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We study domain distributions in the one-dimensional Ising model subject to zero-temperature
Glauber and Kawasaki dynamics. The survival probability of a domain, S(t) ∼ t−ψ, and an unre-
acted domain, Q1(t) ∼ t−δ, are characterized by two independent nontrivial exponents. We develop
an independent interval approximation that provides close estimates for many characteristics of the
domain length and number distributions including the scaling exponents.
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I. INTRODUCTION

The theory of phase ordering kinetics, or domain coars-
ening, has undergone a rapid development in recent years
[1]. It has been established that systems quenched from
a homogeneous high-temperature disordered state to a
low-temperature multi-phase state do not order instanta-
neously; instead, domains of equilibrium ordered phases
form and grow with time as the system approaches lo-
cal equilibrium on larger and larger scales. Generally,
a scale-invariant morphology is developed at late times,
and the network of domains is (statistically) independent
of time when lengths are rescaled by a single characteris-
tic length scale L(t), the typical domain size. This length
scale exhibits an algebraic growth with time, L(t) ∼ tν .
However, it was recently realized that additional scal-
ing laws characterized by nontrivial scaling exponents
exist in such systems. Examples for such decay modes
are the autocorrelation function, A(L) ∼ L−λ [2], and
the fraction of the system still frozen in its initial state,
P0(t) ∼ t−θ [3,4]. The latter “persistence” probability
has since been investigated theoretically [3,5–11] and ex-
perimentally [12] in spin systems, interacting particles
systems [4,13–16], Lotka-Volterra models [17,18], breath
figures growth [19], foams [20], and even simple diffusion
[21,22].

Similar to the domain growth exponent, ν, these ad-
ditional exponents are sensitive to the nonequilibrium
dynamics followed by the system, and thus are funda-
mentally different from their equilibrium counterparts.
Precisely how many independent hidden exponents does
a coarsening system possesses remains an open ques-
tion. In this study, we establish that at least in one-
dimension, additional exponents describe the survival
probability and other more subtle statistical properties
of domains. We examine systems with short-range inter-
actions described by a scalar order parameter, namely the
1D T=0 Ising model [23] evolving according to noncon-
served Glauber dynamics [24] and conserved Kawasaki
dynamics [25].

This paper is organized as follows. We first define the
domain number distribution in Sec. II. In the following
section, we review our results for Glauber spin-flip dy-
namics where we develop and solve analytically an Inde-
pendent Interval Approximation (IIA) that assumes no

correlations between adjacent domains. The IIA predic-
tions compare well with Monte Carlo simulations by giv-
ing a correct description of the domain statistics as well as
good estimates for the underlying exponents. In Sec. IV
we show that nontrivial exponents underly the zero tem-
perature limit of the 1D Ising model with Kawasaki spin-
exchange dynamics as well. The IIA, when carefully
modified to conserved dynamics, turns out to be equally
useful in this case. Summary and conclusions are given
in Sec. IV.

II. DOMAIN NUMBER DISTRIBUTION

Although we focus in this study on the Ising model, the
statistical properties of domains we are concerned with
are relevant to arbitrary coarsening processes in one spa-
tial dimension. For example, we ask, what is the domain
survival probability S(t), i.e., the probability that a do-
main, initially present at the system at time t = 0, is still
present at time t (see Fig. 1). We will present theoreti-
cal and numerical evidence supporting an algebraic long
time decay of this survival probability,

S(t) ∼ t−ψ. (1)

Such a behavior is robust, as the exponent ψ is not sen-
sitive to the initial state of the system (provided long
ranged correlations are absent). Our results will also
strongly suggest that the exponent ψ is nontrivial, i.e.,
it cannot be extracted from so-far known exponents as-
sociated with the Ising model.

m=3 m=1
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t

Fig. 1. Domain motion in the Ising-Glauber model. Sur-

viving domains are marked by +, annihilated domains by −.

The domain number at a later time is also indicated.
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In principle, a surviving domain may undergo coales-
cence with other similar phase domains. Thus, a natu-
ral generalization of the domain survival probability is
Qm(t), the density of domains composed of m original
domains (see Fig. 1). This quantity satisfies the initial
condition Qm(0) = δm,1. The total domain density, N(t),
is given by N(t) =

∑
mQm(t), while the domain survival

probability counts initial domains that have not shrunk
and hence contains the density Qm(t) with weight m

S(t) =
∑
m

mQm(t). (2)

The average number of domains contained within a sur-
viving domain 〈m(t)〉 = S(t)/N(t) grows algebraically
according to 〈m(t)〉 ∼ tν−ψ with ν the domain decay ex-
ponent, N(t) ∼ t−ν . If the behavior of Qm(t) is truly
self-similar, it should follow the scaling form

Qm(t) ' tψ−2νQ(mtψ−ν). (3)

The scaling function Q(z) exhibits the following ex-
tremal behavior

Q(z) ∼
{
zσ z � 1,
exp(−κzµ) z � 1. (4)

The small argument tail describes domains that contain
a very small number of initial domains. In particular, the
quantity

Q1(t) ∼ t−δ (5)

is of special interest: It gives the density of domains
which avoided merging with their neighboring domains
up to time t.

