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We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where
the diffusivity of each particle may be different. The concentration of the species with the smallest
diffusion coefficient has the same time dependence as in homogeneous single-species annihilation,
A + A → 0. However, the concentrations of more mobile species decay as power laws in time, but
with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of
the least mobile species. We determine these exponents both in a mean-field approximation, which
should be valid for spatial dimension d > 2, and in a phenomenological Smoluchowski theory which
is applicable in d < 2. Our theoretical predictions compare well with both Monte Carlo simulations
and with time series expansions.
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I. INTRODUCTION

The kinetics of diffusion-controlled single-species anni-
hilation, A + A → 0, when each particle has the same
diffusion coefficient is now well understood [1]. For spa-
tial dimension d > 2, the kinetics may be accounted for
by the rate equation which predicts that the density de-
cays as t−1 in the long-time limit. For d ≤ 2, various phe-
nomenological approaches predict that the density decays
as t−d/2, but with logarithmic corrections appearing in
d = 2. Accompanying this relatively slow kinetics is a
spatial organization in which the probability of finding
particles at small separations is reduced compared to a
random distribution. In one dimension, exact solutions,
either based on an occupation number formalism [2], or
by mapping the reaction onto the kinetic Ising-Glauber
model [3], provide definitive results about this spatial or-
ganization and the reaction kinetics.

Our goal in this paper is to describe the kinetics of het-
erogeneous single-species annihilation, which is defined

by the reaction scheme Ai + Ak
Ki,j−→ 0. Here Ai denotes

the ith species and the reaction rate matrix Ki,j is a
function of the diffusivities of the two reacting species.
Although we refer to different species in the context of
their diffusivity, the reaction itself is single-species anni-
hilation with distinct rates for different reaction channels.
We will consider reactant diffusivities which are drawn
from a probability distribution. Such a situation arises
naturally when the reactants have different masses. As
we shall show, the kinetics of the heterogeneous system is
considerably richer than that of the homogeneous analog.
Similar behavior was also encountered in heterogeneous
single-species annihilation with ballistic particle motion
[4], where the kinetics depends in an essential way on the
form of the initial distribution of velocities. The present
investigation is a natural counterpart of this earlier work
for diffusive single-species annihilation.

When the number of species is finite (i. e., the density
distribution, P (D, t), contains a finite number of discrete
peaks), the rate equations predicts that the least mobile
species (with diffusivity Dmin) decays as t−1, as in homo-

geneous annihilation. However, the more mobile species
each decay at a faster power-law rate with an associated
exponent that depends on the diffusivity ratio between
the more mobile and the slowest species. When P (D, t) is
continuous but with Dmin > 0, the rate equations again
show that the least mobile species predominates in the
long time limit, and that the decay of the more mobile
species is described by non-universal power-law behav-
ior. However, the detailed form of P (D, t = 0) near Dmin

contributes to a logarithmic prefactor in the decay law.
If Dmin = 0, the kinetics strongly depends on the initial
conditions. For an initial distribution of diffusivities with
a power law tail, P (D, 0) ∼ Dµ, as D → 0, the concentra-
tion and the average diffusion coefficient decay as c ∼ t−α
and 〈D〉 ∼ t−β , respectively, with α = (2 + 2µ)/(3 + 2µ)
and β = 1− α = 1/(3 + 2µ). All of these predictions are
expected to apply for d > 2.

For d ≤ 2, we apply the Smoluchowski theory to ac-
count for the reaction kinetics. We first test this phe-
nomenological approach on the “impurity” problem, in
which there is a small concentration of particles with one
diffusion coefficient in a homogeneous background of par-
ticles with a different diffusivity. The Smoluchowski the-
ory predicts that the impurity species decays as a non-
universal power-law in time. These predictions are in
good agreement with numerical results that arise from
time-series expansions and Monte Carlo simulations in
one dimension. Connections are also made with the
exactly-soluble problem of the decay of impurities in the
related single-species coalescence process. We then gen-
eralize the Smoluchowski approach to both continuous
distributions of diffusivities and general spatial dimen-
sion d < 2.

