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Abstract. The role of the passing mechanism in traffic flows is examined. Specifically, we
consider passing rates that are proportional to the difference between the velocities of the passing
car and the passed car. From a Boltzmann equation approach, steady-state properties of the flow
such as the flux, average cluster size, and velocity distributions are found analytically. We show
that a single dimensionless parameter determines the nature of the flow and helps distinguish
between dilute and dense flows. For dilute flows, perturbation expressions are obtained, while
for dense flows a boundary layer analysis is carried out. In the latter case, extremal properties
of the initial velocity distribution underly the leading scaling asymptotic behaviour. For dense
flows, the stationary velocity distribution exhibits a rich ‘triple-deck ’ boundary layer structure.
Furthermore, in this regime fluctuations in the flux may become extremely large.

1. Introduction

Traffic flows display a variety of cooperative behaviours similar to non-equilibrium driven
systems such as gas and granular flows [1–4]. Typically, only a few major characteristics of
the interparticle interaction are responsible for such collective phenomena. Therefore, it is
important to use models that are as simple as possible. Such a strategy has proven useful in
studying traffic flows, where the ultimate goal is understanding complex phenomena such
as slowing down, traffic jams, synchronized flows, and phase transitions [1, 5].

Theoretical approaches to modelling traffic flows are quite diverse and include fluid
mechanics [2, 3, 6, 7], cellular automata [8–16], particle hopping [17–20], kinetic theory
[4, 7, 21] and ballistic motion [22–27]. In the hydrodynamic description, space and time
are both continuous variables, while in cellular automata they are both discrete. Moreover,
the former is a macroscopic approach, while the latter is microscopic. Kinetic theory and
especially ballistic motion models can help bridge this gap as they are formulated on a
microscopic level, but lead naturally to a macroscopic theory. In our previous studies, a
Boltzmann equation was derived for traffic flows in no-passing zones of one lane roadways
[24], and then generalized to passing zones as well [25]. A transition from a low-density
‘laminar’ flow to a high-density ‘congested’ flow was generally found. This transition as
well as other statistical properties are well described by a single dimensionless parameter,
R, termed the collision number.

In our former study [25], a constant passing rate was assumed. However, a passing
rate that increases with velocity difference is more realistic as faster drivers tend to pass
more often than slower drivers. Therefore, we study the complementary case where the
passing rate is linear in the velocity difference. Our goal is to examine the role played
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by the passing mechanism. While the governing equations become more complicated, a
formal analytical solution is still possible. Although certain quantitative features such as
the scaling exponents change, the qualitative picture remains the same. Interestingly, this
accelerated passing mechanism leads to a triple deck (a boundary layer accompanied by an
additional inner layer) structure of the car velocity distribution.

2. Theory

In the ballistic motion model, fluctuations in the velocity of a single isolated car are
neglected. We thus consider a one-dimensional traffic flow where size-less cars (‘particles’)
move with a constant velocity. Initially, cars are randomly distributed in space and they
move with their intrinsic velocities. The presence of slower cars forces some cars to
drive behind a slower car and therefore leads to the formation of clusters. When a cluster
overtakes a slower cluster, a larger cluster forms and its velocity is the smaller of the two
velocities. Meanwhile, all cars in a given cluster may escape their respective clusters and
resume driving with their intrinsic velocity. We consider the case where the escape rate is
proportional to1v, the difference between the velocity of the passing car and lead (slowest)
car in the cluster, i.e.̀−11v, where` has dimensions of length.

It is convenient to introduce dimensionless variables for velocityv/v0 → v, space
xc0→ x, and timec0v0t → t . Consequently, the escape rate`−11v becomesR−11v. The
dimensionless numberR = tesc/tcol is simply equal to the ratio of the two elementary time
scales, the escape time scaletesc= `/v0 and the collision time scaletcol = (c0v0)

−1 [25].
We termR = c0` the ‘collision number’.

Let P(v, t) be the density of clusters moving with velocityv at time t . Initially,
isolated single cars drive with their intrinsic velocities drawn from the distributionP0(v) ≡
P(v, t = 0). The dimensionless intrinsic velocity distribution is thus normalized to unity,∫

dv P0(v) = 1. The flow is invariant under a finite velocity translation, and the minimum
velocity is set to zero.