The inequalities Q1(t) ≤
∑
mQm(t) ≤

∑
mmQm(t)

lead to the bounds ψ ≤ ν ≤ δ. Taking into account
that at least one surviving domain surrounds a persis-
tent spin gives P (t) ≤ S(t), where P (t) ∼ t−θ is the
density of persistent spins. Thus we arrive at another
upper bound ψ ≤ θ for the exponent ψ. These bounds
suggest that the domain decay rate is the slowest in the
problem. We shall show below that these bounds are
strict for the Ising model and more generally for the q-
state Potts model. However, for the Potts model with
q → 1 or q → ∞, and for a few other models [26] some
of these exponents are equal to each other.

A useful relation between the scaling exponents can be
obtained by substituting m = 1 in Eq. (3)

δ − ν = (ν − ψ)(1 + σ). (6)

Thus, among the three exponents ψ, δ, and σ, only two
are independent. It is well known that under noncon-
served (conserved) dynamics ν = 1/2 (ν = 1/3) [1].

Quite obviously, domains disappear when their size
vanishes, and therefore the domain size and number dis-
tributions are intimately related. Thus, domain survival
properties involve the distribution of domains of size

n consisting of m original domains at time t, denoted
by Pn,m(t). The aforementioned number distribution is
Qm(t) =

∑
n Pn,m(t), and consequently, the domain sur-

vival probability is S(t) =
∑
n,mmPn,m(t).

As will be seen later, studying the joint size-number
distribution requires detailed knowledge of the domain
size distribution Pn(t) =

∑
m Pn,m(t). This distribution

obeys the normalization conditions

1 =
∑
n

nPn(t), N(t) =
∑
n

Pn(t). (7)

Length conservation implies the first relation, while the
second relation gives the total domain density. Since the
average domain length grows as n ∼ tν , the length dis-
tribution follows the scaling form

Pn(t) ' t−2νP(nt−ν). (8)

All of the above scaling behavior emerges from the ap-
proximation detailed below. Furthermore, it is satisfied
by the simulation data. In the next section, we develop
an approximation scheme that helps elucidate many of
the qualitative and quantitative features of the domain
size and number distributions.

III. NONCONSERVED GLAUBER DYNAMICS

We start with the 1D Ising model subject to T = 0
Glauber dynamics [24]. To examine the role of the num-
ber of equilibrium phases we also consider a generaliza-
tion of the Ising model, the q-state Potts model. In higher
dimensions, the q-state Potts model is relevant to phys-
ical situations for q = 2 (the Ising model) and addition-
ally for q = 3, 4,∞ [27]. For instance, the q = ∞ case
describes several cellular structures [28] including poly-
crystals [29], foams [20], soap froth [30], and magnetic
bubbles [31].

We consider uncorrelated initial conditions where each
of the q phases is present with equal density 1/q. The
T = 0 Glauber-Potts dynamics proceeds by selecting a
spin at random and changing its value to that of one of
its randomly selected neighbors. Thus, domain walls per-
form a random walk and upon contact, they annihilate
or coalesce, depending on the state of the corresponding
domains [32–34]. Identifying a domain wall with a par-
ticle, (A), and absence of a domain wall with a hole (0),
one finds the single-species diffusion-reaction process

A0
1
2⇀↽ 0A, AA

1
q−1−→ 00, AA

q−2
q−1−→ A0 or 0A. (9)

The rates indicate the relative probabilities by which each
event occurs.
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A. Domain Size Distribution

Ignoring correlations between neighboring domains al-
lows us to develop an approximate theory for the time-
evolution of the domain distribution. Approximations
that are similar in nature proved useful in studies of re-
lated reaction-diffusion processes [21,32,35].