The rest of this paper is organized as follows. In Sec-
tion 2, we derive basic results from the rate equations
for both discrete and continuous distributions of diffu-
sivities. In Section 3, we investigate the reaction kinetics
for d ≤ 2 by the Smoluchowski approach. This leads
to phenomenological rate equations with time-dependent
reaction rates. The predictions of this approach are then
outlined. In Section 4, we present time series expansion
and Monte Carlo simulation results in one dimension to
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support our theoretical findings. Finally, we give a brief
discussion in Section 5.

II. RATE EQUATIONS APPROACH

Consider first the mean-field rate equations for the case
of two distinct species, A1 and A2, with respective diffu-
sivities D1 and D2. The two species interact according
to the bimolecular processes A1 +A1 → 0, A1 +A2 → 0,
and A2 +A2 → 0, with respective rates K11, K12 = K21,
and K22. The corresponding rate equations are

dc1
dt

= −K11c
2
1 −K12c1c2, (1a)

dc2
dt

= −K22c
2
2 −K12c1c2, (1b)

where ci denotes the concentration of the ith species.
Smoluchowski suggested a simple way to relate the re-

action rate Kij to the diffusion coefficients Di and Dj ,
and radii Ri and Rj of the reactants [5]. This deriva-
tion is based on considering the low-density limit. In the
rest frame of a particle of species i, it may be consid-
ered as a spherical stationary trap of radius R which is
surrounded by cloud of j particles which are captured
upon contact with the trap. The reaction rate is identi-
fied as the flux of particles of type j to the trap under
the boundary conditions of absorption at the surface of
the ith particle and a fixed concentration as r → ∞.
Upon solving the diffusion equation in three dimensions
under these conditions, one straightforwardly finds that
this flux equals K = 4πDR in the long-time limit (see,
e. g ., [6]). If both species perform independent Brownian
motions with respective diffusion coefficients Di and Dj ,
then the appropriate generalization of the reaction rate
is Kij = 4π(Di+Dj)(Ri+Rj). Assuming, for simplicity,
that R1 = R2 = R and absorbing the numerical factor
8πR into the overall time scale, we may re-write Eq. (1)
as,

dc1
dt

= −2D1c
2
1 − (D1 +D2)c1c2, (2a)

dc2
dt

= −2D2c
2
2 − (D1 +D2)c1c2. (2b)

To solve these equations, consider first the time depen-
dence of the concentration ratio ψ = c2/c1. By defining
the auxiliary variable dy = c1dt, the rate equation for
the concentration ratio is

dψ

dy
= −(D2 −D1)(ψ + ψ2). (3)

Because ψ is a strictly decreasing function of y for D2 >
D1, the asymptotic behavior may be estimated by ignor-
ing the quadratic term in Eq. (3). The corresponding
solution is simply

ψ(y) ∼ e−(D2−D1)
∫ t

0
dt′ c1(t′)

. (4)

Two possibilities for the behavior of y =
∫
dt′ c1(t′) as

t → ∞ can occur. If y reaches a finite limit as t → ∞,
then c2(t) ∝ c1(t); further, c1(t) and c2(t) must decay
as t−1. It is immediate to show that these two condi-
tions are incompatible with the initial rate equations.
On the other hand, if y →∞ as t→∞, then c2/c1 → 0,
asymptotically. Thus in Eq. (2a), c1c2 may be neglected
compared to c21 and the resulting approximation gives
c1(t) ' (2D1t)−1. Using this in the equation for ψ, one
ultimately finds

c2 ' C(2D1t)−(1+δ), C =
c2(0)
c1(0)

[
1 + c2(0)/c1(0)

c1(0)

]δ
(5)

for t→∞, with δ = (D2−D1)/2D1. While the less mo-
bile species decays as t−1 in the long-time limit, as in ho-
mogeneous single-species annihilation, the more mobile
species decays non-universally as t−α with α = 1 + δ =
(D1 +D2)/2D1.

