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Domain statistics in coarsening systems
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We study the domain number and size distributions in the one-dimensional Ising andq-state Potts models
subject to zero-temperature Glauber dynamics. The survival probability of a domainS(t);t2c and an unre-
acted domainQ1(t);t2d are characterized by two independent nontrivial exponents. For the Ising case, we
find c50.126 andd51.27 using numerical simulations. We develop an independent interval approximation
that predicts the qualitative behavior of the domain distribution and provides good estimates for the exponents.
Exact results for the domain distribution are also obtained in several solvable cases.@S1063-651X~97!00110-4#

PACS number~s!: 02.50.Ey, 05.40.1j, 82.20.Mj
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I. INTRODUCTION

When a system is quenched from a homogeneous h
temperature disordered state into a low-temperature sta
does not order instantaneously; instead, domains of equ
rium ordered phases form on larger and larger scales@1#. It
has been generally confirmed that a scale-invariant morp
ogy is developed, i.e., the network of domains is~statisti-
cally! independent of time when lengths are rescaled b
single characteristic length scale that typically grows al
braically with time. However, even for simple coarseni
processes little is known about more subtle properties s
as the domain size distribution@2,3#. One such feature tha
has attracted considerable interest recently concerns
‘‘persistence’’ of the local order parameter, the probabil
that it has not changed sign in a given time interval. Per
tence has been investigated theoretically@4–9# and experi-
mentally @10# in spin systems, interacting particles syste
@11–14#, Lotka-Volterra models @15,16#, breath figures
growth @17#, foams@18#, and even simple diffusion@19,20#.

Single spin persistence provides a natural counterpa
the survival probability in the realm of many-particle sy
tems. In the context of reaction processes, persistenc
equivalent to the survival of immobile impurities and ther
fore does not provide information about collective propert
of the bulk. In contrast, domains are the natural spatial
ments of a coarsening process. In this paper, we ask,
example, what the survival of an entire domainS(t) is. This
quantity decreases with time as a power lawS(t);t2c.
Similar to other critical exponents,c is universal in the sens
that it is independent of many details such as the initial c
ditions. However, it is model dependent and in this resp
differs from the growth exponent that depends only on
conservative nature of the dynamics.

In the present work we examine systems with short-ra
interactions described by a scalar nonconserved order pa
eter. We focus on the one-dimensional~1D! Ising model and
its generalization to theq-state Potts model@21# evolving
according to Glauber spin-flip dynamics@22#. Sequential dy-
561063-651X/97/56~4!/3788~11!/$10.00
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namics has been chosen without loss of generality as par
dynamics exhibit similar asymptotic behavior@23#. In one-
dimensional systems with short-range interactions, the or
disorder transition takes place atT50 @24#, and since we are
interested in coarsening, we restrict our attention to zero t
perature.

This paper is organized as follows. In the next section
discuss the Ising and Potts models. We define the dom
number distribution and determine it analytically in the lim
iting casesq→` and q→1. Furthermore, we develop a
independent interval approximation~IIA ! that assumes no
correlations between adjacent domains. The IIA predictio
compare well with Monte Carlo simulations by giving co
rect description of the domain statistics as well as good
timates for the underlying exponents. Section II conclud
with the q5` Potts model in arbitrary dimensiond>2. In
Sec. III we obtain the domain distribution in two solvab
cases: the Potts model with only energy lowering transitio
and the deterministic ballistic annihilation model@25,15,16#.
Section IV discusses some open issues and contains a
mary.

II. ISING AND POTTS MODELS

A. The Ising model and theq-state Potts model

We start with the 1D Ising model subject toT50 Glauber
dynamics@22#. To examine the role of the number of equ
librium phases we also consider a generalization of the Is
model, theq-state Potts model. Experimental realizations a
known for q52 ~the Ising model! and q53,4,̀ @21#. The
q5` case describes several cellular structures@26#, e.g.,
polycrystals@27#, foams@18#, soap froth@28#, and magnetic
bubbles@29#.

We consider uncorrelated initial conditions where each
the q phases is present with equal density 1/q. The T50
Glauber-Potts dynamics proceeds by selecting a spin at
dom and changing its value to that of one of its random
selected neighbors. Thus domain walls perform a rand
walk and upon contact they annihilate or coalesce, depen
3788 © 1997 The American Physical Society
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56 3789DOMAIN STATISTICS IN COARSENING SYSTEMS
on the state of the corresponding domains@30–32#. Identify-
ing a domain wall with a particle (A) and the absence of
domain wall with a hole(0), one finds the single-specie
diffusion-reaction process@30–32#

A0

1/2

0A, AA →
1/~q21!

00, AA →
~q22!/~q21!

A0 or 0A. ~1!

The rates indicate the relative probabilities by which ea
event occurs.

B. Domain number distribution: Definition
and scaling properties

Our goal in this study is to investigateS(t), the probabil-
ity that a domain, initially present at the system at timet50,
has not flipped up to timet ~see Fig. 1!. We will present
theoretical and numerical evidence supporting an algeb
long time decay of this survival probability,

S~ t !;t2c. ~2!

Such a behavior is robust, as the exponentc is not sensitive
to the initial state of the system~provided long-ranged cor
relations are absent!. Our results will also strongly sugges
that the exponentc is nontrivial, i.e., it cannot be extracte
from so-far known exponents associated with the Is
model.

In principle, a surviving domain may undergo coalescen
with other similar phase domains. Thus a natural general
tion of the domain survival probability isQm(t), the density
of domains composed ofm original domains~see Fig. 1!.
This quantity satisfies the initial conditionQm(0)5dm,1 .
The total domain densityN(t) is given byN(t)5(mQm(t),
while the domain survival probability countsinitial domains
that have not shrunk and hence contains the densityQm(t)
with weight m

S~ t !5(
m

mQm~ t !. ~3!