The joint number distribution requires knowledge of
the length distribution and we start by deriving a mas-
ter equation for Pn(t). Under the assumption that the
lengths of neighboring intervals are uncorrelated, we
write the following rate equation [26]

dPn
dt

= Pn−1 + Pn+1 − 2Pn (10)

+
P1

(q − 1)N2

[
n−2∑
i=1

PiPn−1−i −N(Pn + Pn−1)

]
.

with N(t) =
∑
n Pn(t) the total domain density and the

boundary condition P0(t) = 0. The first three terms
reflect that domain walls perform a random walk with
hopping rate set to 1/2 without loss of generality. The
last two terms are due to domain annihilation: the con-
volution term accounts for domain merger and the last
term for domain loss. In the q-state Potts model collision
of domain walls results in annihilation with probability

1
q−1 or in coalescence with probability q−2

q−1 . Only anni-
hilation events affect the domain distribution and thus
the 1

q−1 prefactor of the annihilation terms. Using the
sum rules of Eq. (7), one verifies that the total length is
conserved and the total domain density decays according
to the exact rate equation

dN

dt
= − q

q − 1
P1. (11)

The diffusion term in Eq. (10) implies 〈n(t)〉 ∼ t1/2,
and since 〈n〉 ∼ N−1 the correct decay exponent ν = 1/2
[24] is recovered. In the following, we will need to de-
termine the asymptotic prefactor A, N(t) ' At−1/2,
A =

∫
dxP(x), with the scaling function P(x) defined

according to Eq. (8). The density rate equation (11) im-
plies P1 ' P ′(0)t−3/2 with P ′(0) = q−1

2q A.
A quantitative analysis of Eq. (10) may be carried by

treating the variable n as continuous. The quantity P(x)
satisfies

P ′′ + 1
2

(xP)′ +
q − 2

2q
P +

1
2qA

P ∗ P = 0, (12)

where P ′ ≡ dP/dx and P ∗ P ≡
∫ x

0
dyP(y)P(x − y).

The normalized Laplace transform of the scaling func-
tion P(x), p(s) = A−1

∫∞
0
dx e−sx P(x), obeys

dp

ds
=
p2

qs
+
(

2s+
q − 2
qs

)
p− q − 1

qs
, (13)

subject to the boundary condition p(0) = 1. The trans-
formation p(s) = 1−qs2−qs dds ln y(s) reduces the Riccati
equation (13) into the parabolic cylinder equation,

d2y

ds2
+
(

1 +
2
q
− s2

)
y = 0. (14)

The solution to (14) reads y(s) = C−D1/q(−s
√

2) +
C+D1/q(s

√
2), with D1/q(x) the parabolic cylinder func-

tion of order 1/q [36]. The large s behavior of p(s),
p(s) ' q−1

2q s
−2, implies C− = 0, and we get

p(s) = 1− qs2 − qs d
ds

lnD1/q(s
√

2). (15)

The normalization condition
∑
n nPn(t) = 1 can be re-

duced to Ap′(0) = −1. This allows us to determine the
constant

A =
Γ
[
1− 1

2q ]

Γ
[

1
2 −

1
2q

] , (16)

where Γ denotes the gamma function. In deriving (16)
we have used the properties [36]

Dc(x) ∼ xc exp(−x2/4)[1 +O(x−2)], (17)

and

Dc(0) =
π1/22c/2

Γ(1/2− c/2)
, D′c(0) = −π

1/22(c+1)/2

Γ(−c/2)
. (18)

The value of the constant A predicted by the IIA may
be compared to the exact one, Aexact = (1−q−1)/

√
π [34]

In the extreme cases of q = 1 and q = ∞ the prefactor
A is exact. The mismatch is worst (roughly 20%) for the
Ising (q = 2) case where A = Γ(3/4)/Γ(1/4) ∼= 0.337989
while Aexact = (4π)−1/2 ∼= 0.28209 [24].

The IIA predicts the correct qualitative behavior of
length distribution in the limits of small and large inter-
vals

P(x) ∼
{
A(q−1)

2q x x� 1,
qA exp(−λx) x� 1.

(19)

The linear small size behavior is seen from the large s be-
havior p(s) ' (q−1)

2q s−2. On the other hand, the exponen-
tial tail follows from the behavior of the Laplace trans-
form p(s) ' qλ/(s+ λ) near its pole at negative s = −λ,
given by the first zero of D1/q(−λ

√
2) = 0. For the Ising

case one has λ = 0.5409. This value should be com-
pared with the exact value λ = ζ(3/2)/4

√
π = 0.368468

obtained by Derrida and Zeitak [37] and the approxi-
mate value λ = 0.35783 obtained by Alemany and ben-
Avraham [35].
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B. Domain Size-Number Distribution

We are now in a position to tackle the joint size-number
distribution, Pn,m(t), which captures both the spatial
and “historical” characteristics of the coarsening domain
mosaic. The corresponding rate equation is a generaliza-
tion of Eq. (10)

dPn,m
dt

= Pn−1,m + Pn+1,m − 2Pn,m (20)

+
P1

(q − 1)N2

∑
i,j

Pi,jPn−1−i,m−j −N(Pn,m + Pn−1,m)


with the initial condition Pn,m(0) = δn,1δm,1 and the
boundary condition P0,m(t) = 0. The variable m is al-
most mute as it appears in a nontrivial way only in the
convolution term. One should verify that this master
equation is self-consistent. First, by summing over m,
we recover Eq. (10). Second, it implies that the do-
main survival probability satisfies the exact linear equa-
tion dS/dt = −

∑
mmP1,m.

