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We study the domain number and size distributions in the one-dimensional Isingrstate Potts models
subject to zero-temperature Glauber dynamics. The survival probability of a d@ttaint~¥ and an unre-
acted domairQ,(t)~t~? are characterized by two independent nontrivial exponents. For the Ising case, we
find +=0.126 andé=1.27 using numerical simulations. We develop an independent interval approximation
that predicts the qualitative behavior of the domain distribution and provides good estimates for the exponents.
Exact results for the domain distribution are also obtained in several solvable [@H&83-651X%97)00110-4

PACS numbes): 02.50.Ey, 05.40k], 82.20.Mj

I. INTRODUCTION namics has been chosen without loss of generality as parallel
dynamics exhibit similar asymptotic behavi@3]. In one-
When a system is quenched from a homogeneous higitlimensional systems with short-range interactions, the order-
temperature disordered state into a low-temperature state gisorder transition takes place®t0 [24], and since we are
does not order instantaneously; instead, domains of equilighterested in coarsening, we restrict our attention to zero tem-
rium ordered phases form on larger and larger sddlgst ~ perature. _ . _
has been generally confirmed that a scale-invariant morphol- This paper is organized as follows. In the next section we
ogy is developed, i.e., the network of domains(ssatisti- discuss the Ising and Potts models. We define the domain

cally) independent of time when lengths are rescaled by fHumber distribution and determine it analytically in the lim-

single characteristic length scale that typically grows algelting casesq—e and q—1. Furthermore, we develop an

braically with time. However, even for simple coarseningNdependent interval approximatidiiA) that assumes no
processes little is known about more subtle properties sucfo'relations between adjacent domains. The IlA predictions

as the domain size distributidi2,3]. One such feature that compare well with Monte Carlo simulations by giving cor-
has attracted considerable interest recently concerns tf§Ct description of the domain statistics as well as good es-
“persistence” of the local order parameter, the probabilityt'mates for the underlying exponents. Section Il concludes
that it has not changed sign in a given time interval. Persisith the g=c Potts model in arbitrary dimensiai=2. In
tence has been investigated theoreticify-9] and experi- Sec. Il we obtain the domain distribution in two solvable

mentally [10] in spin systems, interacting particles systemsC2Ses: the Potts model with only energy lowering transitions

[11-14, Lotka-Volterra models[15,16, breath figures and Fhe dete_rministic ballistic annihilation mocﬂéB,l§,lQ.

growth[17], foams[18], and even simple diffusiof.9,20. Section IV discusses some open issues and contains a sum-
Single spin persistence provides a natural counterpart t8'a-

the survival probability in the realm of many-particle sys-

tems. In the context of reaction processes, persistence is Il. ISING AND POTTS MODELS

equivalent to the survival of immobile impurities and there-

fore does not provide information about collective properties

of the bulk. In contrast, domains are the natural spatial ele- We start with the 1D Ising model subjectTe=0 Glauber

ments of a coarsening process. In this paper, we ask, falynamics[22]. To examine the role of the number of equi-

example, what the survival of an entire dom&it) is. This  librium phases we also consider a generalization of the Ising

quantity decreases with time as a power I8it)~t~%.  model, theg-state Potts model. Experimental realizations are

Similar to other critical exponentg; is universal in the sense known for =2 (the Ising modél and q=3,4¢° [21]. The

that it is independent of many details such as the initial cong=o case describes several cellular structur2g], e.g.,

ditions. However, it is model dependent and in this respecpolycrystals[27], foams[18], soap froth[28], and magnetic

differs from the growth exponent that depends only on theébubbles[29].

conservative nature of the dynamics. We consider uncorrelated initial conditions where each of
In the present work we examine systems with short-rangéhe q phases is present with equal densitg.1The T=0

interactions described by a scalar nonconserved order parar@lauber-Potts dynamics proceeds by selecting a spin at ran-

eter. We focus on the one-dimensioflD) Ising model and dom and changing its value to that of one of its randomly

its generalization to theg-state Potts mod€l21] evolving  selected neighbors. Thus domain walls perform a random

according to Glauber spin-flip dynamif22]. Sequential dy- walk and upon contact they annihilate or coalesce, depending

A. The Ising model and theq-state Potts model
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+ - o+ - o+ 4 Qm(H) =t~ 2"Q(mt’""). 4
u U The scaling functior®(z) exhibits the extremal behavior
z7, z<k1
~ 5
tl Q@) exp —«kz), z>1. ®
The small argument tail describes domains that contain a
very small number of initial domains. In particular, the quan-
m=3 m=1 tity
Qu(t)~t™? ®)
FIG. 1. Domain motion in the Ising model. Surviving domains L . . .
are marked by+ and annihilated domains by. The domain num- IS of special interest: It gives the density of domains that
ber at a later time is also indicated. avoided merging with their neighboring domains up to
time t.
on the state of the corresponding domdid8—32. Identify- The inequalitiesQ;(t) <=, Qm(t) <= ,;mQy(t) lead to
ing a domain wall with a particleX) and the absence of a the bounds
domain wall with a hole(0), onefinds the single-species y<v<s. )

diffusion-reaction proceg30—32

_ o Taking into account that at least one surviving domain sur-
1/2 1/(q-1) (9-2)/(9—1) . o s
AO—O0A, AA — 00,AA — AOOrOA. (1) rounds a persistent spin give{t)<S(t), whereP(t)~t
' ’ is the density of persistent spins. Thus we arrive at another
The rates indicate the relative probabilities by which eacH'PPer bound
event occurs.

p=<0 (8)
B. Domain number distribution: Definition for the exponeniy. We shall show below that these bounds
and scaling properties are strict for the Potts model and that there are models with