Neglecting correlations between the velocities and the positions of particles, a mean-field
equation for the cluster velocity distributionP(v) can be written

∂P (v)

∂t
= R−1

∫ v

0
dv′ (v − v′)P (v, v′)− P(v)

∫ v

0
dv′ (v − v′)P (v′) (1)

where the time variablet has been suppressed. This master equation involvesP(v, v′), the
density of cars of intrinsic velocityv driving with actual velocityv′ < v. Such slowed down
cars escape their clusters with rate proportional to the velocity difference,R−1(v− v′), and
thus the escape term. Collisions occur with rate proportional to the velocity difference as
well as the product of the velocity distributions. The limits of integration ensure that only
collisions with slower cars are taken into account.

The master equation is complemented by a second rate equation corresponding to the
joint velocity distributionP(v, v′),
∂P (v, v′)

∂t
= −R−1(v − v′)P (v, v′)+ (v − v′)P (v)P (v′)

−P(v, v′)
∫ v′

0
dv′′ (v′ − v′′)P (v′′)+ P(v′)

∫ v

v′
dv′′ (v′′ − v′)P (v, v′′). (2)

In this equation as well, the escape term is proportional to the velocity difference. A useful
check of self-consistency is that the total density ofv-cars,P0(v) = P(v)+

∫ v
0 dv′ P(v, v′)

is conserved by these master equations.
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We restrict attention to the steady-state properties, which can be obtained by taking
the limit t → ∞ or ∂/∂t ≡ 0. We will express the joint distribution via the single
cluster densities, and then insert it into (1) to get aclosedequation for the cluster velocity
distribution. Once the cluster distribution is found, average quantities such as the average
cluster concentration,c, and the average cluster velocity,〈v〉, will easily follow:

c =
∫ ∞

0
dv P (v) 〈v〉 = c−1

∫ ∞
0

dv vP (v). (3)

Furthermore, knowledge of the joint velocity distribution,P(v, v′), will enable computation
of J , the average flux

J =
∫ ∞

0
dv

[
vP (v)+

∫ v

0
dw wP(v,w)

]
(4)

andG(v), the actual car velocity distribution

G(v) = P(v)+
∫ ∞
v

dw P(w, v). (5)

This latter quantity satisfies the normalization conditions 1= ∫
dv G(v) and J =∫

dv vG(v).
We turn now to solving the steady-state master equations. It proves useful to define two

auxiliary functions,Q(v, v′) andT (v, v′):

Q(v, v′) = R−1(v − v′)+
∫ v′

0
dv′′ (v′ − v′′)P (v′′)

T (v, v′) =
∫ v

v′
dv′′ (v′′ − v′)P (v, v′′).

(6)

The densitiesP(v′) and P(v, v′) can be obtained from these auxiliary functions by
differentiation:

P(v′) = ∂2Q(v, v′)
∂v′2

P(v, v′) = ∂2T (v, v′)
∂v′2

. (7)

To obtainP(v, v′) let us first re-write (2) as

P(v, v′)Q(v, v′) = (v − v′)P (v)P (v′)+ T (v, v′)P (v′). (8)

Using the definition of the auxiliary functions (6), this equation is rewritten as

∂

∂v′

[
Q2(v, v′)

∂

∂v′
T (v, v′)
Q(v, v′)

]
= (v − v′)P (v)P (v′). (9)

Integrating twice overv′ gives the joint auxiliary functionT (v, v′) in terms ofQ(v, v′) and
the single variable functions:

T (v, v′)
P (v)

= Q(v, v′)
∫ v

v′

du

Q2(v, u)

∫ v

u

dw (v − w)P (w). (10)

The boundary conditionsT (v, v) = ∂T (v, v′)/∂v′
∣∣
v′=v = 0 were used to obtain (10).

ReplacingP(w) with ∂2Q(v,w)/∂w2 and integrating by parts gives

T (v, v′)
P (v)

= Q(v)Q(v, v′)
∫ v

v′

du

Q2(v, u)
− (v − v′). (11)

Here,Q(v) = Q(v, v) = ∫ v0 dv′ (v − v′)P (v′). Substituting (11) in (8), we find a relatively
simple expression for the joint velocity distribution

P(v, v′) = P(v)P (v′)Q(v)
∫ v

v′

du

Q2(v, u)
. (12)
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Furthermore, combining this joint velocity distribution with the normalization condition
P0(v) = P(v)+