We have not succeeded in solving for the joint distri-
bution. Nevertheless, it is possible to obtain analytically
many interesting properties of Eqs. (20), including the
scaling exponents. Given Eqs. (20) are recursive in m,
one can try to solve for Pn,1(t), then for Pn,2(t), etc. A
solution for the former quantity already allows to deter-
mine the scaling exponent δ. Thus let us consider the dis-
tribution of domains which have not merged with other
domains up to t, Rn(t) ≡ Pn,1(t). For such domains, the
convolution term vanishes and they evolve according to
the linear rate equation

dRn
dt

= Rn−1 +Rn+1 − 2Rn −
P1

(q − 1)N
(Rn +Rn−1)

(21)

with the initial condition Rn(0) = δn,1 and the bound-
ary condition R0(t) = 0. In the continuum limit we
again replace Rn−1 + Rn+1 − 2Rn by ∂2R/∂n2 and
Rn + Rn−1 by 2Rn to find a diffusion-convection equa-
tion for Rn(t). The transformation Rn → R̃nN

2/q re-
duces this equation to the diffusion equation for R̃n,
which is solved to yield Rn(t) ' N2/qt−1R(nt−1/2), with
R(x) = x exp(−x2/4)/

√
π. The total density of unre-

acted domains is Q1(t) =
∑
nRn ∼ t−

1
2−

1
q , which gives

the decay exponent

δ =
1
2

+
1
q
. (22)

Obtaining the second independent exponent ψ is more
involved. The natural approach, i.e., a direct inves-
tigation of the domain number distribution Qm, ap-
pears to be useless, as it requires knowledge of P1,m and
hence the entire Pn,m. The domain survival probabil-
ity can be alternatively obtained by considering Un(t) =∑
mmPn,m(t). This quantity obeys

dUn
dt

= Un−1 + Un+1 − 2Un (23)

+
P1

(q − 1)N2

[
2
n−2∑
i=1

UiPn−1−i −N(Un + Un−1)

]
,

obtained by summing Eqs. (20). We write Un(t) in a
scaling form Un(t) ' t−ψ−1/2U(nt−1/2). Asymptotically,
the domain survival probability reads S(t) ' Bt−ψ with
B =

∫
dxU(x). The scaling distribution satisfies

U ′′ + 1
2

(xU)′ +
(
ψ − 1

q

)
U +

1
qA
U ∗ P = 0. (24)

The normalized Laplace transform of the scaling function
U(x), u(s) = B−1

∫∞
0
dx e−sxU(x), obeys

du

ds
= 2

(
p(s) + qψ − 1

qs
+ s

)
u− 2ψ

s
, (25)

and u(0) = 1. In deriving (25) we used the relation
U ′(0) = Bψ, found by integration of Eq. (24), combined
with A =

∫
dxP(x). Substituting the explicit expression

(15) for p(s) into Eq. (25), and solving for u(s) yields

u(s) = 2ψs2ψD−2
1/q(s

√
2)
∫ ∞
s

dr r−2ψ−1D2
1/q(r

√
2). (26)

This solution is consistent with the anticipated s → ∞
behavior, u(s) ' ψs−2. Furthermore, evaluating Eq. (26)
near the origin gives u(s) = 1 + F (ψ)s2ψ + Cs + · · ·.
Therefore, for u′(s) to be finite near s = 0, we must have
F (ψ) = 0. Evaluating F (ψ) gives

0 =
∫ ∞

0

dr r−2ψD1/q(r)D′1/q(r), (27)

an eigenvalue problem that can be solved numerically to
obtain the exponent ψ (see Table 1). In the most in-
teresting case of integer q the domain decay exponent ψ
appears to be irrational, in contrast with δ.

It is useful to consider the limiting cases that turn
out to be solvable. The q = ∞ limit is especially sim-
ple [32] as only domain walls coalesce but cannot an-
nihilate and thereore Eq. (20) is linear and thus exact.
Furthermore, the domain size number distribution fac-
torizes, Pn,m = Pn(t)δm,1, since similar phase domains
never coalesce and therefore the domain number is triv-
ial, m = 1. Thus N(t) = S(t) = Q1(t) ' (πt)−1/2 and
ν = ψ = δ = 1/2. Additionally, the scaling function is
P(x) = x exp(−x2/4)/

√
π.