Y=0, y=v, andv= 5. The boundg7) and(8) suggest that

ity that a domain, initially present at the system at timep, & domain decays with the slowest rate in the problem.
has not flipped up to timé (see Fig. 1 We will present A useful relation between the scaling exponents can be

theoretical and numerical evidence supporting an algebraigPtained by substitutingr=1 in Eq. (4),
long time decay of this survival probability, S—v=(v—)(1+ o). 9

S(t)~t~ Y. 2

Our goal in this study is to investigagt), the probabil-

Thus, among the three exponets s, and o, only two are
independent. For thg-state Glauber-Potts model both the
domain decay exponent=1/2 [22,30 and the persistence
exponentd(q) [6] are known. It gives hope that analytical
determination of the domain exponents is also possible.
Quite obviously, domains disappear when their size van-

Such a behavior is robust, as the expongiig not sensitive

to the initial state of the systeriprovided long-ranged cor-
relations are absentOur results will also strongly suggest
that the exponen# is nontrivial, i.e., it cannot be extracted

from so-far known exponents associated with the ISInE%shes and therefore the domain size and number distributions

model. > . :
In principle, a surviving domain may undergo coalescencé © mtmately relateo!. One IS therefore; fprced to coln§|der the
distribution of domains of siz& consisting ofm original

with other similar phase domains. Thus a natural generalizaa . t timet. denoted b 0 The af tioned
tion of the domain survival probability i®,(t), the density omains at time, denoted byPp,n(t). The aforementione

; - ; . ber distribution i9Q,(t)=2,P, m(t) and consequently
of domains composed ah original domains(see Fig. 1 num X : mA e LN L me
This quantity satisfies the initial conditio®,(0)= 61 - the dom_am survival probab|||ty |S(t)—_2_n'mm_ Pn.m(t). .
The total domain densiti(t) is given byN(t)=S,Q (1), . AS Wil be seen later, studying the joint size-number dis-
while the domain survival probability counisitial domains tribution requires detailed knowledge of the domain size dis-

that have not shrunk and hence contains the de3itft) tribIL_Jtiotn P”(t):ﬁ.mpnvm(t)' This distribution obeys the nor-
with weight m malization condition

S(H=3 mQu). 3 2 nPy(t)=1 (10

) ) o _ reflecting the conservation of the total length. The total do-
The average number of domains contained within a survivmain density is simplyN(t)=3,P,(t). Since the average

ing domain({m(t))= S(t)/N(t) grows algebraically accord- gomain length grows as~t”, the length distribution fol-
ing to (m(t))~t"~¥, with » the domain decay exponent, |ows the scaling form

N(t)~t~". If the behavior ofQ,,(t) is truly self-similar, it
should follow the scaling form Pn(t)=t~2"P(nt™"). (11



3790 P. L. KRAPIVSKY AND E. BEN-NAIM 56

The length distribution scaling function has the limiting be- domains never disappear, i.8(t)=1 and=0. Similarly,

havior[2,3] the persistence exponent is fourtd=0. A majority domain
remains unreacted until tinteif both of its neighboring mi-
X, x<1 nority domains surviveQ; (t)=N?(t). The density is given
Px)~ exp—Ax), x>1. (12) by the q=% solution (15) and we findQ,(t)=(=t) ! and
6=1.

In Sec. Il D we shall develop an approximation scheme that The number distribution of the majority domains can be
helps elucidate many of the qualitative and quantitative feadetermined as well. The dynamics proceeds by minority do-

tures of the domain size and number distributions. mains shrinking to zero and thus leading to coalescence of
surrounding majority domains. Such aggregation events oc-
C. Solvable cases cur independently with rat®; /N? and the domain number

o distribution evolves according to
1. The g—oe limit

In the q= case, similar phase domains never coalesce dQ Py i
= N2 2 QQm-=2NQu, (16)

and therefore the domain number is trivimh=1. Thus dt N2|;
Pom(D)=Pn()dn1, N(O=S()=Qu(1), and v=y=25

=1/2. The value of the exponent has been obtained by notingubject to the initial condition®,,(0)= Sm1. Itis helpful to
that domain boundaries perform independent random walkgbsorb the time-dependent r&g/N? into the time variable
and a domain disappears when its boundaries meet. Thus

domains survive with probability identical to that of a ran- t o Pa(th) 1

dom walk in the vicinity of a trapN(t)~t~*2 [33], or T= fodt WZN (-1, 17

v=1/2. On the other hand, an individual up spin inside this

domain has not changed its sign if it has not been crossed Ryiin the overall density of Eq(15) and the last equality

both domain walls. Therefore, the persistence probability is Loc : . .
proportional tot~ ¥%~2=t~1 e g=1. Hence the bound evaluated usingN=—P;. With this time variable Eq(16)

reduces to the classical Smoluchowski equali@®l

(8) is strict.
The domain length distributioR,(t) obeys the diffusion dQ m
equation a1 =2 QiQn-—2NQn. (18)
dp,
at Phi1tPno1—2Py, 13 Solving Eqg. (18) with the appropriate monodisperse

initial  conditions  gives Qu(T)=T" }(1+T) ™1
with the boundary conditiorPy(t)=0. This rate equation =T “exp(~mVT) [36]. Indeed,Q;(T)=N*(T)=(1+T) 2,
satisfies the length conservation of Ef). Solving Eq.(13)  in agreement with the previous argument. In the long-time
subject to the appropriate initial conditior®,(0)=5,; limit, T=N"!=\7t and Qu(t)=(mt) ~*exg —m(mt) *?].
gives Thus the domain number distribution scales according to Eq.
(4) with the purely exponential scaling function
Pn(t) =[1h-1(2t) =171 1(2t) Jexp(—2t) (14
Q(z)= 7 texp —zm ?). (19
and
The average domain properties &(@)=1, N(t)=(mt) %2,
N(t)=S(t)=Qa(t) =[lo(2t) +11(2t) Jexp(—2t), (15  and Q,(t)=N2(t)~(wt)"* and the scaling exponents
, . i o=¢=0,v=1/2, ands=1.
wherel , is the modified Bessel function of ordef{34]. The Changes in the domain size due to domain wall diffusion
length distribution scales according to E@1), with v=1/2  gre negligible here and the joint size-number distribution
and P(x)=xexp(—x3/4)/\J=. The generic exponential be- eyolves according to
havior of Eq.(12) is now replaced by a Gaussian one, indi-
cating that A—0 as g—«. In the long-time Iimit, dPnm
S(t)=Q4(t) =N(t)=(=t) 2 confirming the previous heu- aT :Z PijPa-im-j=2NPqm. (20)
ristic findingsv= = 6=1/2. !

