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We report systematic measurements of the density of a vibrated granular material as a function of
time. Monodisperse spherical beads were confined to a cylindrical container and shaken vertically.
Under vibrations, the density of the pile slowly reaches a final steady-state value about which
the density fluctuates. We have investigated the frequency dependence and amplitude of these
fluctuations as a function of vibration intensity Γ. The spectrum of density fluctuations around the
steady state value provides a probe of the internal relaxation dynamics of the system and a link
to recent thermodynamic theories for the settling of granular material. In particular, we propose
a method to evaluate the compactivity of a powder, first put forth by Edwards and co-workers,
that is the analog to temperature for a quasistatic powder. We also propose a stochastic model
based on free volume considerations that captures the essential mechanism underlying the slow
relaxation. We compare our experimental results with simulations of a one-dimensional model for
random adsorption and desorption.
PACS: 81.05.Rm, 05.40.1j, 46.10.1z, 81.20.Ev

I. INTRODUCTION

One of the salient features of noncohesive granular ma-
terials is that they can be packed over a range of densities
and still retain their resistance to shear. For example, a
stable conglomeration of monodisperse spheres can exist
with a packing fraction r ranging from ρ ≈ 0.55 (the ran-
dom loose packed limit) to ρ ≈ 0.64 (the random close
packed limit) and even to ρ ≈ 0.74 (the crystalline state).
Because thermal energies, kBT , are insignificant when
compared to the energy it takes to rearrange a single
particle, each metastable configuration will persist indef-
initely until an external vibration comes along to knock
it into another state. Thus, no thermal averaging takes
place to equilibrate the system. The density of the mate-
rial is determined both by its initial preparation and by
the manner in which it was handled or processed, since
such activities normally introduce some vibrations into
the material. The phase space for the granular medium
is explored not by fluctuations induced by ordinary tem-
perature but by fluctuations induced by external noise
sources, such as vibrations. It is the goal of this paper to
provide an experimental foundation for the use of such
fluctuations as a probe of the dynamics as well as the mi-
crostructure of granular media in the quasistatic, densely
packed limit.

Granular compaction involves the evolution from an
initial low-density packing state to one with higher final
density and provides a model system for nonthermal re-
laxation in a disordered medium. In a previous study
[1], we focused on the approach to a final steady-state
density as vibrations were applied to the system. In par-
ticular, we studied the density of monodisperse spherical
particles in a tall cylindrical tube as a series of exter-
nal excitations, consisting of discrete, vertical shakes or
“taps, were applied to the container. Such data indicate
that the compaction process is exceedingly slow: the den-
sity approaches its final steady-state value approximately
logarithmically in the number of taps. A typical exam-

ple of such behavior, in Fig. 1, shows that in excess of
104 taps may be required before the density has relaxed
to its steady-state value. However, if one vibrates for a
long enough time a steady-state density, depending on
the intensity of the taps, will be attained. Even after the
density reaches the steady-state value, one can discern
fluctuations in the density about that value: after each
“tap, the density will be slightly higher or lower than it
was before. These fluctuations are reminiscent of ther-
mal fluctuations about an equilibrium state, yet such a
connection so far has not been investigated experimen-
tally.

In statistical mechanics the study of fluctuations is of
great physical interest. The fluctuation-dissipation the-
orem relates the dissipative response of a system to an
external perturbation with the microscopic dynamics of
the system in a state of equilibrium. Energy fluctuations
in thermal systems can be used to investigate the set of
distinct, microscopic states that are accessible to a sys-
tem maintained at a fixed temperature. Likewise, a study
of density fluctuations in granular media may provide a
framework for understanding the physical phenomenon
of compaction, i.e., how a vibrated powder, that is not
in a steady state, finally approaches a steady state.