Before going to the opposite limit q → 1, we first note
that the Potts model with arbitrary q ≥ 1 can be mapped
onto the Ising model with magnetization µ = 2/q − 1.
Thus the q → 1 limit corresponds to the vanishing vol-
ume fraction of minority domains. Therefore minority

4



domains cannot “meet”, so majority domains change ap-
preciably only due to coalescence. Thus they never dis-
appear, i.e., S(t) = 1 and ψ = 0. A majority domain
remains unreacted if both its minority neighbors sur-
vive, implying Q1(t) = N2(t) and δ = 2ν = 1. In
the above rate equation description, the diffusion term
becomes negligible and the IIA is exact. The scal-
ing functions P(x) and Q(z) are identical exponential
functions. However, unlike to the q = ∞ case, the
joint distribution is not a product of the single func-
tion variables [26]. The joint size-number distribution
still obeys the scaling law, Pn,m(t) ∼ t−5/4Φ(x, y), with
Φ(x, y) = x−1/2 exp(−x − y2/2x). The scaling variables
x and y are quite unusual, though [38,26]. Indeed, in-
stead of the naive scaling variables mt−1/2 and nt−1/2,
one has x = (m + n)(πt)−1/2 and y = (m − n)(πt)−1/4

[26]. The former scaling variable x is just the sum of the
naive scaling variables, while the latter “diffusive” scale
y is hidden. This suggests that generally for the q-state
Potts model with q <∞ the joint distribution is not nec-
essarily the product of single variable functions and the
scaling, if holds, may be rather different from the naive
form with scaling variables nt−ν and mtψ−ν .

C. Simulation Results

To test the IIA predictions, we performed numerical
simulations on a spin chain of size L = 107. Random
initial conditions and periodic boundary conditions were
used. The simulation data represents an average over 10
different realizations. For the Ising case, we found the
exponent values ψ = 0.126(1) and δ = 1.27(2) (see Fig.
2). These values should be compared with the IIA pre-
dictions of ψ = 0.136612 and δ = 1. The IIA neglects
correlations that do build up between neighboring do-
mains and thus is not exact. Furthermore, the effects of
the correlations is nontrivial, as one exponent is smaller
than predicted while the other is larger. As was the case
for the persistence exponent, θ, the domain exponents
strongly depend on q. Numerical values of the exponents
ψ and δ are summarized in Table 1 for representative val-
ues of q. As q increases, the approximation improves and
eventually becomes exact for the extreme case q = ∞.
Thus, ψ is overestimated by up to 10% and δ is underes-
timated by up to 25%.

We performed several checks to verify that the asymp-
totic behaviors of Eqs. (1) and (5) are robust. For exam-
ple, they are independent of the initial domain wall con-
centration (provided that the correlations in the initial
condition are short range). We conclude that ψ and δ are
nontrivial exponent, i.e., they cannot be extracted from
the known exponents associated with the Ising-Glauber
model. Similar to the persistence exponent, θ(q), the ex-
ponents appear to be irrational except for the limiting
cases q = ∞ (ψ = δ = 1

2 , σ = 0) and, maybe, for q = 2
(ψ = 1

8 , δ = 5
4 , σ = 1).

The numerical simulations also confirm that the distri-
bution function Qm(t) scales according to Eq. (3). The
scaling function Q(z), defined in Eq. (4), decays expo-
nentially for large argument (µ = 1) and is algebraic
for small argument. The scaling relations combined with
the simulation values give σ = 1.05(5). This is consis-
tent with the linear behavior seen in our simulations for
z � 1. Comparing with Eq. (19), we conclude that sim-
ilar scaling functions underlie the domain number and
size distributions in the q = 2 case.
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Fig. 2. Monte Carlo data for the Ising-Glauber model. The

domain survival probability S(t), the domain density N(t),

and the density of unreacted domains Q1(t) are shown (top

to bottom). The inset plots the local slope −d lnS(t)/d ln t.

Typically, it is stable over a large temporal range, and thus

can be used to find the scaling exponents and to estimate the

error, typically of the order 0.001.

On the other hand, direct numerical integration of
Eq. (20) reveals a number distribution, Qm(t), that scales
according to Eq. (3), and has an exponential tail in agree-
ment with the simulation results. Moreover, the emerg-
ing S(t) falls within 5% of the actual survival probability
over a significant temporal range, t < 103. In summary,
in addition to predicting the correct scaling behavior,
Eq. (20) provides a good approximation for many quan-
titative features of the domain distribution, and in par-
ticular, good estimates for the decay exponents.