Equation(20) generalizes the Smoluchowski equations for
aggregation with two conservation lafj&7]. Introducing the
The 1D T=0 Glauber-Potts model with arbitraty=1  generating functiorF(u,v,T)=%, ,u"v™P, (T), one can
can be mapped onto the Ising model with magnetizatiorsolve Eq.(20) for arbitrary initial conditions to find[37]
w=2lq—1 [35]. In other words, the volume fraction of the F(u,v,T)=Fo(u,v)(1+T) {1+ T—TFq(u,v)]"*. In the
down phase isp=1—1/g [7]. In particular, the limitp—0 present case, the appropriate initial conditions are
allows treatment of the limiting casg—1 by focusing on  Ppm(0)=68m10%(1—¢)" "t and  hence Fqy(u,v)
the majority domains. The typical initial size of such do- =uv¢?[1—u(l—¢)] *. Evaluating the limitsnp—n and
mains is¢ ~1—oo. This shows that in the limiting case=1  t—, we arrive at the scaling for®,, (t)=t~%*d(x,y),
the minority domains cannot meet and the majority domainswith ~ the  scaling  variables x=(m+n)(=t) Y2,
sizes change appreciably due to coalescence. Thus majorify= (m—n)(at) ¥4 and the scaling function

2. The g—1 limit



D(x,y) = (mx) ~ Y2exp —x—y?/2x). (21)

Instead of the naive scaling variables *2 andmt™*2, un-
usual scaling variables underlie the scaling functi@d).
The former scaling variable is just the sum of the naive
scaling variables, while the latter “diffusive” scaleis hid-
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dP,
W:Pnfl"_PnJrl_zpn
P n—-2
1
17| 2, PiPao1imN(PatPy )| (23

den. In this case, the domain length and the domain numbdgduations(23) apply forn=1 if we setP,=0. One crucial
are equivalent and their underlying scaling functions ardest is to verify the length conservation of Eg0). Another

identical P(x) =7 lexp(—xm ). Nevertheless, there is a
considerable difference between the variablesxdm as the

test is to sum all equations i23) to getN=—2P;. This is
an exactequation since three domains disappear and one is

latter is generally not a conserved quantity. Furthermore, aborn in each annihilation event.

g decreases frore to 1, the decay coefficierX governing
the domain length distribution increases from Ozto*2.
The above results apply fay close to unity as long as

neighboring domains do not interact, i.e., as long as the dif-

fusion time scale is smaller than the domain si#e< o~ *.

Eventually, this no longer holds and correlations between

majority domains develop. Nevertheless, in the limpit> 1
Egs.(18) and(20) areexactsince no correlations develop if

none are present initially. Similar reasoning applies to sev-
eral models where domains are immobile and merging oc-

curs[4].

D. Independent interval approximation

Generally, in the Potts case, the domain size distribution
evolves according to the rate equation

dP,

dt =Pn_1+Py1—2P,
Py

n—-2
+m > PiPh_1i—N(Py+P,_p)|.

i=1
(29)

Indeed, the collision of domain walls results in annihilation
with probability 1/(q—1) or in coalescence with probability
(g—2)/(g—1). Only annihilation events affect the domain
distribution and thus the 1d(1) prefactor of the annihila-

Ignoring correlations between neighboring domains al+ion term. In the caseg=2 andq=, Egs.(23) and(13) are

lows us to develop an approximate theory for the time evo

lution of the domain distribution. This so-called IIA proved

clearly recovered. In the limig— 1, only the reaction term

survives, in agreement with E@20). One can also verify

useful in studies of related reaction-diffusion processegya; the total length is conserved and the total domain density

[2,19,30.

1. Length distribution

The joint number distribution requires knowledge of the

decays according to thexactrate equation

dN q

dt goirr (29

length distribution and we start by deriving a master equation

for P,(t). Consider first the Ising case. In an infinitesimal-
time intervalAt, the domainP,(t) changes according to

_ P4(t)
P, (t+At)=(1-2At)P, (1) +AtP,_4(1) l—m
P4(t)
+ AP0~ AP
Pi(t) P;(t)
+Atpl(t)i+j;1=n N(D) N (22)

whereN(t)=2,,P,(t) is the total domain density. The first
term on the right-hand side of E¢R2) counts for the prob-
ability that both domain walls do not hop. The next two

The diffusion term in Eq(24) implies (n(t))~t*2 and
since(n)~N~1 the correct decay exponent1/2[22,3Q is
recovered. In the following we will need to determine the
asymptotic prefactorA, N(t)~At 2 and A= [dxP(x).
The density rate equatiof25) implies P;=7P'(0)t %2 with
P (0)=[(a—1)/2q]A.