It is worth noting that when δ is small, the asymp-
totic behavior given in Eq. (5) is reached only at very
long times. To demonstrate this, consider, e. g ., equal
initial concentrations of the two species. Then solv-
ing Eq. (3) with ψ(0) = 1 and 0 < δ � 1 gives
ψ(y) = c2/c1 ' 1 + δ ln[c1(y)/c1(0)]. Substituting this
into Eqs. (2), one finds

c1,2(t) ' 1
4D1t

[
1± δ

2
ln(D1t)

]
, (6)

for 1 � t � e2/δ. Consequently, the crossover time be-
tween the intermediate asymptotics, Eq. (6), and the fi-
nal asymptotics, Eq. (5), diverges as e2/δ for δ → 0.

For a finite number of species, the kinetics is similar
to that of the two-species case. Namely the concentra-
tion of the least mobile species decays as t−1, while the
more mobile species exhibit non-universal power-law de-
cays with associated exponents (D1 + Dk)/2D1, where
Dk is the diffusion coefficient of the kth species.

When the diffusivities of the species are drawn from
a continuous distribution, the rate equation for P (D, t),
the concentration of species with diffusivity D, becomes
the integro-differential equation

∂P (D, t)
∂t

= −P (D, t)

∞∫
0

dD′ (D +D′)P (D′, t)

= −P (D, t)
[
DP0(t) + P1(t)

]
. (7)

Here Pk(t) denotes the kth moment of the diffusivity dis-
tribution P (D, t),
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Pk(t) =

∞∫
0

dDDk P (D, t). (8)

Note that the zeroth moment of the diffusivity distribu-
tion is just the particle density, c(t) = P0(t), while the
average diffusion coefficient is expressed in terms of the
zeroth and first moment by 〈D〉 = P1(t)/P0(t).

Equations similar to Eq. (7) describe the kinetics of
several irreversible processes, such as diffusion-reaction
aggregation [7], ballistic annihilation [4], and ballistic ag-
gregation [8]. For the aggregation problem, a reaction
rate of the form (D+D′) is known as the “sum” kernel,
for which the rate equations are exactly soluble [7]. In
heterogeneous annihilation, the rate equations are also
soluble by elementary analysis. A formal, but implicit
solution to Eq. (7) is

P (D, t) = P (D, 0) exp

[
−D

t∫
0

dt′ P0(t′)−
t∫

0

dt′ P1(t′)

]
.

(9)

Further, by integrating Eq. (7) over D, the following dif-
ferential equation which relates the moments P0(t) and
P1(t) is obtained

dP0

dt
= −2P0P1. (10)

With the initial condition P0(t = 0) = 1, which fixes the
scale of the initial distribution, the solution to Eq. (10)
is

P0(t) = exp

[
−2

t∫
0

dt′ P1(t′)

]
. (11)

Combining Eqs. (9) and (11) leads to a simplification in
which only the unknown zeroth moment, or particle den-
sity c(t) = P0(t), appears in the formal solution

P (D, t) = P (D, 0)
√
c(t) exp

[
−D

t∫
0

dt′ c(t′)

]
. (12)

A scaling analysis of this solution indicates that two
types of behavior can occur: one for initial diffusivity dis-
tributions with a finite non-zero lower cutoff, Dmin > 0,
and the other for situations where Dmin = 0. For
both cases, we consider only those initial distributions
which are homogeneous near Dmin, namely, P (D, 0) ∼
(D−Dmin)µ as D → Dmin with µ > −1 for normalizabil-
ity. This restriction leads to mathematical tractability as
well as being a natural illustrative choice.

