the two velocities. Meanwhile, all cars in
a given cluster may escape their respective clusters and
resume driving with their intrinsic velocity. We consider
the case where the escape rate is proportional to ∆v, the
difference between the velocity of the passing car and
lead (slowest) car in the cluster, i.e., `−1∆v, where ` has
dimensions of length.

It is convenient to introduce dimensionless velocity
v/v0 → v, space xc0 → x, and time c0v0t → t variables.
Consequently, the escape rate `−1∆v becomes R−1∆v.
The dimensionless number R = tesc/tcol is simply equal
to the ratio of the two elementary time scales, the es-
cape time scale tesc = `/v0 and the collision time scale
tcol = (c0v0)−1 [25]. We term R = c0` the “collision
number”.

Let P (v, t) be the density of clusters moving with ve-
locity v at time t. Initially, isolated single cars drive
with their intrinsic velocities drawn from the distribution
P0(v) ≡ P (v, t = 0). The dimensionless intrinsic velocity
distribution is thus normalized to unity,

∫
dvP0(v) = 1.
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The flow is invariant under a finite velocity translation,
and the minimal velocity is set to zero.

Neglecting correlations between the velocities and the
positions of particles, a mean-field equation for the clus-
ter velocity distribution P (v) can be written

∂P (v)
∂t

= R−1

∫ v

0

dv′(v − v′)P (v, v′) (1)

− P (v)
∫ v

0

dv′(v − v′)P (v′),

where the time variable t has been suppressed. This mas-
ter equation involves P (v, v′), the density of cars of in-
trinsic velocity v driving with actual velocity v′ < v.
Such slowed down cars escape their clusters with rate
proportional to the velocity difference, R−1(v − v′), and
thus the escape term. Collisions occur with rate propor-
tional to the velocity difference as well as the product
of the velocity distributions. The integration limits en-
sure that only collisions with slower cars are taken into
account.

The master equation is complemented by a second rate
equation corresponding to the joint velocity distribution
P (v, v′),

∂P (v, v′)
∂t

= −R−1(v − v′)P (v, v′) + (v − v′)P (v)P (v′)

− P (v, v′)
∫ v′

0

dv′′(v′ − v′′)P (v′′) (2)

+ P (v′)
∫ v

v′
dv′′(v′′ − v′)P (v, v′′).

In this equation as well, the escape term is propor-
tional to the velocity difference. A useful check of self-
consistency is that the total density of v-cars, P0(v) =
P (v) +

∫ v
0
dv′P (v, v′) is conserved by these master equa-

tions.
We restrict attention to the steady state properties,

which can be obtained by taking the limit t → ∞ or
∂/∂t ≡ 0. We will express the joint distribution via the
single cluster densities, and then insert it into (1) to get a
closed equation for the cluster velocity distribution. Once
the cluster distribution is found, average quantities such
as the average cluster concentration, c, and the average
cluster velocity, 〈v〉, will easily follow

c =
∫ ∞

0

dv P (v), 〈v〉 = c−1

∫ ∞
0

dv vP (v). (3)

Furthermore, knowledge of the joint velocity distribution,
P (v, v′), will enable computation of J , the average flux

J =
∫ ∞

0

dv

[
vP (v) +

∫ v

0

dwwP (v, w)
]
, (4)

and G(v), the actual car velocity distribution

G(v) = P (v) +
∫ ∞
v

dw P (w, v). (5)

This latter quantity satisfies the normalization conditions
1 =

∫
dv G(v) and J =

∫
dv vG(v).

We turn now to solving the steady state master equa-
tions. It proves useful to define two auxiliary functions,
Q(v, v′) and T (v, v′):

Q(v, v′) = R−1(v − v′) +
∫ v′

0

dv′′(v′ − v′′)P (v′′),

T (v, v′) =
∫ v

v′
dv′′(v′′ − v′)P (v, v′′). (6)

The densities P (v′) and P (v, v′) can be obtained from
these auxiliary functions by differentiation

P (v′) =
∂2Q(v, v′)
∂v′2

, P (v, v′) =
∂2T (v, v′)
∂v′2

. (7)

To obtain P (v, v′) let us first re-write (2) as

P (v, v′)Q(v, v′) = (v − v′)P (v)P (v′) + T (v, v′)P (v′).