A quantitative analysis of Eq24) may be carried by
treating the variabl@ as continuous. The quanti®(x) sat-
isfies

Pty + 2pe L pepog 26

+§(X'P) +W’P+ m’/’*’])— , (26)
whereP'=dP/dx and P* P= [5dyP(y) P(x—Y). The nor-
malized Laplace transform of the scaling functi®{x),

p(s)=A"1[5dxe S*P(x), obeys

terms describe gain due to diffusion, with the prefactor

(1-P4/N) in the second term to ensure that the hopping
domain wall does not disappear. The fourth term represents

q-1
p ?

dp_p°

TG

s @7

®

the loss due to the disappearance of the smallest domain, -
located on the boundary of our domain, while the final termsubject to the boundary conditigpe{0)=1. The transforma-

accounts for gain due to domain merger.

tion p(s)=1—qs’—qs(d/ds)iny(s) reduces the Riccati

Equations(22) assumes that the sizes of adjacent domaingquation(27) into the parabolic cylinder equation
are uncorrelated and thus is meanfield in nature. In the limit

At—0 the difference equation@2) turn into a system of
differential equations

d?y

a2 + (28

1+2 2) 0
——s°]y=0.
q y
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FIG. 2. Prefactor A
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The solution to Eq. (28 reads  y(s)

=C_Dyj(—Sv2)+C.Dyg(sv2), with Dyy(x) the para-
bolic cylinder function of order 3y [34]. The larges behav-
ior of p(s), p(s)~[(q—1)/2q]s 2, impliesC_=0 and we
get

of Eq. (300 vs the exact value

d
P(9)=1-0"~qs 5 INDy(5V2). (29

The normalization conditiol ,nP,(t)=1 can be reduced to

Ap’(0)=—1. This allows us to determine the constant

1
M- 5

A=—T 7 (30)
{E_ﬁ

whereI" denotes the gamma function. In deriving E§0)
we have used the propertiE34]

D(X)~xCexp( —x2/4)[1+O(x?)] (31)
and
ii2ocl2 mii2o(c+1)/2
D(0)=Fam=c)r PelO=~ ey 2

The value of the prefactok predicted by the II1A may be
compared to the exact onBeyae=(1—0q~ 1)/\/7 [32] (see
Fig. 2). In the extreme cases =1 andq= the prefactor
A is exact. The mismatch is worst for the Ising=2) case
where  A=T'(3/4)(1/4)=0.337989, while Ay,
=(47) 1?=0.282 09[22].

The lIA gives correct qualitative results includirig the

density decayN(t)~t~*2 (i) the linear small size distribu-
tion, P(x)=[A(g—1)/2q]x, as can be seen by considering

the larges behavior ofp(s)=[(q—1)/2q]s 2, (iii) the ex-
ponential tailP(x)=qArexp(—\x) as in Eq.(12). The tail
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Zeitak[3] and the approximate value=0.357 83 obtained
by Alemany and ben-Avrahaf2].

One may wonder regarding the value of the IIA. It is
analogous to that of Ref2], but the quantitative agreement
is worse in our case. The answer is simple: Our approach is
self-consistentwhile the approach of Ref2] is not. Indeed,
making use of the assumption that the domain sizes are un-
correlated, Alemany and ben-Avraham express the equal-
time two-spin correlation function via the domain size distri-
bution P,(t). Then they use the exact expression for the
equal-time two-spin correlation functigr22] to determine
P,(t). However, would they use their key assumption that
the domain sizes are uncorrelated everywhere they would
eventually obtain our expression fé,(t). In contrast, our
approach is self-consistent as all our results are derived
within the same scheme. Additionally, to determine the more
subtle characteristics to be described below one does not
enjoy the luxury of known exact analytical results.

2. Joint distribution

We are now in a position to tackle the joint size-number
distribution P, (t), which captures both the spatial and
“historical” characteristics of the coarsening domain mo-
saic. The corresponding rate equation is a generalization of
Eq. (24),

dPpm
dt = I:’nfl,m'l' PnJrl,m_ZPn,m
Py
+ (q_l)NZIEJ Pivjpnflfivm*l-_N(Pn,m+Pnfl,m) '

(33

with the initial conditionP, .,(0)= &, 16y,, and the bound-
ary conditionPy(t) =0. The variablen is “mute” in some
sense. It appears in a nontrivial way only in the convolution
term. One should verify that this master equation is self-
consistent. First, by summing over, we recover Eq(24).
Second, it implies that the domain survival probability satis-
fies the exact linear equatichS/dt=—3X,,mP,,. So far,
we have not succeeded in solving the joint distribution. Nev-
ertheless, it is still possible to obtain analytically many inter-
esting properties of Eq(33), including the scaling expo-
nents.

Let us consider the distribution of domains that have not
merged with other domains up toR,(t) =P, 4(t). For such
domains, the convolution term vanishes and they evolve ac-
cording to the linear rate equation

dR, P,

— =Ri-1+ R 1= 2R — (q——l)N(R"+ Rh-1),

(34

dt

follows from the behavior of the Laplace transform with the initial conditionR,(0)= &, , and the boundary con-

p(s)=qAr/(s+\) near its pole at negative= — \, given by

dition Ry(t)=0. In the continuum limit we again replace

the first zero oD ,4(—\ y2)=0. For the Ising case one has Ra-1+Rq+1~ 2R, by °R/dn? and Ry+R,-1 by 2R, to
\=0.5409. This value should be compared with the exacfind a diffusion-convection equation fét,(t). The transfor-
value \ = ¢(3/2)/4\/7w=0.368 468 obtained by Derrida and mation R,—R,N~24 reduces this equation to the diffusion
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equation (13) for R,, which is solved to yield
Ry(1)=N?4t"IR(nt™¥3), with R(x)=xexp(x4)/\.
The largen behavior ofP,, ,(t) mimics theq=< case in that

it exhibits a Gaussian behaw@rn 1(t) ~exp(—n?/4t), while
the average domain denS|ty decays exponentially
P,(t)~exp(=n/\lt). Large intervals are more strongly sup-
pressed when they have a small number of ancestors ar
therefore then tail of the joint distribution strongly depends
upon m. The total density of unreacted domains is