For Dmin = 0, the average diffusion coefficient clearly
decay to zero, and under mild restrictions, the particle
concentration also decays to zero. For an initial distri-
bution of the form P (D, 0) ∼ Dµ as D → 0, it is natural

to assume power-law decays in the average concentra-
tion and average diffusivity: c ∼ t−α and 〈D〉 ∼ t−β for
t→∞. Correspondingly, the time-dependent diffusivity
distribution is expected to approach the scaling form,

P (D, t) ' tβ−αΦ(Dtβ). (13)

Upon substituting this scaling ansatz into Eq. (12), one
finds two relations which then determine the exponents
α and β. First, for the argument of the exponential in
Eq. (12) to be dimensionless, if follows that α + β = 1.
Similarly, for the prefactor to be a function only of the
scaling variable x = Dtβ , the relation α = 2β(1+µ) must
hold. These two conditions determine the dependence of
the fundamental exponents on µ ,

α =
2 + 2µ
3 + 2µ

, β =
1

3 + 2µ
, (14)

while the scaling function is

Φ(x) = xµe−x. (15)

Let us now justify the existence of the scaling ansatz by
constructing explicit solutions to Eq. (12). Consider the
initial distribution P (D, 0) = Dµe−D/Γ(µ+1), where the
numerical factor normalizes the initial density to unity,
for convenience. Substituting this initial distribution into
Eq.(12) and then integrating the resulting equation over
D, one finds the simple differential equation

du

dt
= u−2µ−2, (16)

for the auxiliary function u(t) = 1 +
t∫

0

dt′c(t′). With the

initial condition, u(t = 0) = 1, Eq. (16) is readily solved,
from which the concentration is

c(t) =
du

dt
=
[
1 + (2µ+ 3)t

]− 2+2µ
3+2µ

. (17)

Substituting this in Eq. (12), we obtain for the diffusivity
distribution

P (D, t) =
Dµ

Γ(µ+ 1)

[
1 + (2µ+ 3)t

]− 1+µ
3+2µ

exp

(
−D

[
1 + (2µ+ 3)t

] 1
3+2µ

)
. (18)

As expected, this solution approaches the scaling form of
Eq. (13) asymptotically, with the exponents and scaling
function given by Eqs. (14) and (15), respectively.

Consider now initial distributions with Dmin > 0. For
concreteness, we examine the case where

P (D, 0) =
(D −Dmin)µ

Γ(µ+ 1)
e−(D−Dmin), for D > Dmin.

(19)
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After substitution of this initial distribution in Eq. (12),
the analog of Eq. (16) is

du

dt
= u−2µ−2e−2Dmin(u−1). (20)

Solving this equation in the limit of t → ∞, the asymp-
totic form for the density is

c(t) =
1

2Dmint

[
1− 2 + 2µ

ln(2Dmint)
+ . . .

]
, (21)

while the full distribution of diffusivities has the form

P (D, t)
P (D, 0)

' (2Dmint)
−D+Dmin

2Dmin

[
ln(2Dmint)

2Dmin

] (µ+1)D
Dmin

. (22)

Thus the concentration of the species with diffusivity D
decays algebraically with a characteristic non-universal
exponent (D+Dmin)/2Dmin, but also with a logarithmic
prefactor.

This distribution can be expressed in a scaling form
by identifying the appropriate scaling variable. For
this identification, it is helpful to consider the aver-
age diffusion coefficient which has the time dependence
〈D〉 −Dmin ∼ Dmin/ ln(2Dmint). This suggests that the
scaling variable is

x =
ln(2Dmint)

2Dmin
(D −Dmin). (23)

With this identification and in the scaling limit t → ∞
and D → Dmin but with x finite, the asymptotic distri-
bution Eq. (22) can be written in the form

P (D, t) ' 1
Γ(µ+ 1)

(2Dmint)−1 ln(2Dmint)
2Dmin

Φ(x), (24)

with scaling function Φ(x) again equal to xµe−x. Thus
for both Dmin = 0 and Dmin > 0, the diffusivity distri-
bution approaches the scaling form, given by Eq. (13)
and Eq. (24), respectively, with characteristic width
t−1/(2+2µ) in the former case and 1/ ln(t) in the latter.