The average number of domains contained within a sur
ing domain^m(t)&5S(t)/N(t) grows algebraically accord
ing to ^m(t)&;tn2c, with n the domain decay exponen
N(t);t2n. If the behavior ofQm(t) is truly self-similar, it
should follow the scaling form

FIG. 1. Domain motion in the Ising model. Surviving domai
are marked by1 and annihilated domains by2. The domain num-
ber at a later time is also indicated.
h
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Qm~ t !.tc22nQ~mtc2n!. ~4!

The scaling functionQ(z) exhibits the extremal behavior

Q~z!;H zs, z!1

exp~2kz!, z@1.
~5!

The small argument tail describes domains that contai
very small number of initial domains. In particular, the qua
tity

Q1~ t !;t2d ~6!

is of special interest: It gives the density of domains th
avoided merging with their neighboring domains up
time t.

The inequalitiesQ1(t)<(mQm(t)<(mmQm(t) lead to
the bounds

c<n<d. ~7!

Taking into account that at least one surviving domain s
rounds a persistent spin givesP(t)<S(t), whereP(t);t2u

is the density of persistent spins. Thus we arrive at ano
upper bound

c<u ~8!

for the exponentc. We shall show below that these boun
are strict for the Potts model and that there are models w
c5u, c5n, andn5d. The bounds~7! and~8! suggest that
a domain decays with the slowest rate in the problem.

A useful relation between the scaling exponents can
obtained by substitutingm51 in Eq. ~4!,

d2n5~n2c!~11s!. ~9!

Thus, among the three exponentsc, d, ands, only two are
independent. For theq-state Glauber-Potts model both th
domain decay exponentn51/2 @22,30# and the persistence
exponentu(q) @6# are known. It gives hope that analytica
determination of the domain exponents is also possible.

Quite obviously, domains disappear when their size v
ishes and therefore the domain size and number distribut
are intimately related. One is therefore forced to consider
distribution of domains of sizen consisting ofm original
domains at timet, denoted byPn,m(t). The aforementioned
number distribution isQm(t)5(nPn,m(t) and consequently
the domain survival probability isS(t)5(n,mmPn,m(t).

As will be seen later, studying the joint size-number d
tribution requires detailed knowledge of the domain size d
tribution Pn(t)5(mPn,m(t). This distribution obeys the nor
malization condition

(
n

nPn~ t !51 ~10!

reflecting the conservation of the total length. The total d
main density is simplyN(t)5(nPn(t). Since the average
domain length grows asn;tn, the length distribution fol-
lows the scaling form

Pn~ t !.t22nP~nt2n!. ~11!
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3790 56P. L. KRAPIVSKY AND E. BEN-NAIM
The length distribution scaling function has the limiting b
havior @2,3#

P~x!;H x, x!1

exp~2lx!, x@1.
~12!

In Sec. II D we shall develop an approximation scheme t
helps elucidate many of the qualitative and quantitative f
tures of the domain size and number distributions.

C. Solvable cases

1. The q̃ ` limit

In the q5` case, similar phase domains never coale
and therefore the domain number is trivial,m51. Thus
Pn,m(t)5Pn(t)dm,1 , N(t)5S(t)5Q1(t), and n5c5d
51/2. The value of the exponent has been obtained by no
that domain boundaries perform independent random w
and a domain disappears when its boundaries meet. T
domains survive with probability identical to that of a ra
dom walk in the vicinity of a trap,N(t);t21/2 @33#, or
n51/2. On the other hand, an individual up spin inside t
domain has not changed its sign if it has not been crosse
both domain walls. Therefore, the persistence probability
proportional tot21/2t21/25t21, i.e., u51. Hence the bound
~8! is strict.

The domain length distributionPn(t) obeys the diffusion
equation

dPn

dt
5Pn111Pn2122Pn , ~13!

with the boundary conditionP0(t)50. This rate equation
satisfies the length conservation of Eq.~10!. Solving Eq.~13!
subject to the appropriate initial conditionsPn(0)5dn,1
gives

Pn~ t !5@ I n21~2t !2I n11~2t !#exp~22t ! ~14!

and

N~ t !5S~ t !5Q1~ t !5@ I 0~2t !1I 1~2t !#exp~22t !, ~15!

whereI n is the modified Bessel function of ordern @34#. The
length distribution scales according to Eq.~11!, with n51/2
and P(x).xexp(2x2/4)/Ap. The generic exponential be
havior of Eq.~12! is now replaced by a Gaussian one, ind
cating that l→0 as q→`. In the long-time limit,
S(t)5Q1(t)5N(t).(pt)21/2, confirming the previous heu
ristic findingsn5c5d51/2.

2. The q̃ 1 limit

The 1D T50 Glauber-Potts model with arbitraryq>1
can be mapped onto the Ising model with magnetizat
m52/q21 @35#. In other words, the volume fraction of th
down phase isw5121/q @7#. In particular, the limitw→0
allows treatment of the limiting caseq→1 by focusing on
the majority domains. The typical initial size of such d
mains isw21→`. This shows that in the limiting caseq51
the minority domains cannot meet and the majority doma
sizes change appreciably due to coalescence. Thus ma
t
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domains never disappear, i.e.,S(t)51 andc50. Similarly,
the persistence exponent is found:u50. A majority domain
remains unreacted until timet if both of its neighboring mi-
nority domains survive,Q1(t)5N2(t). The density is given
by the q5` solution ~15! and we findQ1(t).(pt)21 and
d51.

The number distribution of the majority domains can
determined as well. The dynamics proceeds by minority
mains shrinking to zero and thus leading to coalescenc
surrounding majority domains. Such aggregation events
cur independently with rateP1 /N2 and the domain numbe
distribution evolves according to

dQm

dt
5

P1

N2F(
i 51

m

QjQm2 j22NQmG , ~16!

subject to the initial conditionsQm(0)5dm,1 . It is helpful to
absorb the time-dependent rateP1 /N2 into the time variable

T5E
0

t

dt8
P1~ t8!

N2~ t8!
5N21~ t !21, ~17!

with the overall density of Eq.~15! and the last equality
evaluated usingṄ52P1. With this time variable Eq.~16!
reduces to the classical Smoluchowski equation@36#

dQm

dT
5(

j 51

m

QjQm2 j22NQm . ~18!