∫ v
0 dv′ P(v, v′), we arrive at

P0(v) = P(v)
[

1+Q(v)
∫ v

0
dv′ P(v′)

∫ v

v′

du

Q2(v, u)

]
. (13)

Additional simplification can be achieved by using the relationshipP(v′) = ∂2Q(v, v′)/∂v′2

and performing the integration by parts. This yields

P0(v) = Q(v)Q′′(v)
[
R

v
+ 1

R

∫ v

0

du

Q2(v, u)

]
. (14)

SinceQ(v, u) = R−1(v− u)+Q(u), the function appearing in the integrand contains only
Q(u); therefore, the integro-differential equation (14) is a closed equation forQ(v). Given
the auxiliary functionQ(v), the cluster velocity distribution is calculated from

P(v) = Q′′(v). (15)

Equation (5) then gives the actual car velocity distribution

G(v) = P(v)
[

1+
∫ ∞
v

dw P(w)Q(w)
∫ w

v

du

Q2(w, u)

]
. (16)

We now compute the flux, or the average car velocity given by (4). From the definition
of the joint auxiliary function, the second integral in (4) equalsT (v, 0), thereby implying
J = ∫∞0 dv

[
vP (v)+ T (v, 0)

]
. The integrand can be further simplified by using (11). The

term vP (v) cancels and we find a useful expression for the flux

J =
∫ ∞

0
dv P (v)Q(v)

v

R

∫ v

0

du

Q2(v, u)
. (17)

We conclude that for arbitrary intrinsic velocity distributions,P0(v), the entire steady-
state problem is reduced to the closed integro-differential equation (14) for the auxiliary
function Q(v). Once this function is known, steady-state characteristics such asP(v),
P(v, v′), G(v) andJ are given by equations (15), (12), (16) and (17), respectively. Despite
the complicated nature of the equations, a leading-order analysis is still generally possible,
as detailed below.

3. Leading behaviour

In the physically relevant limits of small and large collision numbers, a leading-order analysis
is possible. WhenR � 1, a perturbation expansion in the small parameterR shows that
the flow is almost uninterrupted. In the complementary case,R � 1, a boundary layer
analysis is needed for the velocity distributions. The leading scaling behaviour shows that
a transition from a ‘laminar’ low-density flow into a ‘congested’ high-density flow occurs.

3.1. Laminar flows

In the collision-controlled regime, the velocity distributions can be obtained perturbatively.
Let us writeP(v) =∑n>0R

nP (n)(v) andP(v, v′) =∑n>0R
nP (n)(v, v′). The zeroth-order

terms are trivialP (0)(v) = P0(v) and P (0)(v, v′) = 0. The first-order correction for the
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joint velocity distribution can be computed by inserting the zeroth-order approximation on
the right-hand side of (12). This gives

P (1)(v, v′) =


RP0(v)P0(v

′) v − v′ � R

RP0(v)P0(v
′)

(v − v′)
v − v′ + RQ0(v)

v − v′ � R

where the notationQ0(v) =
∫ v

0 dv′ (v − v′)P0(v
′) is used. One can check thatP (1)(v, v′)

satisfies the master equation (2) to first order inR. This joint velocity distribution, together
with equation (5), determines the cluster and car velocity distributions to first order:

P(v) ∼= P0(v)

[
1− R

∫ v

0
dv′ P0(v

′)
]

G(v) ∼= P0(v)

[
1− R

∫ v

0
dv′ P0(v

′)+ R
∫ ∞
v

dv′ P0(v
′)
]
.

(18)

Furthermore, the cluster density and the flux can be evaluated to first order inR by
integrating equation (18):

c ∼= 1− 1
2R J ∼= J (0) − J (1)R (19)

with J (0) = ∫ dv vP0(v) andJ (1) = ∫ dv P0(v)Q0(v). The orderR corrections are obtained
by writing the integrand using derivatives ofQ0(v) and integrating by parts. For example,
c = ∫ dv P (v) ∼= 1−R ∫ dv Q′′0(v)Q

′
0(v), and similarly for the flux. Interestingly, the first-

order correction to the density is universal in that it does not depend on the details of the
intrinsic velocity distribution. We conclude that as the collision-controlled limit is weakly
interacting, explicit expressions for the leading behaviour are possible for the steady-state
properties.