III. HETEROGENEOUS ANNIHILATION IN
LOW DIMENSIONS

In the diffusion-controlled limit, fluctuations effects
govern the long-time kinetics of heterogeneous annihila-
tion for d ≤ 2, in close analogy with homogeneous single-
species annihilation [1]. A method which is ideally suited
to account for the kinetics in this regime is the Smolu-
chowski theory [5]. We adapt this approach to treat the
kinetics of heterogeneous annihilation when d ≤ 2. To
describe the method, consider first the simple and illus-
trative example of a two-species system in one dimension
in which a background of identical particles with diffu-
sivity D and density c contains relatively rare impurities
of diffusivity DI at concentration cI � c.

In the Smoluchowski approach, we first compute parti-
cle flux to a “reference” absorbing particle due to the rest
of the particles which comprise the uniform background.
The requisite solution to the background concentration is
c(x, t) = c∞erf(x/

√
4Dt), from which the particle flux at

the reference particle is φ = c∞
√
D/πt. This is identified

as the effective microscopic reaction rate, k̃.
For the two-component system of background and im-

purity, there are distinct rates associated with reactions
between background particles and between the back-
ground and impurities. In the limit of low impurity den-
sity, we neglect the influence of background-impurity re-
actions on the background density, as well as reactions
among the impurities. Under these restrictions, the rate
equations become

ċ ∼= −2k̃BBc2 ∼ −2
√

2D
πt c

2,

ċI ∼= −2k̃BIc cI ∼ −2
√

D+DI
πt c cI , (25)

where k̃BB and k̃BI are the effective rates for background-
background and background-impurity reactions. Note
that the numerator inside the square root involves the
relative diffusivities of the two reacting species. From the
first equation, the background concentration vanishes as

c(t) =
√
π/32Dt. (26a)

This deviates from the exact result [2, 3] for single-species
annihilation by the numerical factor c(t)/cexact(t) = π/2.
The crucial feature of the Smoluchowski approach is that
by the form of the rate equation for cI , the coefficient of
c(t) determines the exponent of the decay of the impurity
species. We thereby find

cI(t) ∼ t−
√

(1+ε)/8, (26b)

with ε = DI/D.
As we discuss in the next section, this prediction agrees

rather well with numerical results. Intuition for this
non-universal behavior can be gained by considering the
impurity problem in the case where particles coalesce,
rather than annihilate. This situation is considerably
simpler than that of annihilation, as the enclosing “cage”,
defined by the nearest neighbors of the impurity, evolves
only by diffusion. Thus the many-body problem may
be reduced to the three-body problem of the impurity
and its two nearest-neighbors. By exploiting simple ge-
ometric equivalences, this problem can be transformed
to the survival of a single random walker which dif-
fuses within an absorbing two-dimensional wedge whose
opening angle depends on D/DI . In this latter prob-
lem, the survival probability decays as t−α, with α =
π/(2 cos−1(ε/(1 + ε))). Here θ = cos−1 [ε/(1 + ε)] is the
opening angle of the wedge [9].

Such a rigorous mapping does not exist for the im-
purity problem when particles annihilate. This is an
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intrinsically a many-body process, since the cage sur-
rounding a given particle can involve distant neighbors.
Nevertheless, the Smoluchowski approach is essentially
identical for both the annihilation and the coalescence
reactions, except for overall factors of 2 in the rate equa-
tions. Thus the equivalent of Eq. (26b) for aggregation
is cI(t) ∼ t−

√
(1+ε)/2. While this exponent value devi-

ates considerably from the exact result give above, the ε
dependence of the exponent is qualitatively correct.

The mechanism underlying the non-universal decay of
the impurity is the equivalence to the survival probability
of a diffusing particle inside an absorbing interval whose
length L grows as tβ . Since the probability density of the
particle spreads over a spatial extent of the order of

√
Dt,

the survival probability decays exponentially for β < 1/2.
However, in the marginal case β = 1/2, i. e., L ∼ A

√
Dt,

the survival probability S(t) decays algebraically in time,
S(t) ∼ t−α(A), but with the decay exponent dependent
on the dimensionless parameter A. In the reaction pro-
cess, the size of the cage which surrounds the impurity
also grows as t1/2 for both annihilation and coalescence,
since the overall density is decaying as t−1/2. However,
the microscopic differences in the two reactions are im-
portant because they determine the amplitude A in the
growth of the cage. As shown above, the phenomenolog-
ical Smoluchowski treats annihilation and coalescence on
the same footing and thus provides a convenient descrip-
tion of the non-universal behavior.