(8)

Using the definition of the auxiliary functions (6), this
equation is rewritten as

∂

∂v′

[
Q2(v, v′)

∂

∂v′
T (v, v′)
Q(v, v′)

]
= (v − v′)P (v)P (v′). (9)

Integrating twice over v′ gives the joint auxiliary func-
tion T (v, v′) in terms of Q(v, v′) and the single variable
functions:

T (v, v′)
P (v)

= Q(v, v′)
∫ v

v′

du

Q2(v, u)

∫ v

u

dw(v − w)P (w). (10)

The boundary conditions T (v, v) = ∂
∂v′T (v, v′)

∣∣
v′=v

= 0

were used to obtain (10). Replacing P (w) with ∂2Q(v,w)
∂w2

and integrating by parts gives

T (v, v′)
P (v)

= Q(v)Q(v, v′)
∫ v

v′

du

Q2(v, u)
− (v − v′). (11)

Here, Q(v) = Q(v, v) =
∫ v

0
dv′(v−v′)P (v′). Substituting

Eq. (11) into (8), we find a relatively simple expression
for the joint velocity distribution

P (v, v′) = P (v)P (v′)Q(v)
∫ v

v′

du

Q2(v, u)
. (12)

Furthermore, combining this joint velocity distribu-
tion with the normalization condition P0(v) = P (v) +∫ v

0
dv′P (v, v′), we arrive at

P0(v) = P (v)
[
1 +Q(v)

∫ v

0

dv′P (v′)
∫ v

v′

du

Q2(v, u)

]
. (13)
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Additional simplification can be achieved by using the
relationship P (v′) = ∂2Q(v,v′)

∂v′2
and performing the inte-

gration by parts. This yields

P0(v) = Q(v)Q′′(v)
[
R

v
+

1
R

∫ v

0

du

Q2(v, u)

]
. (14)

Since Q(v, u) = R−1(v−u) +Q(u), the function appear-
ing in the integrand contains only Q(u); therefore, the
integro-differential equation (14) is a closed equation for
Q(v). Given the auxiliary function Q(v), the cluster ve-
locity distribution is calculated from

P (v) = Q′′(v). (15)

Eq. (5) then gives the actual car velocity distribution

G(v) = P (v)
[
1 +

∫ ∞
v

dwP (w)Q(w)
∫ w

v

du

Q2(w, u)

]
. (16)

We now compute the flux, or the average car velocity
given by Eq. (4). From the definition of the joint aux-
iliary function, the second integral in (4) equals T (v, 0),
thereby implying J =

∫∞
0
dv [vP (v) + T (v, 0)]. The inte-

grand can be further simplified by using Eq. (11). The
term vP (v) cancels and we find a useful expression for
the flux

J =
∫ ∞

0

dv P (v)Q(v)
v

R

∫ v

0

du

Q2(v, u)
. (17)

We conclude that for arbitrary intrinsic velocity dis-
tributions, P0(v), the entire steady state problem is re-
duced to the closed integro-differential equation (14) for
the auxiliary function Q(v). Once this function is known,
steady state characteristics such as P (v), P (v, v′), G(v),
and J are given by Eqs. (15), (12), (16), and (17), respec-
tively. Despite the complicated nature of the equations,
a leading order analysis is still generally possible, as de-
tailed below.

III. LEADING BEHAVIOR

In the physically relevant limits of small and large colli-
sion numbers, a leading order analysis is possible. When
R � 1, a perturbation expansion in the small parame-
ter R shows that the flow is almost uninterrupted. In the
complementary case, R� 1, a boundary layer analysis is
needed for the velocity distributions. The leading scaling
behavior shows that a transition from a “laminar” low-
density flow into a “congested” high-density flow occurs.

A. Laminar Flows

In the collision-controlled regime, the velocity distribu-
tions can be obtained perturbatively. Let us write P (v) =∑
n≥0R

nP (n)(v) and P (v, v′) =
∑
n≥0R

nP (n)(v, v′).

The zeroth order terms are trivial P (0)(v) = P0(v) and
P (0)(v, v′) = 0. The first order correction for the joint
velocity distribution can be computed by inserting the
zeroth order approximation in the right-hand side of
Eq. (12). This gives

P (1)(v, v′) =

{
RP0(v)P0(v′) v − v′ � R;
RP0(v)P0(v′) (v−v′)

v−v′+RQ0(v) v − v′ � R;

where the notation Q0(v) =
∫ v

0
dv′(v − v′)P0(v′) was

used. One can check that P (1)(v, v′) satisfies the master
Eq. (2) to first order in R. This joint velocity distribu-
tion together with Eq. (5) determines the cluster and car
velocity distributions to first order

P (v) ∼= P0(v)
[
1−R

∫ v

0

dv′P0(v′)
]
, (18)

G(v) ∼= P0(v)
[
1−R

∫ v

0

dv′P0(v′) +R

∫ ∞
v

dv′P0(v′)
]
.

Furthermore, the cluster density and the flux can be eval-
uated to first order in R by integrating Eq. (18)

c ∼= 1− R

2
, J ∼= J (0) − J (1)R, (19)

with J (0) =
∫
dv vP0(v) and J (1) =

∫
dv P0(v)Q0(v).