Solving Eq. ~18! with the appropriate monodispers
initial conditions gives Qm(T)5Tm21(11T)2m21

.T22exp(2m/T) @36#. Indeed,Q1(T)5N2(T)5(11T)22,
in agreement with the previous argument. In the long-ti
limit, T.N21.Apt and Qm(t).(pt)21exp@2m(pt)21/2#.
Thus the domain number distribution scales according to
~4! with the purely exponential scaling function

Q~z!5p21exp~2zp21/2!. ~19!

The average domain properties areS(t)51, N(t).(pt)21/2,
and Q1(t)5N2(t);(pt)21 and the scaling exponent
s5c50, n51/2, andd51.

Changes in the domain size due to domain wall diffus
are negligible here and the joint size-number distribut
evolves according to

dPn,m

dT
5(

i , j
Pi , j Pn2 i ,m2 j22NPn,m . ~20!

Equation ~20! generalizes the Smoluchowski equations
aggregation with two conservation laws@37#. Introducing the
generating functionF(u,v,T)5(n,munvmPn,m(T), one can
solve Eq.~20! for arbitrary initial conditions to find@37#
F(u,v,T)5F0(u,v)(11T)21@11T2TF0(u,v)#21. In the
present case, the appropriate initial conditions
Pn,m(0)5dm,1w

2(12w)n21 and hence F0(u,v)
5uvw2@12u(12w)#21. Evaluating the limitsnw→n and
t→`, we arrive at the scaling formPn,m(t).t25/4F(x,y),
with the scaling variables x5(m1n)(pt)21/2,
y5(m2n)(pt)21/4, and the scaling function
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56 3791DOMAIN STATISTICS IN COARSENING SYSTEMS
F~x,y!5~px!21/2exp~2x2y2/2x!. ~21!

Instead of the naive scaling variablesnt21/2 andmt21/2, un-
usual scaling variables underlie the scaling function~21!.
The former scaling variablex is just the sum of the naive
scaling variables, while the latter ‘‘diffusive’’ scaley is hid-
den. In this case, the domain length and the domain num
are equivalent and their underlying scaling functions
identicalP(x)5p21exp(2xp21/2). Nevertheless, there is
considerable difference between the variablesn andm as the
latter is generally not a conserved quantity. Furthermore
q decreases from̀ to 1, the decay coefficientl governing
the domain length distribution increases from 0 top21/2.

The above results apply forq close to unity as long as
neighboring domains do not interact, i.e., as long as the
fusion time scale is smaller than the domain sizeAt!w21.
Eventually, this no longer holds and correlations betwe
majority domains develop. Nevertheless, in the limitq→1
Eqs.~18! and~20! areexactsince no correlations develop
none are present initially. Similar reasoning applies to s
eral models where domains are immobile and merging
curs @4#.

D. Independent interval approximation

Ignoring correlations between neighboring domains
lows us to develop an approximate theory for the time e
lution of the domain distribution. This so-called IIA prove
useful in studies of related reaction-diffusion proces
@2,19,30#.

1. Length distribution

The joint number distribution requires knowledge of t
length distribution and we start by deriving a master equa
for Pn(t). Consider first the Ising case. In an infinitesima
time intervalDt, the domainPn(t) changes according to

Pn~ t1Dt !5~122Dt !Pn~ t !1DtPn21~ t !F12
P1~ t !

N~ t ! G
1DtPn11~ t !2DtPn~ t !

P1~ t !

N~ t !

1DtP1~ t ! (
i 1 j 115n

Pi~ t !

N~ t !

Pj~ t !

N~ t !
, ~22!

whereN(t)5(nPn(t) is the total domain density. The firs
term on the right-hand side of Eq.~22! counts for the prob-
ability that both domain walls do not hop. The next tw
terms describe gain due to diffusion, with the prefac
(12P1 /N) in the second term to ensure that the hopp
domain wall does not disappear. The fourth term repres
the loss due to the disappearance of the smallest dom
located on the boundary of our domain, while the final te
accounts for gain due to domain merger.

Equations~22! assumes that the sizes of adjacent doma
are uncorrelated and thus is meanfield in nature. In the l
Dt→0 the difference equations~22! turn into a system of
differential equations
er
e

s
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dPn

dt
5Pn211Pn1122Pn

1
P1

N2F (
i 51

n22

Pi Pn212 i2N~Pn1Pn21!G . ~23!

Equations~23! apply for n51 if we setP0[0. One crucial
test is to verify the length conservation of Eq.~10!. Another
test is to sum all equations in~23! to getṄ522P1. This is
an exactequation since three domains disappear and on
born in each annihilation event.

Generally, in the Potts case, the domain size distribut
evolves according to the rate equation

dPn

dt
5Pn211Pn1122Pn

1
P1

~q21!N2F (
i 51

n22

Pi Pn212 i2N~Pn1Pn21!G .

~24!

Indeed, the collision of domain walls results in annihilatio
with probability 1/(q21) or in coalescence with probabilit
(q22)/(q21). Only annihilation events affect the doma
distribution and thus the 1/(q21) prefactor of the annihila-
tion term. In the casesq52 andq5`, Eqs.~23! and~13! are
clearly recovered. In the limitq→1, only the reaction term
survives, in agreement with Eq.~20!. One can also verify
that the total length is conserved and the total domain den
decays according to theexactrate equation

dN

dt
52

q

q21
P1 . ~25!

The diffusion term in Eq.~24! implies ^n(t)&;t1/2, and
since^n&;N21 the correct decay exponentn51/2 @22,30# is
recovered. In the following we will need to determine th
asymptotic prefactorA, N(t);At21/2, and A5*dxP(x).
The density rate equation~25! implies P1.P8(0)t23/2 with
P8(0)5@(q21)/2q#A.