Q,(t)==,R,~t Y2714 which gives the decay exponent
o= ! + ! 35

Obtaining the second independent expongnis more
involved. The natural approach, i.e., a direct investigation o
the domain number distributio®,,,, appears to be useless,
as it requires knowledge @, ,, and hence the entie, ,.
The domain survival probability can be alternatively ob-
tained by consideringJ,(t)=2,mP, (t). This quantity
obeys

du,,
W:Un—l"'un-#l_zun
n—-2

W{ZE UiPn_1-i=N(Up+U,_1) |,

(36)

obtained by summing Eq§33). We writeU,(t) in a scaling
form U, (t)=t~ ¥ YZ4(nt~'?). Asymptotically, the domain
survival probability readsS(t)=Bt™¥ with B=[dxl/(x).
The scaling distribution satisfies

(37

1 1 1
u'+ E(XL{) + I,D— a)U'F q—AU*P:O
The normalized Laplace transform of the scaling function
U(X), u(s)=B~1f5dxe S(x), obeys

E=2(M+s)u—2—w, u(0)=1.
ds qs S

In deriving Eq.(38) we used the relatioty’ (0)= B, found
by integration of Eq.(37), combined with A= [dXxP(x).
Substituting the explicit expressiof29) for p(s) into Eq.
(38) and solving foru(s) yields

(38)

u(s)=2¢sZ¢D;,§(sﬁf drr=2/71D%, (r\2). (39

This solution is consistent with the anticipated-~ behav-
ior, u(s)= s 2. Furthermore, evaluating E439) near the
origin gives u(s)=1+F(¢)s*+Cs+---. Therefore, for
u’(s) to be finite neas=0, we must havé- () =0. Evalu-
ating F(¢) gives

0= fo drr 2D y4(r)D4(r). (40)

Interestingly, the second domain survival exporns irra-
tional, in contrast withd.
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10

10

S(t)/s(1)

10

10

FIG. 3. Domain survival probability5(t)/S(t=1) in the Potts
model. Shown are Monte Carlo simulation resultsdef 2, 3, 4, 8,
and 50.

For completeness, we write the leading extremal behavior
of the functionU(x):

x—0

U(x)~ (42)

xexp( AX),

X— 0,

This behavior can be easily obtained from the extremal be-
havior of the functioru(s). Whens—o, u(s)~s2, while
near the pols— — X\, one findsu(s)~(s+X\) 2.

E. Numerical results

To test the IIA predictions, we performed numerical
simulations on a spin chain of size=10". Random initial
conditions and periodic boundary conditions were used. The
simulation data represent an average over ten different real-
izations. For the Ising case, we found the exponent values
=0.126(1) and5=1.27(2) (see Figs. 3 and)4These val-

10

10

10

10’

Q,(1/Q,(1)

10°

10°

10

10
10

FIG. 4. Density of unreacted domaigg,;(t)/Q(t=1) in the
Potts model. Shown is the same Monte Carlo simulation as in Fig.
3.
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TABLE I. Domain exponents for thg-state Potts model in one 10 . : : : .
dimension. A local slope analysis was applied to the simulation
data. The theoretica is from Eq. (40) and 8= 1+ 1/q. MC de-
notes results from the Monte Carlo simulation.

MC Eq. (33
q 4 ) o ¥ o I~
2 0.126 1.27 1.05 0.136612 1 G
3 0.213 0.98 0.67 0.231139 5/6
4 0.267 0.85 0.50 0.287602 3/4
8 0.367 0.665 0.24 0.385019 5/8
50 0.476 0.525 0.03 0.480274 13/25
0 1/2 1/2 0 1/2 1/2
6.0

ues should be compared with the IIA predictions of z
=0.136 612 andb=1.

As was the case for the persistence exporaerthe do- FIG. 5. Scaling dlstrlbuthl‘Q(Z) vs z for three different times

main exponents strongly depend qnNumerical values of t_= 107,10°,10%. The data represents an average over 100 systems of
the exponentss and & are summarized in Table | for repre- 5|zeL=19E’. The inset demonstrates the exponential behavior of the
sentative values dj. As q increases, the approximation im- '2rgeZ tail.
proves and eventually becomes exact for the extreme case o )
g=c0. Thus ¢ is overestimated by up to 10% amdis un- ~ Direct numerical integration of on33) reveals a number
derestimated by up to 25%. Hence domains of average nunflistributionQp(t) that scales according to E@t) and has an
berm are better approximated in comparison with domains®xponential tail in agreement with the simulation results.
with extremely smalim. Although the estimates are not ex- Moreover, the emerging(t) falls within 5% of the actual
act, they are still useful as they exhibit the corrqaiepen- ~ Survival probability over a significant temporal rarige10°.
dence. In theg— limit, the exponents approach the limit- In summary, in addition to predicting the correct scaling be-
ing value 1/2 according té= 3+1/q derived in Eq(35) and ha"'ofv Eq.(33) provides a good approximation for many

) _ ) ] quantitative features of the domain distribution and in par-

=32~ 1/g. The leading behavior fap follows directly from  ticular good estimates for the decay exponents.

the scaling relatior{9), 8, ando () =0.

In the g—1 limit analysis of Eq.(40) suggests thaty F. = Potts model in higher dimensions
vanishes according tgo(q— 1)?. This behavior agrees with
the gq=1 exact solution and is consistent with simulation
results of an Ising chain with magnetization=2/q—1. It is
practically impossible to obtaid conclusively because un-
reacted domains decay quickly. The limiting valuegas 1
appears to be larger than the value suggested by the I
6=3/2—(q—-1).