3.2. Congested flows

WhenR � 1, slow and fast cars exhibit very different behaviours. Small enough velocities
are not affected by the presence of faster cars, and the perturbative expression (18) holds
for P(v), i.e. P(v) ∼= P0(v) for v � v∗. At the threshold velocityv∗, the correction to the
initial velocity distribution in (18) becomes of order unity, 1∼ R ∫ v∗0 dv′ P0(v

′).
We consider (without loss of generality) algebraic intrinsic velocity distributions

P0(v) = (µ+ 1)vµ µ > −1 (20)

in the velocity range [0 : 1]. Thus, the threshold velocity decreases with growingR

according to

v∗ ∼ R−1/(µ+1). (21)

We expect that the velocity distributions are strongly suppressed for velocities much larger
than this threshold velocity. We further assume an algebraic behaviour,P(v) ∼ Rδvσ . As
P(v) = Q′′(v), the following auxiliary functionQ(v) ∼ Rδvσ+2 is implied. Substituting
this expression in (14) and noting that the termR/v dominates over the integral in the
square brackets, we findδ = − 1

2 andσ = 1
2(µ− 1). The behaviour of the cluster velocity

distribution is therefore

P(v) ∼
{
vµ v � v∗

R−1/2v(µ−1)/2 v � v∗.
(22)
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Of course, the small and large velocity components of the cluster velocity distribution
match at the threshold velocity,P(v∗) ∼ P0(v

∗). Notice that behaviour of the cluster
velocity distribution is different than the one found in the case of constant escape rates [25]
whereσ = µ− 1 whenµ < 0 andσ = 1

2µ− 1 whenµ > 0. We conclude that in the case
of linear escape rate the scaling exponents change, and the behaviour becomes generic in
µ.

Using the leading behaviour ofP(v), we determine the average cluster concentration,
c = ∫

dv P (v) ∼ R−1/2, and the average number of cars per cluster,〈m〉 = c−1 ∼ R1/2.
This behaviour is in accordance with the following heuristic argument. Let the initial car
concentration bec0, the final cluster concentration bec � c0, and the typical velocity bev0.
Thus, the typical cluster size is〈m〉 = c0/c. When large clusters form,〈m〉 � 1, and the
overall escape rate can be estimated by〈m〉`−1v0. On the other hand, the typical collision
rate iscv0. In the steady state the number of cars entering and leaving clusters must balance,
and therefore the overall collision and escape rates are equal,(c0/c)`

−1v0 = v0c. Therefore,
c ∼ (c0/`)

1/2 and〈m〉 = c0/c ∼
√
c0` ∼ R1/2 is recovered.

In the case of velocity independent escape rates, similar behaviour occurred only when
the intrinsic velocity distribution did not have a strong fast car component, namely when
µ > 0. In the present case, the flow is dominated by large and slow clusters. We conclude
that as fast cars are more likely to pass when the escape rate is linear, the cluster velocities
are only slightly reduced due to collisions. This is consistent with the fact that the average
cluster velocity〈v〉, defined in (3), remains of the order of unity.

To study the actual velocity distributionG(v), the integralI = ∫ w
v

du
[
R−1(w − u) +

Q(u)
]−2

should be evaluated. We note that atv = v∗∗ ∼ R−1/(µ+3), the two terms in
the integrand become comparable. The leading-order behaviour is thusI ∼ w−2R2v∗∗ for
v � v∗∗, and I ∼ Rv−(µ+2) for v � v∗∗. Combining this leading behaviour withP(v)
given by (22) and substituting in (16) one findsG(v) ∼ R(µ+2)/(µ+3)P (v) for v � v∗∗,
andG(v) ∼ v−µ−2P(v) for v � v∗∗. Using equation (22), we arrive at the leading-order
behaviour of the actual car velocity distribution:

G(v) ∼


R−1/2v−(µ+5)/2 v∗∗ � v

R(µ+1)/(2µ+6)v(µ−1)/2 v∗ � v � v∗∗

R(µ+2)/(µ+3)vµ v � v∗.