In a granular system, density fluctuations from the
steady state represent the different volume configurations
accessible to particles subject to an external vibration. It
is desirable to develop an analogy between the role that
vibrations play in nonthermal systems, such as granular
media, and the role of temperature in thermal systems.
Theoretically, this issue was addressed by Edwards and
co-workers [2-4] who introduced a statistical mechanics
for powders. The idea is based on the assertion that an
analogy can be drawn between the energy of a thermal
system and the volume V occupied by a powder. The
entropy S of a powder is defined in the usual sense, by
the logarithm of the number of available configurations.
Edwards and co-workers then put forth the concept of an
effective temperature for a powder, called the compactiv-
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ity X, which is defined as X ≡ ∂V/∂S. The significance
of this effective temperature is that it allows for the char-
acterization of a static granular system. This is distinct
from the case of rapid granular flows where a “granu-
lar temperature given by the mean-square value of the
fluctuating component of the particle velocities can be
written down [5-7]. The compactivity is then a measure
of “fluffiness in the powder: when X = 0, the powder is
in its most compact configuration, whereas for X = ∞
the powder is the least dense.

Recently, another approach [8-10] that describes the
static packing of powders has adapted a statistical model
that contains geometric frustration as an essential ingre-
dient. For granular materials, frustration arises in the
form of hard-core repulsive constraints and the interlock-
ing of grains of different shapes, which prevents local re-
arrangements. Both the static and dynamic (in the pres-
ence of vibration and gravity) properties of this model
exhibit complex behavior with features that are common
to granular packing, such as the logarithmic relaxation
of density under tapping [1].

In this paper, we make contact with these ideas
through a detailed study of the process of granular com-
paction. In particular, we propose a method for evalu-
ating the compactivity of a vibrated powder through a
definition of a “granular specific heat and measurements
of density fluctuations observed in the reversible regime
of steady-state behavior. We also elaborate on a the-
oretical model [11,12], based on the idea that the rate
of increase in volume density is exponentially reduced
by the free volume, which captures many of the signifi-
cant features of our experiments. A model addressing the
compaction of binary mixtures consisting of grains with
very different sizes was recently proposed by de Gennes
[13]. That model is similar to ours in that it incorporates
free volume constraints and also exhibits a similar inverse
logarithmic dependence for the density relaxation.

In the next section we will describe the experimental
de-tails of the system, review how to obtain reproducible
and reversible densities, and present our results for the
density fluctuations. In Sec. III we discuss several mod-
els in relation to our experimental results and motivate
the relevance of free volume constraints for granular com-
paction. In Sec. IV, we present the theoretical model and
the results of related simulations of compaction. Finally,
in the last section we discuss the central result of this
paper, namely, how our data can be related to thermo-
dynamic approaches for understanding granular media.

II. EXPERIMENTAL RESULTS

Experimental method

The details of the experimental apparatus and
measurement technique were published elsewhere [1].
Monodisperse, spherical soda-lime glass beads (of 2 mm

diameter) were confined to a 1.88 cm diameter Pyrex
tube measuring 1 m in height. The tube was subjected
to discrete vertical shakes or taps! each consisting of one
complete cycle of a 30 Hz sine wave. The vibration in-
tensity was parametrized by Γ, which is the ratio of the
peak acceleration A that occurs during a single tap to the
gravitational acceleration g = 9.8 m/s2: Γ = A/g. The
beads were baked prior to loading in the tube and pre-
cautions were taken to minimize complications resulting
from electrostatic charging, convection, and external hu-
midity fluctuations. The column of beads was prepared
in a low density initial state by flowing high pressure, dry
nitrogen gas from the bottom to the top of the tube. The
top layer of the beads was free to move, i.e., there was
no load or dead-weight surcharge applied to the column
of beads. The density, or equivalently the packing frac-
tion ρ, which is the percentage of volume occupied by the
beads, was determined either by a measurement of the
total height of the beads within the tube or using capac-
itors that were mounted on the outside wall of the tube.
For the latter, the capacitance was found to vary linearly
with packing fraction. Each capacitor averaged the den-
sity over sections containing approximately 6000 beads.
Measurements of ρ were taken as a function of time, i.e.,
number of taps t and as a function of the intensity of the
vibrations, Γ. Corrections for instrumental drift were
made by using simultaneously acquired data from a sec-
ond, stationary tube (identically prepared with the same
type of beads and connected to the same vacuum sys-
tem). Our instrumentation allowed shaking intensities
up to Γ ≈ 7 and provided a resolution ∆ρ = 0.0006 in
measured packing fraction changes.