We have also explored the case of small difference be-
tween diffusion coefficients, 0 < δ � 1. We find that
intermediate asymptotic behavior initially occurs before
the final asymptotic of Eq. (26) sets in. In particular, for
initially equal concentrations

c1,2 '
√

π

128D1t

[
1± δ

8
ln(D1t)

]
, (27)

for 1� t� e8/δ. The crossover time between intermedi-
ate asymptotics Eq. (27) and final asymptotics Eq. (26)
diverges as e8/δ for δ → 0.

Let us now consider heterogeneous annihilation in one
dimension with a continuous distribution of particle dif-
fusivities. Since the Smoluchowski approach in one-
dimension yields a flux that varies as ∝

√
D/t, one finds

a rate equation of the form of Eq. (7) with the kernel
K(D,D′) ∝

√
(D +D′)/t. The correspondence can be

made even closer by introducing the modified time vari-
able T = 4

√
t/π which eliminates the explicit time de-

pendence. The rate equation for P (D,T ) becomes

∂P (D,T )
∂T

= −P (D,T )

∞∫
0

dD′
√
D +D′ P (D′, T ). (28)

We are unable to find either a scaling solution to this
equation or the exponents. However, presumably exact
values of the exponents can be obtained by consideration
of a closely related and more tractable model. We replace

the kernel K(D,D′) =
√
D +D′ by one with the same

homogeneity degree, K(D,D′) =
√
D +

√
D′. The two

kernels obey the bounds
√
D+
√
D′√

2
≤
√
D +D′ ≤

√
D +

√
D′. This suggests that the asymptotic behavior from

the initial kernel should be identical to that predicted by
the simpler sum-root kernel K(D,D′) =

√
D +

√
D′.

With this modified kernel, the rate equation becomes

∂P (D,T )
∂T

= −P (D,T ) [
√
DP0(T ) + P1/2(T )], (29)

with P1/2(T ) =
∞∫
0

dD
√
DP (D,T ). Repeating the steps

employed for the mean-field treatment, the formal exact
solution to Eq. (29) is

P (D,T ) = P (D, 0)
√
c(T ) exp

[
−D

T∫
0

dT ′ c(T ′)

]
. (30)

Again we substitute the scaling ansatz P (D, t) ∼
tβ−αΦ(Dtβ) into the above rate equation with the ini-
tial condition P (D, 0) ∼ Dµ as D → 0. By expressing
all factors in a scaling form we find the two exponent
relations 2α+ β = 1 and α = 2β(1 + µ) and hence,

α =
2 + 2µ
5 + 4µ

, β =
1

5 + 4µ
. (31)

Here the exponents α and β refer to the time dependence
of c(t) and 〈D〉 in terms of the physical time variable t.

These results can be straightforwardly generalized to
arbitrary d < 2 within the Smoluchowski approach. A
simple calculation shows that the flux to a trap be-
haves as Dd/2t−1+d/2 for d < 2. In the rate equa-
tions, this suggests the introduction of the modified time
T ∼ (Dt)d/2. One thereby obtains an equation similar to
Eq. (28), but with the kernel K(D,D′) = (D + D′)d/2.
Next we replace this kernel by more tractable form,
K(D,D′) = Dd/2 +D′d/2. Applying a scaling analysis to
the rate equations with this kernel then gives the expo-
nents α = 2d(1+µ)/[d+4(1+µ)] and β = d/[d+4(1+µ)].