A quantitative analysis of Eq.~24! may be carried by
treating the variablen as continuous. The quantityP(x) sat-
isfies

P91
1

2
~xP!81

q22

2q
P1

1

2qA
P*P50, ~26!

whereP8[dP/dx andP*P[*0
xdyP(y)P(x2y). The nor-

malized Laplace transform of the scaling functionP(x),
p(s)5A21*0

`dxe2sxP(x), obeys

dp

ds
5

p2

qs
1S 2s1

q22

qs D p2
q21

qs
, ~27!

subject to the boundary conditionp(0)51. The transforma-
tion p(s)512qs22qs(d/ds)lny(s) reduces the Riccat
equation~27! into the parabolic cylinder equation

d2y

ds2 1S 11
2

q
2s2D y50. ~28!
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The solution to Eq. ~28! reads y(s)
5C2D1/q(2sA2)1C1D1/q(sA2), with D1/q(x) the para-
bolic cylinder function of order 1/q @34#. The large-s behav-
ior of p(s), p(s);@(q21)/2q#s22, impliesC250 and we
get

p~s!512qs22qs
d

ds
lnD1/q~sA2!. ~29!

The normalization condition(nnPn(t)51 can be reduced to
Ap8(0)521. This allows us to determine the constant

A5

GF12
1

2qG
GF1

2
2

1

2qG , ~30!

whereG denotes the gamma function. In deriving Eq.~30!
we have used the properties@34#

Dc~x!;xcexp~2x2/4!@11O~x22!# ~31!

and

Dc~0!5
p1/22c/2

G~1/22c/2!
, Dc8~0!52

p1/22~c11!/2

G~2c/2!
. ~32!

The value of the prefactorA predicted by the IIA may be
compared to the exact one,Aexact5(12q21)/Ap @32# ~see
Fig. 2!. In the extreme cases ofq51 andq5` the prefactor
A is exact. The mismatch is worst for the Ising (q52) case
where A5G(3/4)/G(1/4)>0.337 989, while Aexact
5(4p)21/2>0.282 09@22#.

The IIA gives correct qualitative results including~i! the
density decayN(t);t21/2, ~ii ! the linear small size distribu
tion, P(x).@A(q21)/2q#x, as can be seen by considerin
the large-s behavior ofp(s).@(q21)/2q#s22, ~iii ! the ex-
ponential tailP(x).qAlexp(2lx) as in Eq.~12!. The tail
follows from the behavior of the Laplace transfor
p(s).ql/(s1l) near its pole at negatives52l, given by
the first zero ofD1/q(2lA2)50. For the Ising case one ha
l50.5409. This value should be compared with the ex
value l5z(3/2)/4Ap50.368 468 obtained by Derrida an

FIG. 2. Prefactor A of Eq. ~30! vs the exact value
Aexact5(12q21)/Ap.
t

Zeitak @3# and the approximate valuel50.357 83 obtained
by Alemany and ben-Avraham@2#.

One may wonder regarding the value of the IIA. It
analogous to that of Ref.@2#, but the quantitative agreemen
is worse in our case. The answer is simple: Our approac
self-consistent, while the approach of Ref.@2# is not. Indeed,
making use of the assumption that the domain sizes are
correlated, Alemany and ben-Avraham express the eq
time two-spin correlation function via the domain size dist
bution Pn(t). Then they use the exact expression for t
equal-time two-spin correlation function@22# to determine
Pn(t). However, would they use their key assumption th
the domain sizes are uncorrelated everywhere they wo
eventually obtain our expression forPn(t). In contrast, our
approach is self-consistent as all our results are deri
within the same scheme. Additionally, to determine the m
subtle characteristics to be described below one does
enjoy the luxury of known exact analytical results.

2. Joint distribution

We are now in a position to tackle the joint size-numb
distribution Pn,m(t), which captures both the spatial an
‘‘historical’’ characteristics of the coarsening domain m
saic. The corresponding rate equation is a generalizatio
Eq. ~24!,

dPn,m

dt
5Pn21,m1Pn11,m22Pn,m

1
P1

~q21!N2F(i , j Pi , j Pn212 i ,m2 j2N~Pn,m1Pn21,m!G ,
~33!

with the initial conditionPn,m(0)5dn,1dm,1 and the bound-
ary conditionP0,m(t)50. The variablem is ‘‘mute’’ in some
sense. It appears in a nontrivial way only in the convoluti
term. One should verify that this master equation is se
consistent. First, by summing overm, we recover Eq.~24!.
Second, it implies that the domain survival probability sat
fies the exact linear equationdS/dt52(mmP1,m . So far,
we have not succeeded in solving the joint distribution. Ne
ertheless, it is still possible to obtain analytically many inte
esting properties of Eq.~33!, including the scaling expo-
nents.

Let us consider the distribution of domains that have
merged with other domains up tot, Rn(t)[Pn,1(t). For such
domains, the convolution term vanishes and they evolve
cording to the linear rate equation

dRn

dt
5Rn211Rn1122Rn2

P1

~q21!N
~Rn1Rn21!,

~34!

with the initial conditionRn(0)5dn,1 and the boundary con
dition R0(t)50. In the continuum limit we again replac
Rn211Rn1122Rn by ]2R/]n2 and Rn1Rn21 by 2Rn to
find a diffusion-convection equation forRn(t). The transfor-
mation Rn→R̃nN22/q reduces this equation to the diffusio



ll
p-
a

s
is

o
s,

b-

ion

ior

be-

al

he
eal-
ues

ig.

56 3793DOMAIN STATISTICS IN COARSENING SYSTEMS
equation ~13! for R̃n , which is solved to yield
Rn(t).N2/qt21R(nt21/2), with R(x)5xexp(2x2/4)/Ap.
The large-n behavior ofPn,1(t) mimics theq5` case in that
it exhibits a Gaussian behaviorPn,1(t);exp(2n2/4t), while
the average domain density decays exponentia
Pn(t);exp(2n/At). Large intervals are more strongly su
pressed when they have a small number of ancestors
therefore then tail of the joint distribution strongly depend
upon m. The total density of unreacted domains
Q1(t)5(nRn;t21/221/q, which gives the decay exponent

d5
1

2
1

1

q
. ~35!