We performed several checks to verify that the asymptoti
behavior of Eqs(2) and (6) is robust. For example, it is
independent of the initial domain wall concentratigro-
vided that the correlations in the initial condition are short

rangd. We conclude thaty and & are nontrivial exponent, € €xponents=g=6=d/2 for the g=c= Potts model in
ie.. they cannot be extracted from the known exponents ad=2 dimensions. First we note that an exact correspondence

sociated with the Ising-Glauber model. Similar to the persis26tween the dynamics of thg-state Potts mode| and the
tence exponend(q), the exponents appear to be irrational 'SINg model with magnetization.=2/q—1 holds only in

o B a1 _ one dimension. This happens due to gtebal conservation
except for the limiting case= (= 0=z ando=0) and, ¢ yhe magnetizatiof22], a peculiar property of the 1D Ising

maybe, forq=2 (y=3, =3, ando=1). model with zero-temperature Glauber dynamics. This global
The numerical simulations also confirm that the distribu-conservation for the locally nonconserved dynamics does not
tion functionQ(t) scales according to E¢4) (see Fig. 5 happen whem>1, as seen by considering a single up spin
The scaling functiorQ(z), defined in Eq(5), decays expo- in the sea of down spins. On the other hand, for the Potts
nentially for a large argument and is algebraic for a smallmodel with symmetric initial conditions the density of any
argument. The scaling relations combined with the simulaphase is globally conserved. This suggests a correspondence
tion values giveor=1.055). This is consistent with the lin- between the Potts model and the Ising model with globally
ear behavior seen in Fig. 5 far<1. Hence similar scaling conserved dynamics. It appears difficult to make such corre-
functions underlie the domain number and size distributionspondence rigorous, although it is supported by several tests
[2,3]. As g increases from 2 tee, the exponentr decreases [35]. The reduction to the Ising model with magnetization
from 1 to O, respectively. pu=2/g—1 in d dimensions can be hardly considered as a

So far, our discussion has been restricted to one dimen-
sion. Domains are not necessarily well defined in higher di-
mensions. In particular, in the Ising case it is not clear
whether our results can be properly generalized to higher
Agimensions. However, in thg— limit of the Potts model
domains are well defined and the dynamics considerably
Csimplifies[35]. In this limit, it has been argued heuristically
and confirmed numericall{38,18 and experimentally39]
for evolving soap froth that=1 in two dimensions.

We now present a simple heuristic argument that gives
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simplification except for the =<« case, which may be ana-  The density decays according to the familiar rate equation
lyzed within the framework of the Lifshitz-Slyozov theory (25) N=—[q/(q—1)]P;. On the other hand, the minimal
[1]. Indeed, asg—cc the minority (up) phase approaches ap density satisfieB, = — P,[1+qP;/(q— 1)N]. It is use-
infinitesimal concentration, so up domains do not interact "+, introduce the normalized quantity, = P /N, which
and the Lifshitz-Slyozov approach, suitably modified for the - 4 . . '

obeys p;=—p; and thusp;=e~". Using this result, the

present casg35], should be exact. e . o
So consider a set of bubbléhe domains tend to become minimal gap density and hence the density is found
round in high dimensionsof up phase in a sea of down _ _ _ ot _
phase. We cannot restrict ourselves to the single-domain Nt =exd —a(1-e )/(a-1)]. 49
situation as in one dimension since whdir1 a Single This agrees with known exact results for tmez andq:oo
bubble would not evolve, while the set of bubbles do evolve‘cases[41_43_ Usually in random sequential adsorption
Small bubbles shrink and large bubbles grow. We are noproblems it is convenient to study the complementary den-
interested in detai|S Of the bubble eVOIUtion; the Only relevangity of gaps between domains that Satisfidjgmr rate equa_
feature is that the radii distribution scales asymptoticallytion. Nevertheless, the 1A is exact in this case as no “mix-
N(R,HON(R,t)=R~(*YUA(R/IR), with the average radius ing” of domains due to diffusion occurs. The final domain
R~ t. This behavior is due to the nature of nonconservedjensity is given byN(x)=exg—g/(q—1)]. The system
dynamics[1] and the prefactor guarantees a conserved magyuickly reaches a jamming configuration where domain
netization. Clearly,S(t) is determined by computing the walls are isolated and immobile. Thus no coarsening occurs
number of surviving bubbles(t)~ [dRN(R,t)~R %, im-  and the postulated scaling behavior does not apply. Never-
plying theless, as will be shown below, the domain size and number
distributions and in particular their tails do resemble their

y=o6=0=d/2. (42 giffusive counterparts.
The length distributior,, can be found using normalized
lll. EXACTLY SOLVABLE CASES distributionp,=P,/N, which satisfiegfor n=2)
Given that obtaining the exact domain distribution in the dp,  p; n-2

g-state Potts model appears to be a difficult problem, it might
prove useful to study simpler problems that are exactly solv-
able. We present in this section exact results for a variant 0{.
the Potts model with simplified dynamics and for ballistic
annihilation.

q " go1l & PPt (@7 2P| (49)

his equation can be further simplified by introducing the
modified time variableT, defined viad T/dt=p,, implying
T=1-e " To solve Eq.(46) we introduce the generating

o _ functions
A. Diffusionless dynamics

Consider theT =0 g-state Potts with simplified dynamics _ - n
where only energy lowering transitions are allowed. Thus p(Z’T)—ngl pn(T)Z", (47)
domain wall diffusionAO=0A in Eq. (1) is forbidden and
the reaction scheme is which satisfy
1/(g—-1) (a=2)/(q—-1) dp(z,T 7
AA — 00, AA — AO or OA. (43) p((jT ) = q_—l[p(Z,T)2+(q—2)p(Z,T)]—Z. (48)

Wheng=2, exchanging the roles of domain walls and va- . . . _— .

cant sites, this problem is equivalent to random sequentic’;t‘f'ow'ng Eq.(48) SL.JbJeCt to the monodisperse initial condi-

adsorption of dimers. Similarly, thg= case reduces to U°"S Pn(0)=6n1, i€, p(2T=0)=2, we get

monomer adsorption subject to a volume exclusion con- 2+q-1 qzT

straint[40]. p(z,T)=1+q exp{ —
Assuming that neighboring intervals are uncorrelated, the -1 -1

domain length density rate equation reads

-1
—1} . (49

Clearly, quantities such as the domain density and the

dp p n-2 domain length distribution approach exponentially fast their

L —12 > PP, 1 i—2NP, limiting values. We are especially interested in these limiting

dt  (q—1N7 =2 values. By expanding the generating functions in powers of
(q-2)P we get the limiting density of short domains,(«)=0,
22 Yp  _p1-6,.P,. (44 (9-2)/2(@—1), (4°—3q+3)/3(@—1)? and q*(q—2)/
(g—1)N ’ 8(q—3)3 for n=1, 2, 3, and 4, respectively.