The order R corrections are obtained by writing the inte-
grand using derivatives of Q0(v) and integrating by parts.
For example, c =

∫
dv P (v) ∼= 1 − R

∫
dv Q′′0(v)Q′0(v),

and similarly for the flux. Interestingly, the first order
correction to the density is universal in that it does not
depend on the details of the intrinsic velocity distribu-
tion. We conclude that as the collision-controlled limit
is weakly interacting, explicit expressions for the leading
behavior are possible for the steady state properties.

B. Congested Flows

When R� 1, slow and fast cars exhibit very different
behaviors. Small enough velocities are not affected by
the presence of faster cars, and the perturbative expres-
sion (18) holds for P (v), i.e., P (v) ∼= P0(v) for v � v∗.
At the threshold velocity v∗, the correction to the initial
velocity distribution in Eq. (18) becomes of order unity,
1 ∼ R

∫ v∗
0
dv′P0(v′).

We consider (without loss of generality) algebraic in-
trinsic velocity distributions

P0(v) = (µ+ 1)vµ µ > −1, (20)

in the velocity range [0:1]. Thus, the threshold velocity
decreases with growing R according to

v∗ ∼ R−1/(µ+1). (21)
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We expect that the velocity distributions are strongly
suppressed for velocities much larger than this thresh-
old velocity. We further assume an algebraic behavior,
P (v) ∼ Rδvσ. As P (v) = Q′′(v), the following auxiliary
function Q(v) ∼ Rδvσ+2 is implied. Substituting this
expression into Eq. (14) and noting that the term R/v
dominates over the integral in the square brackets, we
find δ = −1/2 and σ = (µ − 1)/2. The behavior of the
cluster velocity distribution is therefore

P (v) ∼
{
vµ v � v∗;
R−1/2v(µ−1)/2 v � v∗.

(22)

Of course, the small and large velocity components of the
cluster velocity distribution match at the threshold veloc-
ity, P (v∗) ∼ P0(v∗). Notice that behavior of the cluster
velocity distribution is different than the one found in the
case of constant escape rates [25] where σ = µ− 1 when
µ < 0 and σ = µ/2 − 1 when µ > 0. We conclude that
in the case of linear escape rate the scaling exponents
change, and the behavior becomes generic in µ.

Using the leading behavior of P (v), we determine the
average cluster concentration, c =

∫
dvP (v) ∼ R−1/2,

and the average number of cars per cluster, 〈m〉 = c−1 ∼
R1/2. This behavior is in accordance with the following
heuristic argument. Let the initial car concentration be
c0, the final cluster concentration be c � c0, and the
typical velocity be v0. Thus, the typical cluster size is
〈m〉 = c0/c. When large clusters form, 〈m〉 � 1, and
the overall escape rate can be estimated by 〈m〉`−1v0.
On the other hand, the typical collision rate is cv0. In
the steady state the number of cars entering and leaving
clusters must balance, and therefore the overall collision
and escape rates are equal, (c0/c)× `−1v0 = v0c. There-
fore, c ∼ (c0/`)1/2 and 〈m〉 = c0/c ∼

√
c0` ∼ R1/2 is

recovered.
In the case of velocity independent escape rates, sim-

ilar behavior occurred only when the intrinsic velocity
distribution did not have a strong fast car component,
namely when µ > 0. In the present case, the flow is
dominated by large and slow clusters. We conclude that
as fast cars are more likely to pass when the escape rate
is linear, the cluster velocities are only slightly reduced
due to collisions. This is consistent with the fact that the
average cluster velocity 〈v〉, defined in Eq. (3), remains
of order unity.

To study the actual velocity distribution G(v), the in-
tegral I =

∫ w
v
du[R−1(w − u) + Q(u)]−2 should be eval-

uated. We note that at v = v∗∗ ∼ R−1/(µ+3), the two
terms in the integrand become comparable. The leading
order behavior is thus I ∼ w−2R2v∗∗ for v � v∗∗, and
I ∼ Rv−(µ+2) for v � v∗∗. Combining this leading be-
havior with P (v) given by Eq. (22) and substituting into
Eq. (16) one finds G(v) ∼ R(µ+2)/(µ+3)P (v) for v � v∗∗,
and G(v) ∼ v−µ−2P (v) for v � v∗∗. Using Eq. (22),
we arrive at the leading order behavior of the actual car
velocity distribution

G(v) ∼

{
R−1/2v−(µ+5)/2 v∗∗ � v;
R(µ+1)/(2µ+6)v(µ−1)/2 v∗ � v � v∗∗;
R(µ+2)/(µ+3)vµ v � v∗.