Obtaining the second independent exponentc is more
involved. The natural approach, i.e., a direct investigation
the domain number distributionQm , appears to be useles
as it requires knowledge ofP1,m and hence the entirePn,m .
The domain survival probability can be alternatively o
tained by consideringUn(t)5(mmPn,m(t). This quantity
obeys

dUn

dt
5Un211Un1122Un

1
P1

~q21!N2F2(
i 51

n22

Ui Pn212 i2N~Un1Un21!G ,

~36!

obtained by summing Eqs.~33!. We writeUn(t) in a scaling
form Un(t).t2c21/2U(nt21/2). Asymptotically, the domain
survival probability readsS(t).Bt2c with B5*dxU(x).
The scaling distribution satisfies

U91
1

2
~xU!81S c2

1

qDU1
1

qA
U*P50. ~37!

The normalized Laplace transform of the scaling funct
U(x), u(s)5B21*0

`dxe2sxU(x), obeys

du

ds
52S p~s!1qc21

qs
1sDu2

2c

s
, u~0!51. ~38!

In deriving Eq.~38! we used the relationU8(0)5Bc, found
by integration of Eq.~37!, combined withA5*dxP(x).
Substituting the explicit expression~29! for p(s) into Eq.
~38! and solving foru(s) yields

u~s!52cs2cD1/q
22~sA2!E

s

`

drr 22c21D1/q
2 ~rA2!. ~39!

This solution is consistent with the anticipateds→` behav-
ior, u(s).cs22. Furthermore, evaluating Eq.~39! near the
origin gives u(s)511F(c)s2c1Cs1•••. Therefore, for
u8(s) to be finite nears50, we must haveF(c)50. Evalu-
ating F(c) gives

05E
0

`

drr 22cD1/q~r !D1/q8 ~r !. ~40!

Interestingly, the second domain survival exponentc is irra-
tional, in contrast withd.
y,

nd

f

For completeness, we write the leading extremal behav
of the functionU(x):

U~x!;H x, x→0

xexp~2lx!, x→`.
~41!

This behavior can be easily obtained from the extremal
havior of the functionu(s). Whens→`, u(s);s22, while
near the poles→2l, one findsu(s);(s1l)22.

E. Numerical results

To test the IIA predictions, we performed numeric
simulations on a spin chain of sizeL5107. Random initial
conditions and periodic boundary conditions were used. T
simulation data represent an average over ten different r
izations. For the Ising case, we found the exponent val
c50.126(1) andd51.27(2) ~see Figs. 3 and 4!. These val-

FIG. 3. Domain survival probabilityS(t)/S(t51) in the Potts
model. Shown are Monte Carlo simulation results forq52, 3, 4, 8,
and 50.

FIG. 4. Density of unreacted domainsQ1(t)/Q1(t51) in the
Potts model. Shown is the same Monte Carlo simulation as in F
3.
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ues should be compared with the IIA predictions
c50.136 612 andd51.

As was the case for the persistence exponentu, the do-
main exponents strongly depend onq. Numerical values of
the exponentsc andd are summarized in Table I for repre
sentative values ofq. As q increases, the approximation im
proves and eventually becomes exact for the extreme
q5`. Thusc is overestimated by up to 10% andd is un-
derestimated by up to 25%. Hence domains of average n
ber m are better approximated in comparison with doma
with extremely smallm. Although the estimates are not e
act, they are still useful as they exhibit the correctq depen-
dence. In theq→` limit, the exponents approach the limi

ing value 1/2 according tod5 1
211/q derived in Eq.~35! and

c> 1
2 21/q. The leading behavior forc follows directly from

the scaling relation~9!, d, ands(`)50.
In the q→1 limit analysis of Eq.~40! suggests thatc

vanishes according toc}(q21)2. This behavior agrees with
the q51 exact solution and is consistent with simulati
results of an Ising chain with magnetizationm52/q21. It is
practically impossible to obtaind conclusively because un
reacted domains decay quickly. The limiting value asq→1
appears to be larger than the value suggested by the
d>3/22(q21).

We performed several checks to verify that the asympt
behavior of Eqs.~2! and ~6! is robust. For example, it is
independent of the initial domain wall concentration~pro-
vided that the correlations in the initial condition are sh
range!. We conclude thatc and d are nontrivial exponent
i.e., they cannot be extracted from the known exponents
sociated with the Ising-Glauber model. Similar to the pers
tence exponentu(q), the exponents appear to be irration

except for the limiting casesq5` (c5d5 1
2 ands50) and,

maybe, forq52 (c5 1
8, d5 5

4, ands51).
The numerical simulations also confirm that the distrib

tion functionQm(t) scales according to Eq.~4! ~see Fig. 5!.
The scaling functionQ(z), defined in Eq.~5!, decays expo-
nentially for a large argument and is algebraic for a sm
argument. The scaling relations combined with the simu
tion values gives51.05(5). This is consistent with the lin-
ear behavior seen in Fig. 5 forz!1. Hence similar scaling
functions underlie the domain number and size distributi
@2,3#. As q increases from 2 tò , the exponents decreases
from 1 to 0, respectively.

TABLE I. Domain exponents for theq-state Potts model in one
dimension. A local slope analysis was applied to the simulat

data. The theoreticalc is from Eq. ~40! and d5
1
2 11/q. MC de-

notes results from the Monte Carlo simulation.

MC Eq. ~33!

q c d s c d

2 0.126 1.27 1.05 0.136612 1
3 0.213 0.98 0.67 0.231139 5/6
4 0.267 0.85 0.50 0.287602 3/4
8 0.367 0.665 0.24 0.385019 5/8
50 0.476 0.525 0.03 0.480274 13/25
` 1/2 1/2 0 1/2 1/2
f

se

m-
s

A,
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t
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-

l

-

ll
-

s

Direct numerical integration of Eq.~33! reveals a number
distributionQm(t) that scales according to Eq.~4! and has an
exponential tail in agreement with the simulation resu
Moreover, the emergingS(t) falls within 5% of the actual
survival probability over a significant temporal ranget,103.
In summary, in addition to predicting the correct scaling b
havior, Eq. ~33! provides a good approximation for man
quantitative features of the domain distribution and in p
ticular good estimates for the decay exponents.