The desired outcome of a shake cycle is to provide
clearly defined periods of uniform dilation of the bead
assembly. During these periods of dilation the beads
have some freedom to rearrange their positions relative
to their neighbors and thereby replace one stable close-
packed configuration by another. Previously [1,14], we
have shown that the overall behavior of the compaction
process is qualitatively similar at different depths into
the container (see also Fig. (1). Spurious effects from
continuous vibrations, such as period doubling or surface
waves [12], were avoided by spacing the taps sufficiently
far apart in time to allow the system to come to complete
rest between taps. Also, by using a tall container with
smooth, low-friction interior walls shear-induced dilation
and granular convection were suppressed [15]. Although
friction between beads and with the tube walls can af-
fect the mechanical stability of a bead configuration, we
argue below that the motion of beads is limited primar-
ily by geometric constraints imposed by the presence of
other beads, particularly at the high densities investi-
gated here.

The ratio of the container diameter to the bead diam-
eter can also influence the compaction process. For small
values of this ratio, ordering (crystallization) induced by
the container walls [16] will increase the measured pack-
ing fraction over its bulk value, leading to densities that
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can exceed the random close-packed limit. This may be
responsible for the high maximum packing fractions seen
in Fig. (2). Previous studies [1,14] indicate that the qual-
itative behavior of the compaction process is similar for
varying bead sizes. The container walls can also place
constraints on the density fluctuations. Since it is our
aim to investigate these density fluctuations, the choice
of bead size was a compromise between maximizing the
container-to-bead diameter ratio and not having the am-
plitude of the density fluctuations be obscured by statis-
tical averaging over a large number of particles.

FIG. 1. The time evolution of the volume density ρ at three
different depths near the top, middle, and bottom of the pile
of beads. The curves represent a single run (no ensemble
averaging! at a vibration intensity Γ = 6.8. The pile set-
tles slowly from its initial low density configuration toward
a higher steady-state density at long times, t > 104 taps.
The dashed lines are fits to Eq. (1) with typical values of
parameters: 0.637 < ρ∞ < 0.647, 0.036 < ∆ρ∞ < 0.044,
0.20 < B < 0.40, 10 < τ < 18.

Reaching the steady state

At a high acceleration Γ the steady-state density, ρss

can be approached by simply applying a very large num-
ber of taps (often greater than 104 − 105). An example
is shown in Fig. (1) for Γ = 6.8. The three panels corre-
spond to the capacitively measured density near the top,

middle, and bottom sections of the pile of beads. (The
tap number t is offset by 1 tap so that the initial density
can be included on the logarithmic axis.) Note that these
curves represent a single run, and separate runs starting
from the same initial density differ in the details of the
density fluctuations but show a similar overall behavior.
The behavior of ρ(t), obtained by averaging many runs
of this kind, appears to be homogeneous throughout the
pile at these high accelerations. As discussed in Ref. [1],
the time evolution of this ensemble averaged density is
well fitted by the expression

ρ(t) = ρ∞ −
∆ρ∞

1 + B ln(1 + t/τ)
(1)

where the parameters ρ∞ , ∆ρ∞, B, and τ depend
only on the acceleration Γ. Equation (1) was found to
fit the ensemble averaged density over the whole range
0 < Γ < 7 better than other functional forms that were
tried i.e., exponential, stretched exponential, or algebraic
forms, see Ref. [1]. The dashed lines in Fig. (1) show a
fit to Eq. (1). Here, the value of the final density, ρ , is
approximately equal to the observed steady-state density
ρss .

For small values of Γ, however, ρ∞ corresponds to a
metastable state and not the steady-state density. In
particular, for values of the applied acceleration Γ < 3, it
is difficult, if not experimentally impossible, to reach the
steady-state by merely applying a sufficiently large num-
ber of taps of identical intensity. In this case, the steady
state can be reached by “annealing [14] the system. The
annealing is controlled by the ramp rate, ∆Γ/∆t, at
which the vibration intensity is varied over time. Ex-
perimentally, we slowly raise the value of Γ from 0 to a
value beyond Γ∗ in increments of ∆Γ ≈ 0.5. At each
intermediate value of Γ we apply ∆t = 105 taps. Γ∗ de-
fines an “irreversibility point in the sense that, once it has
been exceeded, subsequent increases as well as decreases
in Γ at a sufficiently slow rate ∆Γ/∆t lead to reversible,
steady-state behavior. We found that Γ∗ ≈ 3 for 1, 2, and
3 mm beads [14]. A typical run is shown in Fig. 2. Here
we have used 2 mm beads, and started with an initial
density of ρ ≈ 0.59. The highest densities are achieved
by annealing the system, i.e., decreasing Γ slowly from Γ∗