(23)

It is simple to verify that these expressions match at the two threshold velocities,v∗ and
v∗∗. In the case of constant escape rates, only a single threshold velocity was found.
Here, in contrast, an interesting triple-deck structure with two marginal velocities emerges.
Besides the threshold atv∗ ∼ R−1/(µ+1) we observe an additional threshold located at
v∗∗ ∼ R−1/(µ+3). The latter threshold velocity is proportional to the flux, obtained from
J = ∫ dv vG(v),

J ∼ v∗∗ ∼ R−1/(µ+3). (24)

Unlike the scaling behaviour of the average cluster mass, the flux scaling law depends onµ.
No flux reduction occurs in the limit where the intrinsic velocity distribution is dominated
by fast cars (µ→∞), while maximal flux reduction,J ∼ R−1/2, occurs in the limit when
the distribution is dominated by slow cars (µ→−1).

It is instructive to study velocity fluctuations by evaluating the moments of the actual
velocity distribution defined viaGn =

∫
dv vnG(v). These moments are calculated from
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equation (23) to give

Gn ∼
{
R−1/2 n > (µ+ 3)/2

R−n/(µ+3) n < (µ+ 3)/2.
(25)

Interestingly, fluctuations in the flux become very large (G2 � G2
1) when−1 < µ < 1.

This suggests that slowing down due to collisions dominates when the intrinsic velocity
distribution has a strong small velocity component. This results in a broadening of the
actual velocity distribution.

One may wonder whether this behaviour is restricted to purely algebraic distributions.
Since both of the threshold velocities approach zero as the collision number diverges, for
sufficiently largeR, a vanishingly small component of the velocity distribution is sampled.
Thus, if the limit µ = limv→0 v ∂(lnP0(v))/∂v exists, thenµ determines the behaviour
whenR→∞ as detailed above. We conclude that our previous analysis applies to a broad
range of intrinsic distributions, not only purely algebraic ones.

We also see that whenR → ∞ the solution to equation (14) exhibits a two layer
structure, a result reminiscent of classical boundary layer theory [28]. Inside the boundary
layer,v � v∗, the cluster velocity distribution is only slightly affected by collisions, while in
the outer region,v � v∗, the cluster velocity distribution is much smaller than the intrinsic
velocity distribution. The threshold velocityv∗ is determined by the condition that below
v∗ the intrinsic velocity distribution remains unaffected,P(v) ∼= P0(v). The actual velocity
distribution, however, exhibits a richer three layer structure. The first layer (referred to as
the lower deck in fluid mechanics) is followed by the middle deckv∗ � v � v∗∗ and then
the upper deck completes the structure. Such triple-deck structures were originally found
within the framework of classical fluid dynamics and applied mathematics [28].

4. Conclusions

In summary, we have studied traffic flows with a passing mechanism which favours faster
cars over slower cars. Despite the complicated structure of the master Boltzmann equation,
a reduction to an integro-differential equation and a complete formal solution is possible.
The overall behaviour agrees qualitatively with the constant escape rate case. For example,
a single dimensionless parameter, the collision numberR, ultimately determines the nature
of the flow in the steady state. In the ‘laminar’ flow regime,R � 1, corrections due to
collisions are of orderR. Here, large clusters are rare, and the exact form of the passing
mechanism plays a secondary role. In agreement with rural traffic observations, the average
cluster mass grows linearly with flux in this dilute limit. In the ‘congested’ regime, i.e.
whenR � 1, we found a boundary layer structure for the cluster velocity distribution. The
flux is reduced by an algebraic function ofR.

However, quantitative differences do arise including changes in the flux reduction
exponent, and the behaviour of the velocity distribution in the limit of large velocities.
Furthermore, the actual velocity distribution exhibits a triple-deck structure with two
threshold velocities in contrast with the constant escape rate. However, as both of the
threshold velocities vanish whenR → ∞, extreme statistics of the velocity distribution
still dominate the flow in this congested phase. This latter result, valid for a broad
class of intrinsic velocity distributions, is reminiscent of intermittency in turbulent flows.
Additionally, we showed under what conditions do fluctuations in flux can become
significant.

As one would intuitively expect, a linear escape mechanism more effectively suppresses
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clustering because extremely fast cars will spend less time in clusters. Indeed, we found
that the average cluster velocity remains of the order of unity which implies that situations
where the flow consists solely of slow clusters are avoided.

It is remarkable that the underlying master equations are still solvable even under more
complicated escape rules. Unlike the case of Boltzmann equations arising in kinetic theory,
the integration limits are restricted thereby enabling a reduction to an ordinary differential
equation and a formal solution. We expect that further analytical progress may be possible.
For example, it will be useful to apply the above formalism to other realistic situations such
as multi-lane traffic.
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