F. q5` Potts model in higher dimensions

So far, our discussion has been restricted to one dim
sion. Domains are not necessarily well defined in higher
mensions. In particular, in the Ising case it is not cle
whether our results can be properly generalized to hig
dimensions. However, in theq→` limit of the Potts model
domains are well defined and the dynamics considera
simplifies @35#. In this limit, it has been argued heuristical
and confirmed numerically@38,18# and experimentally@39#
for evolving soap froth thatu51 in two dimensions.

We now present a simple heuristic argument that gi
the exponentsc5d5u5d/2 for the q5` Potts model in
d>2 dimensions. First we note that an exact corresponde
between the dynamics of theq-state Potts model and th
Ising model with magnetizationm52/q21 holds only in
one dimension. This happens due to theglobal conservation
of the magnetization@22#, a peculiar property of the 1D Ising
model with zero-temperature Glauber dynamics. This glo
conservation for the locally nonconserved dynamics does
happen whend.1, as seen by considering a single up sp
in the sea of down spins. On the other hand, for the P
model with symmetric initial conditions the density of an
phase is globally conserved. This suggests a correspond
between the Potts model and the Ising model with globa
conserved dynamics. It appears difficult to make such co
spondence rigorous, although it is supported by several t
@35#. The reduction to the Ising model with magnetizatio
m52/q21 in d dimensions can be hardly considered as

n

FIG. 5. Scaling distributionQ(z) vs z for three different times
t5102,103,104. The data represents an average over 100 system
sizeL5105. The inset demonstrates the exponential behavior of
large-z tail.
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56 3795DOMAIN STATISTICS IN COARSENING SYSTEMS
simplification except for theq5` case, which may be ana
lyzed within the framework of the Lifshitz-Slyozov theor
@1#. Indeed, asq→` the minority ~up! phase approache
infinitesimal concentration, so up domains do not inter
and the Lifshitz-Slyozov approach, suitably modified for t
present case@35#, should be exact.

So consider a set of bubbles~the domains tend to becom
round in high dimensions! of up phase in a sea of dow
phase. We cannot restrict ourselves to the single-dom
situation as in one dimension since whend.1 a single
bubble would not evolve, while the set of bubbles do evol
Small bubbles shrink and large bubbles grow. We are
interested in details of the bubble evolution; the only relev
feature is that the radii distribution scales asymptotica
N(R,t)N(R,t).R2(d11)N(R/R), with the average radius
R;At. This behavior is due to the nature of nonconserv
dynamics@1# and the prefactor guarantees a conserved m
netization. Clearly,S(t) is determined by computing th
number of surviving bubblesS(t);*dRN(R,t);R2d, im-
plying

c5d5u5d/2. ~42!

III. EXACTLY SOLVABLE CASES

Given that obtaining the exact domain distribution in t
q-state Potts model appears to be a difficult problem, it mi
prove useful to study simpler problems that are exactly so
able. We present in this section exact results for a varian
the Potts model with simplified dynamics and for ballis
annihilation.

A. Diffusionless dynamics

Consider theT50 q-state Potts with simplified dynamic
where only energy lowering transitions are allowed. Th
domain wall diffusionA0
0A in Eq. ~1! is forbidden and
the reaction scheme is

AA →
1/~q21!

00, AA →
~q22!/~q21!

A0 or 0A. ~43!

When q52, exchanging the roles of domain walls and v
cant sites, this problem is equivalent to random sequen
adsorption of dimers. Similarly, theq5` case reduces to
monomer adsorption subject to a volume exclusion c
straint @40#.

Assuming that neighboring intervals are uncorrelated,
domain length density rate equation reads

dPn

dt
5

P1

~q21!N2F (
i 51

n22

Pi Pn212 i22NPnG
1

~q22!P1

~q21!N
@Pn212Pn#2dn,1P1 . ~44!

For simplicity, we consider the antiferromagnetic initial co
dition Pn(0)5dn,1 . While the annihilation term is similar to
Eq. ~24!, coalescence events are no longer offset by dom
wall diffusion and thus the second term that is proportio
to the coalescence probability (q22)/(q21). It can be veri-
fied that the total length(nnPn51 is conserved.
t

in
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ot
t
,
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The density decays according to the familiar rate equa
~25! Ṅ52@q/(q21)#P1. On the other hand, the minima
gap density satisfiesṖ152P1@11qP1 /(q21)N#. It is use-
ful to introduce the normalized quantityp15P1 /N, which
obeys ṗ152p1 and thusp15e2t. Using this result, the
minimal gap density and hence the density is found

N~ t !5exp@2q~12e2t!/~q21!#. ~45!

This agrees with known exact results for theq52 andq5`
cases @41–43#. Usually in random sequential adsorptio
problems it is convenient to study the complementary d
sity of gaps between domains that satisfies alinear rate equa-
tion. Nevertheless, the IIA is exact in this case as no ‘‘m
ing’’ of domains due to diffusion occurs. The final doma
density is given byN(`)5exp@2q/(q21)#. The system
quickly reaches a jamming configuration where dom
walls are isolated and immobile. Thus no coarsening occ
and the postulated scaling behavior does not apply. Ne
theless, as will be shown below, the domain size and num
distributions and in particular their tails do resemble th
diffusive counterparts.

The length distributionPn can be found using normalize
distributionpn5Pn /N, which satisfies~for n>2)

dpn

dt
5

p1

q21F (
i 51

n22

pipn212 i1~q22!pn21G . ~46!

This equation can be further simplified by introducing t
modified time variableT, defined viadT/dt5p1, implying
T512e2t. To solve Eq.~46! we introduce the generatin
functions

p~z,T!5 (
n51

`

pn~T!zn, ~47!

which satisfy

dp~z,T!

dT
5

z

q21
@p~z,T!21~q22!p~z,T!#2z. ~48!

Solving Eq.~48! subject to the monodisperse initial cond
tions Pn(0)5dn,1 , i.e., p(z,T50)5z, we get

p~z,T!511qFz1q21

z21
expS 2

qzT

q21D21G21

. ~49!