back down to Γ = 50. If Γ is rapidly reduced to 0 (large
∆Γ/∆t) then the system falls out of “equilibrium. This
leads to lower final densities and a curve for ρ(Γ) that is
not reversible. A crucial result emerging from data such
as in Fig. 2 is that along the reversible branch, the den-
sity is monotonically related to the acceleration. We note
that in 3D simulations of granular compaction by Mehta
and Barker [17] a similar monotonic decrease in steady-
state volume fraction as a function of shaking intensity
was found. Thus, only once the steady-state has been
reached is there a single-valued correspondence between
the average density and the applied acceleration.
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FIG. 2. The dependence of ρ on the vibration history. The
beads were prepared in a low density initial configuration and
then the acceleration amplitude Γ was slowly first increased
(solid symbols) and then decreased (open symbols). At each
value of Γ the system was tapped 105 times after which the
density was recorded and Γ was subsequently incremented by
∆Γ ∼= 0.5. The upper branch that has the higher density is re-
versible to changes in Γ, see square symbols. The Γ∗ denotes
the irreversibility point.

Density fluctuations about the steady state

After the granular material has been vibrated for a suf-
ficiently long time, it reaches a steady-state density ρss.
Although there is a well-defined average density, Fig. 1
already hints that there are large fluctuations about this
value. The magnitude of the fluctuations depends on
the vibration intensity and depth within the container.
Figure 3 shows in more detail an example of these fluc-
tuations as a function of time, δρ(t) = ρ(t) − ρss. In
Fig. 3(a) we plot δρ(t) for a fixed value of acceleration,
Γ = 5.9, but measured at different depths in the con-
tainer. Note that the rate at which the density varies
in time decreases with depth into the pile. That is, the
top of the pile has more high frequency noise than the
bottom. The curve marked “reference is the reference
capacitor to which no vibrations are applied. This last
curve is essential to compensate for drifts that could oc-
cur in the electronics over the very long period of our
measurements. Each record shown here is 4096 taps long
and up to 132 successive such records were assembled to
produce one very long time sequence. Figure 3(b) shows
the fluctuations in the density measured at the bottom
capacitor as a function of acceleration Γ. As Γ is in-
creased both the magnitude of the fluctuations and the
amount of high-frequency noise increase.

From data as in Fig. 3 we can obtain the shape of the
distribution function for the fluctuation amplitudes. We
plot in Fig. 4 the logarithm of the relative probability
of occurrence D(δρ) versus Ψ2 = (ρ − ρss)

2sgn(ρ − ρss)

so that a Gaussian random process will have a triangu-
lar shape. In that figure we plot D(δρ) for the entire
range of accelerations, 4 < Γ < 7 for which fluctuations
could be reliably measured with our equipment. All data
records were corrected for instrumental drifts using the
reference capacitor. As can be seen in Fig. 4, the major-
ity of data shows Gaussian character. For a small frac-
tion of runs e.g., (Γ = 5.9), however, we find significant
deviations from Gaussian behavior, particularly near the
middle and bottom of the pile. When such deviations
are present they tend to preferentially occur for positive
values of Ψ2 , i.e., higher densities. The deviations could
be due to a metastable state, away from the mean, in
which the system gets trapped. Fluctuations about this
metastable state may even be distributed in a Gaussian
fashion. The reason why such metastable states favor the
lower portion of the column and why they are prominent
at certain values of Γ is unclear.

FIG. 3. Fluctuations in the volume density
δρ(t) = ρ(t) − ρss after the system has had sufficient time
to relax to a steady-state density ρss. In (a) the fluctuations
at three different depths are shown for Γ = 5.9. The reference
capacitor is used to correct for any instrumental drift. The
dependence of the fluctuations on Γ is shown in (b) for the
beads near the bottom of the pile. Fluctuations over a broad
range of time scales are evident.
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FIG. 4. The distribution functions D(δρ) for the occurrence of fluctuation amplitudes in the steady state are shown (solid
circles) for the three depths at various G. Plotted as a function of Ψ2 = δρ2sgn(δρ) a Gaussian distribution has a triangular
shape. For selected panels, the time dependence of the distributions is shown by plotting the distribution functions for only
the first (open squares) or second (open triangles) half of the time record. The majority of data appears stationary even when
significant non Gaussian deviations are observed, e.g., at Γ = 5.9 near the middle and bottom of the pile.