In two dimensions, the Smoluchowski approach shows
that the reaction kernel is K(D,D′) = 4π(D +
D′)/ ln(Dt). In this sense, two dimensions is the marginal
case which demarcates the regime where the reaction rate
is time independent (for d > 2) from the regime where
the reaction rate varies as a power law in time (d < 2).
The corresponding rate equation for P (D, t) in d = 2 is

∂P (D, t)
∂t

= −P (D, t)

∞∫
0

dD′
4π(D +D′)

ln[(D +D′)t]
P (D′, t). (32)

We analyze this equation in the same spirit as that em-
ployed for d 6= 2. First, we approximate the slowly vary-
ing logarithmic factor by ln[(D + D′)t] ' ln[〈D〉t] '
α ln(t) and then introduce the auxiliary time variable
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T → 4πt/α ln(t), so that Eq. (32) becomes identical in
form to the mean-field rate equation, Eq. (7). Thus re-
placing t by T , the results of the preceding section apply
to the present situation. In particular, at asymptotically
large times P (D, t) approaches the scaling form

P (D, t) ' [t/ ln(t)]β−αΦ(D[t/ ln(t)]β), (33)

with exponents and the scaling function given by
Eqs. (14) and (15).

IV. NUMERICAL RESULTS

Consider the specific and illustrative example of a two-
component system consisting of an impurity particle with
diffusivity DI within a background of identical particles
with diffusivity D. We first describe the results of a
time series analysis for the survival probability of a static
impurity. Then we discuss complementary Monte Carlo
simulations for both the time dependence of the survival
probability and the eventual survival probability in a fi-
nite system. Both techniques yield estimates for the de-
cay exponent of the impurity that are in good agreement
with the Smoluchowski theory predictions.

The time series expansion is a general technique for
evaluating numerically the initial terms in the exact
power-series expansion in time for various observables
that characterize reactive systems [10]. The technique
involves the successive application of a suitably-defined
evolution operator on the initial state of the system. Af-
ter each application of the evolution operator, configu-
rations for which the impurity particle has not reacted
contribute to the survival probability. To compute the
first n coefficients of the time power series, it is sufficient
to consider the evolution of an n-site ring. The primary
limitation of the technique is computer memory, since
the number of configurations grows exponentially with
the order of the expansion. For the case of the static im-
purity, we obtained the expansion to order 21, as shown
in Table 1. We then apply the Padé analysis method
suggested in Ref. [11] to estimate the asymptotic proper-
ties of the survival probability. In Figure 1, the diagonal
Padé approximants for the survival probability, S[n,n](t)
are plotted for n = 8, 9, and 10. These approximants are
essentially identical for t <∼ 6 and we conclude that they
accurately describe the true survival probability within
this time range. These Padé approximants are then fit-
ted to the power-law form S(t) ∼ t−α using the fitting
procedure also suggested in [11]. We thereby estimate
the exponent value α = 0.38± 0.01 (Table 2).

Monte Carlo simulations were also performed for the
impurity problem in one dimension. A typical measure-
ment involved 10 configurations of a periodic chain of
5× 105 sites with initial concentrations cI(0) = 0.01 and
c(0) = 0.99. The data for the time dependence of both
cI(t) and c(t) are quite straight on a double logarith-
mic plot and exponent estimates may be made based on

the local slopes of nearby data points. From the slopes
of first-neighbor, second-neighbor, and third-neighbor
pairs, we estimate that the background species decays as
t−αB , where αB = 0.50 ± 0.01. Here the error bar indi-
cates the magnitude of the fluctuations in the local slopes
in the time regime where the data is most linear (between
20 <∼ t <∼ 10, 000). Since αB = 1/2, this analysis provides
a useful confidence test. For the impurity species, the
same analysis method suggests α = 0.37± 0.01 (Fig. 2).

A complementary approach is based on a finite size
scaling analysis for the eventual survival probability of
an impurity, S(L) = limt→∞ S(L, t), when starting with
a single impurity and the rest of the sites occupied by
background particles on finite ring with an odd number
of sites, L. We postulate that S(L) ∼ L−γ (clearly γ = 1
for DI = D), while for short times, the survival proba-
bility must be independent of the size of the system, so
that S(L, t) ∼ t−α. Since the two basic length scales are√
Dt and L, we assume that the survival probability has

the scaling form S(L, t) ∼ t−αf(
√
Dt/L). The scaling

function f must have the limiting behaviors f(x) ∼ 1 for
x→ 0 and f(x) ∼ x2α for x→∞ to account for the two
asymptotic limits. These conditions imply that γ = 2α.
An advantage of the measurement of the eventual sur-
vival probability is that it typically gives more accurate
exponent estimates compared to the time-dependent ob-
servations.