Clearly, quantities such as the domain density and
domain length distribution approach exponentially fast th
limiting values. We are especially interested in these limiti
values. By expanding the generating functions in powers oz
we get the limiting density of short domainspn(`)50,
(q22)/2(q21), (q223q13)/3(q21)2, and q2(q22)/
8(q23)3 for n51, 2, 3, and 4, respectively.

Similar to the behavior seen in the Glauber-Potts mod
large domains are suppressed exponentially,

Pn~ t !;@l~q,t !#n, n@1. ~50!

Herel(q,t) is equal to the inverse of the first simple pole
the generating functionsp(z,t). This can be seen from th
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3796 56P. L. KRAPIVSKY AND E. BEN-NAIM
(nlnzn}(l212z)21 . Note that l(q,t) vanishes when
t→0, as implied by the initial conditions. Whent→`,
l(q,t)→l`(q). In particular, whenq→`, l`(q) vanishes
according tol`(q);1/lnq, indicating a faster than exponen
tial limiting behavior. Indeed, whenq5` the generating
functionsp(z,`)511(z21)ez give an inverse factorial de
cay pn(`)5(n21)/n!;e2nlnn. In the complementaryq51
limit, the density vanishes, as was the case in the diffus
counterpart.

The domain number-size distribution can be obtained
generalizing Eq.~44!,

dPn,m

dt
5

P1

~q21!N2F(
i , j

Pi , j Pn212 i ,m2 j22NPn,mG
1

~q22!P1

~q21!N
@Pn21,m2Pn,m#2dn,1dm,1P1 .

~51!

A solution using the generating function technique is p
sible here as well. However, this solution is too cumberso
and we briefly discuss its qualitative features. There are
limiting cases. Whenq5`, the joint domain-number distri
bution simplifies toPn,m5Pndm,1 . Whenq52, domains are
always of odd length andPn,m5Pndm,(n11)/2. Hence the
domain number distribution also decays exponentia
Qm(t);@L(q,t)#n. Similar to the length distribution, the de
cay constantL(q) vanishes whenq→`. In summary, al-
though the restricted dynamics Potts model does not exh
coarsening or scale invariance, the number and size distr
tions mimic their diffusive counterpart large-n and large-q
behavior.

B. Ballistic annihilation model

Consider a binary reaction process with particles mov
ballistically and annihilating upon collision. Assuming a b
modal velocity distribution, we set these velocities equa
61, without loss of generality. Identifying domain wal
with particles, this two-velocity ballistic annihilation proce
@25# is equivalent to deterministic coarsening in a syst
with three equilibrium states@15,16#.

The domain size distribution for this ballistic annihilatio
process has been investigated in@16#. Here we want to com-
pute the domain survival probabilityS(t). There are actually
four such survival probabilities depending on the initial v
locities of boundary interfaces; we denote the correspond
survival probabilities byS11(t), S12(t), S21(t), and
S22(t). Then the total survival probability is just the su

S(t)5 1
4 @S11(t)1S12(t)1S21(t)1S22(t)#. We need to

specify the initial conditions. Let us assume that interfa
are located according to the Poisson distribution with u
density. For such symmetric initial conditions we ha
S11(t)5S22(t). One immediately gets the survival prob
ability in the simplest case when the interfaces move tow
each other:

S12~ t !5e22t. ~52!

To compute the survival probability of parallel moving inte
faces we note that the probabilityS1(t) for a single right-
e

y

-
e,
o

y

it
u-

g

o

-
g

s
it

d

moving interface to survive isS1(t)5@S11(t)1S12(t)#/2.
Combining the known result@25#

S1~ t !5S2~ t !5e22t@ I 0~2t !1I 1~2t !# ~53!

with Eq. ~52!, we arrive at

S11~ t !5S22~ t !5e22t@2I 0~2t !12I 1~2t !21#. ~54!

Using the asymptotic behavior@34# I n(t).et/A2pt when
t→`, we getS11(t).2/Apt.

We turn now to the more challenging problem, i.e., t
computation of the survival probability when the interfac
move away from each other. The final answer is relativ
simple:

S21~ t !5e22t@2I 1~2t !14I 2~2t !12I 3~2t !11#, ~55!

so that the total survival probability reads

S~ t !5
1

2
e22t@2I 0~2t !13I 1~2t !12I 2~2t !1I 3~2t !#.

~56!

Equations~55! and ~56! imply an algebraic asymptotic be
haviorS21(t).4/Apt andS(t).2/Apt for t→`. Thus the
domain decay exponent isc51/2.

To derive Eqs.~55! and~56! let us consider a sequence
interfaces starting from the right interface of our domain a
random walk. Namely, we setW050 and then define
W15W01v15v1, wherev151 is the velocity of the right
interface of our domain. We repeat this procedure so t
Wj5Wj 211v j and we treatWj as the displacement of th
random walk, started from the origin, at thej th step. When
the displacement becomes negative for the first time, the
responding interface will move to the left and will eventua
destroy the domain. Let us meet this interface after 2N11
steps. The corresponding probabilityPN is readily deter-
mined by random walk methods@33#:

PN5222N
~2N!!

~N11!!N!
. ~57!

The same analysis applies to the left interface of the dom
Thus we have 2N11 interfaces to the right and 2M11
interfaces to the left. Our original domain survives until tim
t if the distance between the extreme interfaces is gre
than 2t. In other words, the interval of length 2t with the left
boundary at the initial location of the extreme left interfa
should contain 2N12M interfaces at most. The probabilit
of this event is

UN1M~ t !5e22t (
k50

N1M
~2t !k

k!
5E

2t

`

due2u
u2N12M

~2N12M !!
.

~58!

The survival probabilityS21(t) is now given by

S21~ t !5 (
N,M>1

PNPMUN1M~ t !. ~59!

It proves convenient to expand the summation in Eq.~59! to
N50 andM50. This gives
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S21~ t !5 (
N,M>0

PNPMUN1M~ t !22 (
N>0

PNUN~ t !1U0~ t !.