We can qualitatively check whether the distribution
functions correspond to a stationary random process or
whether they conceal a slow drift away from an originally
well-defined mean density. Strictly speaking, a stationary
Gaussian process is one for which correlation functions of
order higher than second are zero, see Ref. [18]). This is
done by dividing each time record into two equal length
halves and then determining the distribution functions
for each half separately, as shown for selected values of Γ
and depths by the open symbols in Fig. 4. We find that in
practically all cases the fluctuations do appear to be sta-
tionary and, moreover, that in the very few nonstation-
ary cases observed, the Gaussian character is recovered
at later times (i.e., in the second half of the record).

By assembling 132 successive time traces of the type
shown in Fig. 3, we can obtain continuous time records
containing 540 672 data points. From such records we
calculate both the density autocorrelation function and

the power spectrum for the density fluctuations, Sρ(ω),
where the frequency v is measured in units of inverse
taps. In Fig. 5 we plot Sρ(ω) versus ω for the three
depths at various values of acceleration, Γ = 4.3, 5.1,
5.9, and 6.8. We note several distinctive features to these
power spectra. In particular, three characteristic regimes
emerge: (i) a white noise regime, Sρ(ω) ∝ ω0 below a
low-frequency corner ωL , (ii) an intermediate-frequency
regime with nontrivial power-law behavior, and (iii) a
simple roll-off Sρ(ω) ∝ ω−2 above a high-frequency cor-
ner, ωH . This classification appears to apply to all traces
shown in Fig. 5. It is most pronounced for the spectrum
in the lower right hand panel. For spectra where ωL and
ωH are sufficiently separated in frequency, the data show
that the spectral dependence between ωL and ωH cannot
be approximated by just a simple superposition of two
separate Lorentzians each having a frequency dependence
S ∝ τ/(1 + ω2τ2) but different characteristic times τ .
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A comprehensive analysis of this region reveals that the
most consistent description for all the data is obtained
with a Lorentzian tail, Sρ(ω) ∼ ω−2 just above ωL , fol-

lowed by a region with Sρ(ω) ∝ ω−δ (with δ ≈ 0.9± 0.2)
stretching up to ωH , the high-frequency corner.

FIG. 5. The power spectral density Sρ (taps) of the fluctuations as a function of frequency ω in the steady state is shown for
the three depths at various Γ. For most spectra, two characteristic corner frequencies, ωL and ωH , are discernible which shift
to higher frequencies for increasing Γ and decreasing depth. The characteristic regimes of behavior are denoted by the dashed
lines in the lower right hand panel, which are guides to the eye.

One result from the data in Fig. 5 is the dependence
of both corner frequencies on the acceleration Γ. To de-
termine these frequencies we used a combination of two
methods, which we illustrate here for the simple case of
a Lorentzian spectrum. First, for any Lorentzian, the
product ωSρ has a maximum precisely at ω = 1/τ so
that ωL and ωH can be associated with the frequencies
at which ωSρ exhibits peaks. Second, even though we
were using extremely long time records they are still of
finite length. Figure 5 clearly indicates cases where ωL

is difficult to obtain because of the large statistical vari-
ance (≈ 25%) in Sρ throughout the lowest decade in fre-
quencies. In these instances we employed the additional

information contained in the one-sided sine transform of
the density-density autocorrelation function. For exam-
ple, for a single Lorentzian for which the autocorrelation
function is simply ≈ e−t/τ , the ratio of sine to cosine
transform of the autocorrelation function is given by ωt,
which depends only on t. A plot of this ratio versus v then
allows one to obtain ωL = 1/τ even if this frequency falls
outside the experimentally accessible frequency window.
A detailed discussion of the more general case, where the
signal consists of a superposition of independent fluctu-
ators with a distribution of relaxation times τ will be
presented elsewhere [19].
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FIG. 6. The characteristic frequencies, ωL (open symbols)
and ωH (solid symbols), in the power spectra plotted as a
function of 1/Γ. The general trend is for both ωL and ωH

to increase with increasing Γ and decreasing depth into the
pile. The dashed line in (b) is a guide to the eye, indicating
that the trend is consistent with an activated-like behavior
ω ≈ exp(−Γ0/Γ), with Γ0. For comparison, (a) shows the
dependence of ωH on Γ.