MC Eq. (20)
q ψ δ σ ψ δ
2 0.126 1.27 1.05 0.136612 1
3 0.213 0.98 0.67 0.231139 5/6
4 0.267 0.85 0.50 0.287602 3/4
8 0.367 0.665 0.24 0.385019 5/8
50 0.476 0.525 0.03 0.480274 13/25
∞ 1/2 1/2 0 1/2 1/2

Table 1: Domain exponents for the q-state Potts model in

one dimension. Local slopes analysis was applied to the simu-

lation data. The theoretical ψ is from Eq. (27) and δ = 1
2

+ 1
q
.
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IV. CONSERVED KAWASAKI DYNAMICS

We turn now to applying the above methods to the con-
served counterpart, the spin-exchange Kawasaki dynam-
ics [25], which describe spinodal decomposition in binary
alloys and phase separation in binary liquids. Although
some qualitative features are known [39–41], theoretical
understanding of the Ising-Kawasaki model is still far
from complete even in one dimension. In the following
we limit ourselves to the two-phase Ising case.

A. Reduction to Domain Diffusion

We start by formulating the appropriate zero-
temperature limit of the Ising-Kawasaki model. Con-
sider a two-phase system, e.g., the Ising model (spins
up and down) or a binary alloy (atoms of type A
and B). At zero temperature energy raising transi-
tions are forbidden and only two moves are allowed:
the energy-decreasing “coarsening” transitions ABAB →
AABB and the energy-conserving “diffusion” transitions
ABAA → AABA. This dynamics ultimately drives the
system to a frozen configuration consisting of strings of
alternating domains each of length ≥ 2 which could not
evolve further [42]. This “jamming” behavior arises from
the nonergodic nature of the zero-temperature Kawasaki
dynamics and it is a robust one: It is independent of
the relative transition rates [40,43], as well as the spatial
dimension [42,44,45].

Thus, to recover sensible coarsening, one must con-
sider the zero-temperature limit. Let us assume that
temperature is positive; when it is sufficiently low, T � J
where J is the exchange coupling, the correlation length
ξ ∼ eJ/T is very large and therefore the system exhibits
coarsening as long as the mean domain size is small com-
pared with the correlation length. Below, we focus on
this intermediate-time regime where the description is
drastically simplified [39,40]. We assume that the initial
stage has been already completed so that single-spin do-
mains disappeared. Coarsening will occur only when a
spin splits off a domain wall and penetrates a neighbor-
ing domain (say of size L). The splitting process occurs
with a very small rate exp[−4J/T ]. Then, this spin dif-
fuses inside the domain until it is eventually adsorbed by
its boundaries. The corresponding probabilities are well-
known from elementary probability theory [46]. The spin
will be absorbed by the boundary from which it was is-
sued with probability 1−1/L. This spin may also be ab-
sorbed by the opposite boundary resulting in a one lattice
site hop of the entire domain. Thus, the hopping rate is
L−1 exp[−4J/T ]. Rescaling time, t → t exp[−4J/T ], the
spin diffusion will proceed with a huge rate exp[4J/T ]
and it therefore may be treated as instantaneous while
domain hops proceed with a finite rate reciprocal to the
domain size.

Thus, the appropriate zero-temperature limit of the
Ising-Kawasaki model is realized by taking the limits of
infinite “physical” time tphys → ∞, while keeping the
modified time t = tphys exp[−4J/T ] finite. Hence, en-
tire domains perform a random walk with rate inversely
proportional to their lengths (we ignore an anomaly con-
cerning domains of length 2 as it is irrelevant asymptoti-
cally). Heuristically, it may be argued that as diffusion is
the primary coarsening mechanism, the following scaling
for the average domain size, L ∼

√
Dt, holds. However,

since the diffusion coefficient and the domain size are re-
ciprocal, D ∼ L−1, we obtain L ∼ t1/3 in agreement with
the well-known behavior of systems with conserved scalar
order parameter [1].