We have performed Monte Carlo simulations of finite
single impurity systems until the impurity disappears or
a single impurity remains to measure the exponent γ di-
rectly. In Figure 3, we present the average survival prob-
ability for 107 realizations, for systems of size 2n + 1,
with n = 1, . . . , 8. The data suggests the decay expo-
nent of γ = 0.75 ± 0.01, consistent with the series and
Monte Carlo estimates of α = 0.38± 0.01. Table 2 com-
pares the decay exponents found for the other values of
ε = DI/D to the corresponding exponent given by the
Smoluchowski approach. The Smoluchowski approxima-
tion yield a remarkably good description of the asymp-
totic behavior of the impurity decay in the annihilation
reaction.

V. DISCUSSION

We have shown that there is non-universal kinetic be-
havior in diffusion-controlled heterogeneous single-species
annihilation. Typically, the concentration of the species
with the smallest diffusion coefficient has the same time
dependence as in homogeneous single-species annihila-
tion, A + A → 0. However, the concentrations of the
more mobile species decay as power laws in time, with
non-universal exponents that depend on the ratios of the
corresponding diffusivities to that of the least mobile
species. These exponents were determined by a mean-
field approximation, which should be valid for d > 2,
and by a phenomenological Smoluchowski theory which
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should apply for d < 2.
Our numerical studies focused on the limiting case

where there is an infinitesimal concentration of one
species in a homogeneous background of another species.
For this impurity problem, the behavior of the cage which
surrounds the impurity is the crucial ingredient which de-
termines the kinetics of the impurity. For the coalescence
reaction, A+A→ A, the cage consists of the two nearest-
neighbors of the impurity. These enclosing particles con-
tinue to undergo diffusion even if there are reactions with
other more distant particles in the system. This allows
one to reduce the many-body system to a three-particle
system which can then be solved exactly in one dimen-
sion. In the annihilation reaction, a nearest-neighbor of
the impurity can disappear because of a reaction with
the next-nearest background particle. This can cause a
relatively large rearrangement in which the cage expands
to the next background particle.

The Smoluchowski approach turns out to be ideally
suited for providing a simple description of the non-
universal behavior of the impurity survival probability.
Although this approach involves an uncontrolled approx-
imation, the Smoluchowski method provides a simple way
to quantify the enclosing cage of the impurity for both
the coalescence and annihilation reactions. This is a re-
markable success in view of the relatively complex cage
dynamics in the annihilation reaction. From the informa-
tion about the size of the cage, the decay exponent follows
directly. In particular, for the annihilation reaction, the
exponent predictions compare well with numerical esti-
mates.
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FIGURE CAPTIONS

Figure 1. Time dependence of the diagonal Padé ap-
proximants S[n,n](t) (n = 8, 9, 10) based on the time se-
ries for the survival probability in the case of a static
impurity. A line of slope −0.38 is plotted for reference.

Figure 2. Monte Carlo simulation results for the sur-
vival probability of impurity (squares) and background
particles (circles) based on 10 configurations of a one-
dimensional chain of 500,000 sites. The initial impurity
and background concentrations are 0.01 and 0.99, respec-
tively.

Figure 3. The eventual survival probability S(L) (cir-
cles) of a single static impurity on a one-dimensional ring
of L sites in which the rest of the ring is initially filled
with diffusing particles. The data shown is based on 107

realizations. A line of slope −0.75 is shown for reference.

TABLE CAPTIONS

Table 1 The first 21 coefficients in the time series for
the survival probability of a static impurity, defined by
S(t) =

∑
n cnt

n.
Table 2 Comparison of the numerical estimates for

the exponent γ that characterizes the L dependence of
the eventual survival probability with the corresponding
predictions from the Smoluchowski theory. Estimates are
based on averaging over 106 realizations.
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