o i . L Similar to the behavior seen in the Glauber-Potts model,
For simplicity, we consider the antiferromagnetic initial con- large domains are suppressed exponentially,
dition P,(0)= &, ;. While the annihilation term is similar to
Eq. (24), coalescence events are no longer offset by domain Pn(t)~[N(q,)]", n>1. (50
wall diffusion and thus the second term that is proportional
to the coalescence probability - 2)/(g—1). It can be veri- Here\(q,t) is equal to the inverse of the first simple pole of
fied that the total lengtix ,nP,,=1 is conserved. the generating functionp(z,t). This can be seen from the
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S A"Z"c(A"1=2)"1 . Note that A(q,t) vanishes when moving interface to survive iS, (t) =[S, . (t)+ S, _(t)]/2.

t—0, as implied by the initial conditions. Wheti=c0,  Combining the known resu[25]

A(9,t)—A.(q). In particular, whemg—«, \,(q) vanishes ot

according to\.(q) ~ 1/Ing, indicating a faster than exponen- Si()=S_(t)=e “[lo(2t) +11(2t)] (53

tial limiting behavior. Indeed, whem=«~ the generating

functionsp(z,) =1+ (z— 1)e” give an inverse factorial de-

cay py(©)=(n—1)/n! ~e~ """ In the complementarg =1 S, (H)=S__(t)=e Z[214(2t)+21,(2t)—1]. (54)

limit, the density vanishes, as was the case in the diffusive

counterpart. Using the asymptotic behavidB4] | ,(t)=e'/\27t when

The domain number-size distribution can be obtained by— o, we getSH(t):Z/\/H.

generalizing Eq(44), We turn now to the more challenging problem, i.e., the

computation of the survival probability when the interfaces

with Eq. (52), we arrive at

dPn m Py [ move away from each other. The final answer is relatively
dt _(q—l)NZ[iEJ PiiPn-1-im-j=2NPnm simple:
(q—2)P, S . (t)=e 2[21,(2t)+ 4l ,(2t)+215(2t)+1], (55
(_—1)N[Pnfl,m_ Pn,m]_‘sn,lém,lpl-
q so that the total survival probability reads
(51)

1
A solution using the generating function technique is pos- S()= 7€ #210(20) +315(20) +215(2t) +15(20)].
sible here as well. However, this solution is too cumbersome, (56)
and we briefly discuss its qualitative features. There are two
limiting cases. Whemj=, the joint domain-number distri- Equations(55) and (56) imply an algebraic asymptotic be-
bution simplifies toP,, = P,Jm1. Wheng=2, domains are haviorS_, (t)=4/\/mt andS(t)=2/\/zt for t—co. Thus the
always of odd length andP,, = P,dm +1y2- Hence the domain decay exponent ig= 1/2. _
domain number distribution also decays exponentially To derive Eqs(55) and(56) let us consider a sequence of
Qm(t) ~[A(q,t)]". Similar to the length distribution, the de- interfaces starting from the right interface of our domain as a
cay constantA(q) vanishes whemj—o. In summary, al- random walk. Namely, we seW,=0 and then define
though the restricted dynamics Potts model does not exhibMV,1=Wo+v1=v;, wherev;=1 is the velocity of the right
coarsening or scale invariance, the number and size distribiaterface of our domain. We repeat this procedure so that

tions mimic their diffusive counterpart largeand largeg ~ W;=W,_;+v; and we trealV; as the displacement of the
behavior. random walk, started from the origin, at thh step. When

the displacement becomes negative for the first time, the cor-
responding interface will move to the left and will eventually
destroy the domain. Let us meet this interface aftr+2l

Consider a binary reaction process with particles movingsteps. The corresponding probabiliBy is readily deter-
ballistically and annihilating upon collision. Assuming a bi- mined by random walk method83:

modal velocity distribution, we set these velocities equal to
+1, without loss of generality. Identifying domain walls
with particles, this two-velocity ballistic annihilation process
[25] is equivalent to deterministic coarsening in a system
with three equilibrium stategl5,16. The same analysis applies to the left interface of the domain.

The domain size distribution for this ballistic annihilation Thus we have R+ 1 interfaces to the right and\2+1
process has been investigated 16]. Here we want to com- interfaces to the left. Our original domain survives until time
pute the domain survival probability(t). There are actually t if the distance between the extreme interfaces is greater
four such survival probabilities depending on the initial ve-than 2. In other words, the interval of lengtht &vith the left
locities of boundary interfaces; we denote the correspondingoundary at the initial location of the extreme left interface
survival probabilities byS, . (t), S;_(t), S_,(t), and should contain RI+2M interfaces at most. The probability
S__(t). Then the total survival probability is just the sum of this event is

B. Ballistic annihilation model

(2N)!

_»~—-2N
Pn=2 (N+1)IN!