Figure 6 plots the resulting corner frequencies as a
function of applied acceleration. The trend is for both
ωL and ωH to increase as a function of increasing Γ and
with decreasing depth into the pile, see Fig. 6(a). We
note that over the relatively small available range of Γ,
the variation of ωH is consistent with behavior reminis-
cent of thermal activation: ωH = ω0 exp(−Γ0/Γ). In
this context, Γ0 would represent an energy barrier and
ω0 would be an attempt frequency. We find that a value
of Γ0 ≈ 15 is consistent with all the data, and that the
greatest variation is in the parameter ω0, which varies
from 2 × 10−3 to 7 × 10−2 for ωL and 1 to 15 for ωH .

III. DISCUSSION

Several mechanisms [17,20-22] have been proposed to
explain the kinetics of compaction. Although the pro-
posed mechanisms are compelling, their quantitative pre-
dictions fail to describe the time dependence observed

experimentally [1]. In light of our experimental results,
we pay special attention to models based on free volume
considerations as it appears that they not only capture
the experimentally observed slow relaxation towards the
steady state, but may also provide a valid framework
for understanding the fluctuation spectrum. Such mod-
els [8-10,12,13] include strong nearest-neighbor repulsive
interactions between particles that effectively block the
occupation of adjacent sites. On very general grounds
it is reasonable to assume that for the case of granu-
lar compaction, the rate of increase in volume density is
exponentially reduced by free volume [23-25]. One al-
ternative approach to the compaction problem is due to
Linz [26] who proposes a phenomenological decay law for
successive inverse packing fractions. Moreover, recent
models based on the dynamics of crystalline clusters in
the material have been proposed by Gavrilov [27] and by
Head and Rogers [28]. These approaches lead to a time
evolution that is essentially equivalent to Eq. (1).

A simple heuristic argument [12,24] for the compaction
process illustrates how the effects of free volume can lead
to the observed inverse logarithmic behavior. If each
grain has a volume Vg and we start with a number n
of grains per unit volume, then the volume fraction is
given by ρ = nVg. In general there exists a maximum
possible volume fraction, ρmax , corresponding to the
configuration of grains that occupies the least amount
of volume. Then, at some volume fraction ρ, the average
free volume available to each grain for rearrangements is
Vf = Vg(1/ρ − 1/ρmax). During compaction, individual
hardcore grains move, and when a void large enough to
contain a grain is created, it is quickly filled by a new par-
ticle. When the volume fraction is large, voids the size
of a particle are rare and a large number of voids must
rearrange to accommodate an additional particle. We
can estimate the rate of compaction by assuming that
N grains must rearrange in such a way that they con-
tribute their entire free volume to create a grain-sized
void, NVf = Vg. We find that this number increases
as N = ρρmax/(ρmax − ρ) during the compaction pro-
cess. For independent, random grain motion during a
tap, the probability for N grains to rearrange and open
up a grain-size void is then e−N . Consequently,

dρ/dt ∝ (1 − ρ)e−ρρmax/(ρmax−ρ). (2)

The rate at which the density increases is proportional to
the void volume and the probability for such a rearrange-
ment. The latter exponential factor reduces the rate and
dominates for large ρ. In the limit ρ → ρmax we have
N ≈ ρ2

max/(ρmax − ρ) and the solution of this equation
is given asymptotically by ρ(t) = ρmax − A/[B + ln(t)],
where A and B are constants [10,13,24,25]. This re-
sult closely approximates our experimentally based fit-
ting form, Eq. (1), for the ensemble-averaged ρ(t) as it
approaches the steady state.