B. Domain Size Distribution

For simplicity, we consider the case where the two equi-
librium phases are equivalent, as is the case for random
initial conditions. Modifying Eq. (10) to account for do-
main diffusion, and assuming neighboring domains are
uncorrelated, the domain size distribution evolves ac-
cording to

dPn
dt

= L−1(Pn−1 − 2Pn + Pn+1) (28)

+
P1

N2

 ∑
i+j=n

i−1PiPj −N(n−1 + L−1)Pn

 ,
with the domain density N and the inverse average do-
main size L−1 defined via

N =
∞∑
n=1

Pn, L−1 = 〈n−1〉 =
∑
n n
−1Pn∑
n Pn

. (29)

The diffusion term in Eq. (28) accounts for change in n
due to hoping of a neighboring interval. The convolu-
tion term accounts for gain due to domain merger, and
the last two terms represent loss due to domain colli-
sion or domain merger. This rate equation conserves
the total length,

∑
n nPn = 1, and summation over n

shows that the total domain density evolves according to
Ṅ = −2L−1P1.

The length distribution scales according to Eq. (8),
Pn(t) ' t−2νP(nt−ν), with the correct scaling exponent
ν = 1/3. By inserting that scaling form into Eq. (28) we
arrive at an integro-differential equation for P(x) which
is very cumbersome as it involves yet unknown moments
of the distribution. We thus resort to numerical in-
tegration of Eq. (28). The results compare well with
Monte-Carlo simulations of the Ising-Kawasaki model
(see Fig.3). For example the estimate for the asymptotic
prefactor A (defined via N(t) ' At−1/3), falls within
roughly 5% of the actual value: AMC = 0.441 ± 0.001
while AIIA = 0.415± 0.005.
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Fig. 3. Domain density in the Ising-Kawasaki model. The

Monte Carlo simulation data (MC) represents an average over

10 systems of size 105. The IIA was obtained by integrating

Eq. (28) numerically.

The length distribution emerging from the IIA has the
same limiting behavior as in the nonconserved case, i.e.,
it is linear at small n and exponential at large n. While
the former agrees with our simulation results, there is a
disagreement for the latter. Our data is consistent with
a Gaussian tail, i.e., P(x) ∼ exp(−x2), for x� 1.

C. Domain Size-Number Distribution

Given the results in the conserved case, it is natural
to study the domain exponents and to examine the use-
fulness of the IIA approach in the conserved dynamics
case. In analogy with Eq. (20), the master equation for
the domain size-number distribution is written

dPn,m
dt

= L−1(Pn−1,m − 2Pn,m + Pn+1,m) (30)

+
P1

N2

 ∑
i+j=n

∑
k+l=m

i−1Pi,kPj,l −N(n−1 + L−1)Pn,m

 .
Summing the above equations over m, we indeed recover
Eq. (28) for the length distribution.

To determine the exponents, it is again simpler to con-
sider the distributions Rn(t) and Un(t) instead of the
joint distribution Pn,m(t). The density of single parent
domains, Rn(t) ≡ Pn,1(t), evolves according to the linear
rate equation similar to Eq. (21)

dRn
dt

= L−1(Rn+1 +Rn−1 − 2Rn) (31)

−P1

N
(n−1 + L−1)Rn.

We expect that the distribution Rn(t) scales according to
Rn(t) ∼ t−δ−1/3R(nt−1/3). Integrating this equation we

get Q1(t) =
∑
Rn(t) ∼ t−δ with δ ∼= 0.645. On the other

hand, Monte-Carlo simulations of the domain diffusion
process give δ ∼= 0.705 (see Fig. 4).

The domain survival probability can be found by us-
ing the auxiliary function Un(t) =

∑
mmPn,m(t) which

satisfies the analog of Eq. (23)

dUn
dt

= L−1(Un+1 + Un−1 − 2Un) (32)

+
P1

N2

2
∑
i+j=n

i−1PiUj −N(n−1 + L−1)Un

 .
This distribution Un(t) should scale according to Un(t) ∼
t−ψ−1/3U(nt−1/3). The domain survival probability
S(t) =

∑
n Un(t) then decays according to S(t) ∼ t−ψ.
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Fig. 4. Monte Carlo data for the Ising-Kawasaki model from

the same simulation as in Fig. (3). The domain survival prob-

ability S(t), the domain density N(t), and the density of un-

reacted domains Q1(t) are shown (top to bottom).

Again, the agreement with the simulation is remark-
able. Numerical integration data give an estimate of
ψ ∼= 0.147 while Monte-Carlo simulations (see Fig. 4))
give ψ ∼= 0.130. We also verified that the scaling relations
of Eqs. (3) and (4) are satisfied by the IIA as well as the
simulation data. We conclude that in the Kawasaki case
as well, nontrivial exponents characterize domain statis-
tics. Furthermore, the approximate approach reproduces
most qualitative features of the domain size and number
distribution, and provides good estimates for the scaling
exponents.