(57)

S(t)=_%[S++_(t_)_+ S+_(t_)_+S_+(t)+S__(t)]. We n?ed to N+M (20K (= IN+2M
specify the initial conditions. Let us assume that interfaces |, (H)=e"2 :f due U

Ny i L. . . . N+M | |
are located according to the Poisson distribution with unit K=o k! 2t (2N+2M)!
density. For such symmetric initial conditions we have (58

S, . (t)=S__(t). One immediately gets the survival prob- ) . ) )
ability in the simplest case when the interfaces move toward € survival probabilitys_ . (t) is now given by
each other:

S, _(t)=e™ 2, (52) S—+(t):N’%>1 PnPuUn+m(t). (59

To compute the survival probability of parallel moving inter- It proves convenient to expand the summation in &§) to
faces we note that the probabili§y, (t) for a single right- N=0 andM=0. This gives



S ()= X PyPuUnim(D)—22 PyUn(D+Ug(1).
N,M=0 N=0

(60)
The second sum in E@60) can be rewritten as
» o » u2N
NZO PNUN(t):Ltdue—“NZO Pvagr (6D

The sum on the right-hand side of E@1) is compressed
into 2p=oPnu?V/(2N)!'=21,(u)/u and the resulting inte-
gral is

due

* o Ha(u)
T (62)

=e [l(2t)+1,(2t)].
2t

ThusS_ | (t) becomes
u2N+2M

_ —u _
S-+(t) Ltd“e Ao PP R 2

—4e  [Iy(2t)+1,(2t)]+e 2, (63

S(t) is found from Eqs(52), (54), and(63) to yield

p)

N,M=0

2N+2M

1 )
S(t)=—J due™ Pn
4 ) 5

To perform the summation in E464) we need the combi-
natorial identity Xy, m=_PnPu=4P_+1, Which can be

checked directly. One can also establish this identity geo

metrically by noting that 2YPy=(2N)!/N!(N+1)! gives

the number of random walks starting at the origin and returny,_ 1 and 6= o=

ing to the origin for the first time afteri+ 2 stepq33]. An
appropriate counting of all such walks of length24 then

leads to the above identity. Making use of this identity, we

reduce Eq(64) to

1= = (u}®2(2L+1)
S“):med“e Lzo(§> ((L+2)!

PN |1(U)_3|2(U)

—ZLtdue y T

_1f°°d UL I 65
=7 due o - Lyw). (69
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Then the total single-domain survival probability reads
Qi()=[Q (1) +Q, () +Q_, () +Q__(t) ]/4. Asymp-
totically, Qq(t)=(4mt) "2 implying exponents 5=y
=yp=1/2. Moreover, the persistence exponértl and thus

all exponents are identical to those of tye « Potts model.
These two models exhibit several other similarit{es!].
However, the present deterministic model of coarsening is
quite different in that the number distributi@p,,(t) is non-
trivial. The determination of this distribution is more in-
volved and left for the future.

IV. DISCUSSION AND SUMMARY

Even in one dimension there are many interesting situa-
tions where the above coarsening exponents are unknown.
The simplest case is a diffusion equation that can describe
coarsening in systems with a nonconserved order parameter
[1]. Recently, the persistence characteristics for the diffusion
equation process have been investigaft&é] numerically
and theoretically by an approach close to the llA. Given the
enormous role played by the diffusion equation in science,
surprisingly little is known about its underlying coarsening
procesq 20].

Another well-known coarsening process is the 1D time-
dependent Ginzburg-Landau equation for a scalar noncon-
served order parametgt]. In this system, domains do not
move and the coarsening proceeds via flipping of the shortest
domains. The minimum size grows logarithmicgdMp], so it
is convenient to define the coarsening exponents in terms of
the minimum size. rather than timeé. This process is solv-
able in that the domain size distributiét,(L) =L ~2P(n/L)
is known[45,1]. The same expression holds for the domain
number distribution. Some coarsening exponents are simple,
. In contrast, the persistence exponent
0#=0.175 075 g4] is nontrivial. This process resembles the
g—1 Potts model, wherg= 6 as well.

It would be interesting to extend of our work to coarsen-
ing systems with a&onservedorder parameter. Besides the
dynamical exponenz=3 little is known even for the one-
dimensional Ising model with Kawasaki spin-exchange dy-
namics[46]. The coarsening exponentsand § appear to be
nontrivial for the Ising-Kawasaki modg¢k7] as well. An-
other possible direction is to study the coarsening exponents
for the natural generalization of the ballistic annihilation pro-
cess, theN-species Lotka-Volterra procefs5,48.

In summary, we introduced the domain size distribution
and showed that it obeys scaling and is characterized by two
independent nontrivial decay exponents. The survival prob-

In deriving the second line we have used the definition of theabilities of a domain and an unreacted domain are described
modified Bessel functions; the third line has been derived byy the exponentg and 8, respectively. Generally, these ex-

applying the identity{34] I,,_1(u) — I 5 1(u) = (2n/u)l,(u).
Computing now the integral in the last line of E&5) we
arrive at Eq.(56). This completes the proof of Eq&5) and
(56).

One can try to comput®,(t), the domain number den-
sity. First we note tha®,(t) with specified boundary veloci-
ties can be readily foundQ, _(t)=e~ 2!, while other single-
domain densitiesQ, ,(t)=Q__(t) and Q_,(t) can be
expressed via single-particle survival probabilities(t):

Qi+ (H)=S, (1), Q_(H)=S_(1)S,(1). (66)

ponents obey & <6 and y<v=< 4. In most examples the
above inequalities are strict; however, there are counterex-
amples wheray= 6 and/or 6=v. For the 1DT=0 g-state
Potts-Glauber model we developed the IIA that predicts the
correct qualitative behavior of the domain size and number
distributions and even reasonable estimates for the decay ex-
ponents. We also worked out the analytically tractable limits
of g—1 andg—woe. It still remains, however, to obtain the
exact behavior for genera. This might be possible using
the techniques used in studies of single-spin persistence
[6,8,17. In a static version of the Potts model, an exact so-
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lution was presented and exponential decay of the domaimore systematic method. It is also intriguing to determine
density still occurred. It was also shown analytically that thewhether an entire hierarchy or a finite number of independent
coarsening exponents in the solvableterministicballistic ~ decay modes are present in these systems.
annihilation model and thetochastic =~ Potts model are
identical.

These results indicate that several nontrivial decay laws ACKNOWLEDGMENTS
underlie the evolution of elementary processes such as the
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