The solution to Eq. (2) always approaches the maxi-
mum density ρmax and does not allow for a lower steady-
state density. The reason that this model leads to jam-
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ming is the absence of any void-creating mechanism that
would be represented by a competing term on the right-
hand side of Eq. (2). (The consequences of including a
mechanism for the generation of voids are discussed in
the next section for the “parking lot model and in Ap-
pendix A.) The competition between void annihilation
and creation during tapping naturally leads to density
fluctuations. We can also examine our data for the de-
pendence of the corner frequencies on the acceleration Γ
[Fig. 6(b)], where we found that ωH = ω0 exp(−Γ0/Γ).
We use the fact that ρ is a monotonic function of Γ in
the reversible steady-state regime (Fig. 2) and write to
first order ρ(Γ) ≈ ρmax − mΓ, where m is a positive
constant, locally approximating the slope ∆ρ/∆Γ (see
Ref. [14] for data on other bead sizes). Substituting
in for Γ, the expression for ωH can then be rewritten
as ωH = ω0 exp[−mΓ0/(ρmax − ρ)]. This has the same
form as the right-hand side of Eq. (2) (in the limit that
ρ → ρmax and indicates that the kinetics depend sen-
sitively on the available free volume, 1/ρmax − 1/ρ. As
Γ is reduced and the density approaches the maximum
density, the kinetics slow down rapidly. The manner in
which the kinetics slow down is reminiscent of the Vogel-
Fulcher form used to describe another class of disordered
metastable materials, namely, glasses [29]. Similarities
to glasses have recently been found in another approach
to the compaction process [8-10].

IV. THEORETICAL MODEL AND

SIMULATIONS OF COMPACTION

The parking lot model

In an attempt to explicitly work out some of the con-
sequences of the free volume approach to granular com-
paction, we next discuss a simplified model. The model
was previously studied in the context of chemisorption
[23-25,30,31] and protein binding [32]. Despite its simple
nature, it gives remarkably good qualitative agreement
with the experimental data, both for the approach to the
steady state and for the spectrum of fluctuations in the
steady state. This model has the advantage that it read-
ily lends itself to computer simulations; we restrict our-
selves to the one-dimensional (1D) case, but extensions to
higher dimensions are straightforward. Moreover, much
is known about its low-density limit, for which mean-field
equations exist that are amenable to analytic treatment
(see the Appendix). In 1D, the model can be compared
to parallel curbside parking where there are no marked
parking spaces. For the person wishing to park a ve-
hicle, the familiar situation is that there exist large, but
not quite large enough, spaces between previously parked
cars. The analogous question to the one we have been
asking is “How many other cars have to be moved just a
bit for the additional one to fit in?

FIG. 7. The adsorption-desorption process. Adsorption is
successful only in spaces large enough to accommodate a par-
ticle. Desorption of a particle, on the other hand, is unre-
stricted.

The model is defined as follows: identical particles of
unit length adsorb uniformly from the bulk onto a sub-
strate with rate k+ and desorb with rate k−. In other
words, k+ adsorption attempts are made per unit time
per unit length, and similarly, the probability that an
adsorbed particle desorbs in an infinitesimal time inter-
val between t and t + dt is k−dt. While the desorption
process is unrestricted, the adsorption process is subject
to free volume constraints, i.e., particles cannot adsorb
on top of previously adsorbed particles; see Fig. 7. This
stochastic process is well-defined in arbitrary dimension
and clearly satisfies detailed balance so that the system
eventually reaches a steady-state density. In one dimen-
sion, ρmax = 1.

Mapping the model on to the experiment, we associate
an adsorption event with the annihilation or filling of a
void within the pile of beads, whereas a desorption event
is associated with the creation of a void. The ratio of
adsorption to desorption rates, k = k+/k−, determines
the final steady-state density in the model (see also the
Appendix). Thus one can associate k in the model with
the magnitude of the acceleration Γ in our experiment.

Simulation of compaction based on the parking lot

model

In this section we compare the experimental results
with Monte Carlo simulations of the 1D parking process.
The details of the simulation are described elsewhere [24].
Here we report our results for a system size of 00 similar
results were found for a system size of 25.