(23)

It is simple to verify that these expressions match at the
two threshold velocities, v∗ and v∗∗. In the case of con-
stant escape rates, only a single threshold velocity was
found. Here, in contrast, an interesting triple deck struc-
ture with two marginal velocities emerges. Besides the
threshold at v∗ ∼ R−1/(µ+1) we observe an additional
threshold located at v∗∗ ∼ R−1/(µ+3). The latter thresh-
old velocity is proportional to the flux, obtained from
J =

∫
dv vG(v),

J ∼ v∗∗ ∼ R−1/(µ+3). (24)

Unlike the scaling behavior of the average cluster mass,
the flux scaling law depends on µ. No flux reduction
occurs in the limit where the intrinsic velocity distribu-
tion is dominated by fast cars (µ → ∞), while maximal
flux reduction, J ∼ R−1/2, occurs in the limit when the
distribution is dominated by slow cars (µ→ −1).

It is instructive to study velocity fluctuations by eval-
uating the moments of the actual velocity distribution
defined via Gn =

∫
dv vnG(v). These moments are cal-

culated from Eq. (23) to give

Gn ∼
{
R−1/2 n > (µ+ 3)/2;
R−n/(µ+3) n < (µ+ 3)/2.

(25)

Interestingly, fluctuations in the flux become very large
(G2 � G2

1) when −1 < µ < 1. This suggests that slow-
ing down due to collisions dominates when the intrinsic
velocity distribution has a strong small velocity compo-
nent. This results in a broadening of the actual velocity
distribution.

One may wonder whether this behavior is restricted to
purely algebraic distributions. Since both of the thresh-
old velocities approach zero as the collision number di-
verges, for sufficiently large R, a vanishingly small com-
ponent of the velocity distribution is sampled. Thus, if
the limit µ = limv→0 v

∂
∂v lnP0(v) exists, then µ deter-

mines the behavior when R→∞ as detailed above. We
conclude that our previous analysis applies to a broad
range of intrinsic distributions, not only purely algebraic
ones.

We also see that when R→∞ the solution to Eq. (14)
exhibits a two layer structure, a result reminiscent of clas-
sical boundary layer theory [28]. Inside the boundary
layer, v � v∗, the cluster velocity distribution is only
slightly affected by collisions, while in the outer region,
v � v∗, the cluster velocity distribution is much smaller
than the intrinsic velocity distribution. The threshold
velocity v∗ is determined by the condition that below
v∗ the intrinsic velocity distribution remains unaffected,
P (v) ∼= P0(v). The actual velocity distribution, how-
ever, exhibits a richer three layer structure. The first
layer (referred to as the lower deck in fluid mechanics)
is followed by the middle deck v∗ � v � v∗∗ and then
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the upper deck completes the structure. Such triple deck
structures were originally found within the framework of
classical fluid dynamics and applied mathematics [28].

IV. CONCLUSIONS

In summary, we have studied traffic flows with a pass-
ing mechanism which favors faster cars over slower cars.
Despite the complicated structure of the master Boltz-
mann equation, a reduction to an integro-differential
equation and a complete formal solution is possible. The
overall behavior agrees qualitatively with the constant
escape rate case. For example, a single dimensionless pa-
rameter, the collision number R, ultimately determines
the nature of the flow in the steady state. In the “lami-
nar” flow regime, R� 1, corrections due to collisions are
of order R. Here, large clusters are rare, and the exact
form of the passing mechanism plays a secondary role.
In agreement with rural traffic observations, the average
cluster mass grows linearly with flux in this dilute limit.
In the “congested” regime, i.e., when R � 1, we found
a boundary layer structure for the cluster velocity distri-
bution. The flux is reduced by an algebraic function of
R.

However, quantitative differences do arise including
changes in the flux reduction exponent, and the behavior
of the velocity distribution in the limit of large velocities.
Furthermore, the actual velocity distribution exhibits a
triple deck structure with two threshold velocities in con-
trast with the constant escape rate. However, as both of
the threshold velocities vanish when R → ∞, extreme
statistics of the velocity distribution still dominate the
flow in this congested phase. This latter result, valid for
a broad class of intrinsic velocity distributions, is remi-
niscent of intermittency in turbulent flows. Additionally,
we showed under what conditions do fluctuations in flux
can become significant.

As one would intuitively expect, a linear escape mech-
anism more effectively suppresses clustering because ex-
tremely fast cars will spend less time in clusters. Indeed,
we found that the average cluster velocity remains of or-
der unity which implies that situations where the flow
consists solely of slow clusters are avoided.

It is remarkable that the underlying master equations
are still solvable even under more complicated escape
rules. Unlike in Boltzmann equations arising in kinetic
theory, the integration limits are restricted thereby en-
abling a reduction to an ordinary differential equation
and a formal solution. We expect that further analytical
progress may be possible. For example, it will be useful
to apply the above formalism to other realistic situations
such as multi-lane traffic.
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