We now describe how to obtain ψ in the limit where one
of the two phases occupies a vanishing volume fraction.
Denote by LA(t) and LB(t) the average sizes of minority
and majority domains, respectively. They both grow as
t1/3 but remain greatly different throughout the evolu-
tion, LA � LB . The domains diffusion rates, DA ∼ L−1

A

and DB ∼ L−1
B , thus greatly differ as well: DA � DB .
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In principle, two neighboring minority domains can over-
take a separation distance of order LB and coalesce; this
requires the coalescence time tc ∼ L2

B/DA ∼ LAL
2
B .

On the other case, a minority domain can shrink due to
diffusion of neighboring majority domains; this requires
the shrinking time ts ∼ L2

A/DB ∼ L2
ALB . We see that

ts � tc, so we should just take into account the shrinking
of minority domains.

Thus majority domains do not disappear, implying
S(t) = 1 and ψ = 0. For the minority phase we antici-
pate ψ = ν = 1/3, while for the symmetric case of equal
concentrations ψ ∼= 0.130. This indicates that similar to
the nonconserved dynamics case, the domain exponents
vary continuously as the volume fraction is varied.

V. CONCLUSIONS

In summary, we investigated the one-dimensional
Ising model subject to zero temperature Glauber and
Kawasaki dynamics. We introduced the domain size-
number distribution and showed that it obeys scaling
and is characterized by two independent nontrivial decay
exponents. Similar to the persistence exponent, these
exponents are sensitive to the type of the dynamics and
the volume fraction of the (globally or locally) conserved
equilibrium phase. We also introduced an approximation
which is based on terminating the hierarchy of rate equa-
tions describing the domain density. This approximation
is very useful in predicting the qualitative nature of the
domain distribution as well as estimating important pa-
rameters including the scaling exponents. In the proper
T=0 limit of the Ising model with Kawasaki dynamics,
this approximation is especially useful as very little is
known analytically about the domain distribution.

It will be interesting to generalize the domain survival
concept to higher dimensions. At least for the q → ∞
limit of the Potts model, domains are well defined, and
such a generalization is possible. The nonconserved dy-
namics can indeed be studied in this limit, and the do-
main exponents ψ = θ = δ = d/2 (for d ≥ 2) have been
reported [26], consistent with simulations [20] and with
experiments on d = 2 soap froths [47].

Recently, it was pointed out that coarsening mosaics
may be characterized by more than one algebraically
growing length scale, and that morphologies consisting
of domain and super-domains may exist [17]. This, to-
gether with the above results suggest that our current
understanding of such systems is only partial. Domain
statistics indicates that several nontrivial decay laws un-
derlie the evolution of elementary processes such as the
nonequilibrium Ising model. These nontrivial exponents
do not emerge naturally from studies of traditional quan-
tities such as spatiotemporal correlations. It remains a
challenge to find and obtain these underlying “hidden”
exponents from a more systematic method. It is also in-
triguing whether an entire hierarchy or a finite number of

independent decay modes are present in these systems.

This paper is dedicated to Leo Kadanoff on the occa-
sion of his 60th birthday. The research of PLK has been
supported by grants from NSF and ARO.
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27, 175 (1994).
[6] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. Lett.

75, 751 (1995); J. Stat. Phys. 85, 763 (1996).
[7] E. Ben-Naim, L. Frachebourg, and P. L. Krapivsky, Phys.

Rev. E 53, 3078 (1996).
[8] S. N. Majumdar and C. Sire, Phys. Rev. Lett. 77, 1420

(1996).
[9] S. N. Majumdar, A. J. Bray, C. Cornell, and C. Sire,

Phys. Rev. Lett. 77, 3704 (1996).
[10] B. Derrida, Phys. Rev. E 55, 3705 (1997).
[11] B. P. Lee and A. D. Rutenberg, Phys. Rev. Lett. 79, 4842

(1997).
[12] B. Yurke, A. N. Pargellis, S. N. Majumdar, and C. Sire,

Phys. Rev. E 56, 40 (1997).
[13] J. Cardy, J. Phys. A 28, L19 (1995).
[14] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev.

E 51, 3977 (1995).
[15] E. Ben-Naim, Phys. Rev. E 53, 1566 (1996); M. Howard,

J. Phys. A 29, 3437 (1996); C. Monthus, Phys. Rev. E
54, 4844 (1996).

[16] S. N. Majumdar and C. Cornell, cond-mat/9707344.
[17] L. Frachebourg, P. L. Krapivsky, and E. Ben-Naim, Phys.

Rev. Lett. 77, 2125 (1996); Phys. Rev. E 54, 6186 (1996).
[18] L. Frachebourg and P. L. Krapivsky, Phys. Rev. E 55,

252 (1997).
[19] S. N. Marcos-Martin, D. Beysens, J. P. Bouchaud,
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