~60!

The second sum in Eq.~60! can be rewritten as

(
N50

`

PNUN~ t !5E
2t

`

due2u (
N50

`

PN

u2N

~2N!!
. ~61!

The sum on the right-hand side of Eq.~61! is compressed
into (N>0PNu2N/(2N)! 52I 1(u)/u and the resulting inte-
gral is

E
2t

`

due2u
I 1~u!

u
5e22t@ I 0~2t !1I 1~2t !#. ~62!

ThusS21(t) becomes

S21~ t !5E
2t

`

due2u (
N,M>0

PNPM

u2N12M

~2N12M !!

24e22t@ I 0~2t !1I 1~2t !#1e22t. ~63!

S(t) is found from Eqs.~52!, ~54!, and~63! to yield

S~ t !5
1

4E2t

`

due2u (
N,M>0

PNPM

u2N12M

~2N12M !!
. ~64!

To perform the summation in Eq.~64! we need the combi-
natorial identity (N1M5LPNPM54PL11, which can be
checked directly. One can also establish this identity g
metrically by noting that 22NPN5(2N)!/N!(N11)! gives
the number of random walks starting at the origin and retu
ing to the origin for the first time after 2N12 steps@33#. An
appropriate counting of all such walks of length 2L14 then
leads to the above identity. Making use of this identity,
reduce Eq.~64! to

S~ t !5
1

4E2t

`

due2u(
L50

` S u

2D 2L 2~2L11!

L! ~L12!!

52E
2t

`

due2uF I 1~u!

u
2

3I 2~u!

u2 G
5

1

4E2t

`

due2u@ I 0~u!2I 4~u!#. ~65!

In deriving the second line we have used the definition of
modified Bessel functions; the third line has been derived
applying the identity@34# I n21(u)2I n11(u)5(2n/u)I n(u).
Computing now the integral in the last line of Eq.~65! we
arrive at Eq.~56!. This completes the proof of Eqs.~55! and
~56!.

One can try to computeQm(t), the domain number den
sity. First we note thatQ1(t) with specified boundary veloci
ties can be readily found:Q12(t)5e22t, while other single-
domain densitiesQ11(t)5Q22(t) and Q21(t) can be
expressed via single-particle survival probabilitiesS6(t):

Q11~ t !5S1~ t !, Q21~ t !5S2~ t !S1~ t !. ~66!
-

-

e
y

Then the total single-domain survival probability rea
Q1(t)5@Q11(t)1Q12(t)1Q21(t)1Q22(t)#/4. Asymp-
totically, Q1(t).(4pt)21/2 implying exponents d5c
5n51/2. Moreover, the persistence exponentu51 and thus
all exponents are identical to those of theq5` Potts model.
These two models exhibit several other similarities@44#.
However, the present deterministic model of coarsening
quite different in that the number distributionQm(t) is non-
trivial. The determination of this distribution is more in
volved and left for the future.

IV. DISCUSSION AND SUMMARY

Even in one dimension there are many interesting sit
tions where the above coarsening exponents are unkno
The simplest case is a diffusion equation that can desc
coarsening in systems with a nonconserved order param
@1#. Recently, the persistence characteristics for the diffus
equation process have been investigated@19# numerically
and theoretically by an approach close to the IIA. Given
enormous role played by the diffusion equation in scien
surprisingly little is known about its underlying coarsenin
process@20#.

Another well-known coarsening process is the 1D tim
dependent Ginzburg-Landau equation for a scalar nonc
served order parameter@1#. In this system, domains do no
move and the coarsening proceeds via flipping of the shor
domains. The minimum size grows logarithmically@45#, so it
is convenient to define the coarsening exponents in term
the minimum sizeL rather than timet. This process is solv-
able in that the domain size distributionPn(L)5L22P(n/L)
is known @45,1#. The same expression holds for the doma
number distribution. Some coarsening exponents are sim
n51 and d5s5`. In contrast, the persistence expone
u>0.175 075 8@4# is nontrivial. This process resembles th
q→1 Potts model, wherec5u as well.

It would be interesting to extend of our work to coarse
ing systems with aconservedorder parameter. Besides th
dynamical exponentz53 little is known even for the one
dimensional Ising model with Kawasaki spin-exchange d
namics@46#. The coarsening exponentsc andd appear to be
nontrivial for the Ising-Kawasaki model@47# as well. An-
other possible direction is to study the coarsening expon
for the natural generalization of the ballistic annihilation pr
cess, theN-species Lotka-Volterra process@15,48#.

In summary, we introduced the domain size distributi
and showed that it obeys scaling and is characterized by
independent nontrivial decay exponents. The survival pr
abilities of a domain and an unreacted domain are descr
by the exponentsc andd, respectively. Generally, these ex
ponents obey 0<c<u andc<n<d. In most examples the
above inequalities are strict; however, there are counte
amples wherec5u and/ord5n. For the 1DT50 q-state
Potts-Glauber model we developed the IIA that predicts
correct qualitative behavior of the domain size and num
distributions and even reasonable estimates for the decay
ponents. We also worked out the analytically tractable lim
of q→1 andq→`. It still remains, however, to obtain th
exact behavior for generalq. This might be possible using
the techniques used in studies of single-spin persiste
@6,8,12#. In a static version of the Potts model, an exact
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lution was presented and exponential decay of the dom
density still occurred. It was also shown analytically that t
coarsening exponents in the solvabledeterministicballistic
annihilation model and thestochastic q5` Potts model are
identical.

These results indicate that several nontrivial decay la
underlie the evolution of elementary processes such as
nonequilibrium Ising model. These nontrivial exponents
not emerge naturally from studies of traditional quantit
such as spatiotemporal correlations. It remains a challeng
find and obtain these underlying ‘‘hidden’’ exponents from
ev

ys

s

. E

ev

o

ys

i

,

in
e

s
he
o
s
to

more systematic method. It is also intriguing to determ
whether an entire hierarchy or a finite number of independ
decay modes are present in these systems.
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