The simulations were started from a zero density ini-
tial state and allowed to evolve to various steady-state
densities by varying k− at a fixed value of k+ = 1. In
Fig. 8 we show the time evolution of the density as it ap-
proaches a steady-state density ρss = 0.84. The steady-
state densities obtained after equilibration coincide with
those predicted by Eq. (A2a) in the Appendix. We find
that the simulations reproduce the slow logarithmic re-
laxation towards the steady state in agreement with Eq.
(1).
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FIG. 8. The time evolution of the density in the simula-
tion for k = 103 (ρss = 0.84). Time is in units of Monte
Carlo steps (MCS). The solid line represents a fit to Eq. (1).

We now turn to the density fluctuations. In this case,
the simulations ran long enough to ensure that a steady-
state density was attained before density fluctuations
were recorded. For low densities ρss < 0.37 we find that
in the simulation the power spectra of the fluctuations are
best described by a Lorentzian having a single character-
istic time scale, as expected from the mean-field analysis
[see Eq. (A4) in the Appendix]. However, at higher den-
sities (higher k) local fluctuations dominate the dynamics
and the power spectra show the emergence of two distinct
corner frequencies, which become progressively more sep-
arated. This is shown in Fig. 9 for a wide range of ratios
k, where k+ was fixed at a value of 1. Most notable is the
low-frequency corner, which shifts rapidly to lower fre-
quencies for small increments in density. By comparison,
the high-frequency corner decreases much more slowly.

Our simulations find power spectra, Sρ(ω), strikingly
similar in shape to those obtained experimentally when
ρss > 0.50. Again we see three distinct regimes (Fig. 9).
Below a corner frequency, ωL , there is white noise
[Sρ(ω) ∝ ω0]. Above a high frequency corner, ωH ,
Sρ(ω) ∝ ω−2 . The simulations offer the advantage of al-
lowing the separation between ωL and ωH to be tuned by
increasing the value of k or, equivalently, increasing the
density. This allows the systematic investigation of the
spectral dependence in the intermediate regime between
the two corner frequencies. As in the experimental data,
we find that there is a Lorentzian tail, Sρ(ω) ∝ ω−2 just
above ωL . At higher frequencies, stretching up to the
high-frequency corner ωH , we find a power-law regime
Sρ(ω) ∝ ω−δ. The exponent δ appears to depend slightly
on the separation between the two corner frequencies.
For the largest separations that span nearly 5 decades in
frequency we find δ ≈ 0.5. This value is smaller than that
found in the experimental data (δ ≈ 0.9), but again is in-
consistent with a simple superposition of two Lorentzians
having characteristic time scales ω−1

L and ω−1
H .

FIG. 9. Power spectra, Sρ (MCS), of the density fluctua-
tions in the simulation of the one-dimensional parking pro-
cess. The evolution of the spectral dependence is shown for
values of the ratio k = 33, 102, 103, 104, corresponding to final
steady-state densities ρss = 0.72, 0.77, 0.84, and 0.88, respec-
tively (see text). The strongest dependence on k is for ωL ,
which decreases rapidly as the density increases. Such spectra
are similar to those found in the experiment, see Fig. 5.

V. ANALOGY WITH THERMAL

FLUCTUATIONS

In ordinary statistical mechanics, the fluctuation-
dissipation theorem allows the determination of the re-
sponse of a system to a small perturbation from its ther-
mal fluctuations about equilibrium. In this section, we
will explore the possibility that we can derive similar in-
formation about the granular system from its fluctuations
about its steady-state density. In the granular thermody-
namics theory developed by Edwards and coworkers, an
analogy is made between granular and thermal systems.
The basic assumption is that the volume V of a powder is
analogous to the energy of a statistical system (we note
that V here refers to the total volume and not just to
the free volume). Instead of a Hamiltonian, there is a
function that specifies the volume of the system in terms
of the positions of the individual grains. The “entropy
is thus the logarithm of the number of configurations:
S = λ ln

∫

d (all configurations) where λ is the analog of
Boltzmanns constant. Using this they defined a quantity
analogous to a temperature in a thermal system, which
they call the “compactivity X: X = ∂V/∂S. In contrast
to the notion of “granular temperature, which depends
on the random motion of the particles, the compactiv-
ity characterizes the static system after it has reached
a steady-state density via some preparation algorithm.
Such an algorithm would be one as we have described
above, where we have vibrated the granular system un-
til it has reached the reversible steady-state density. If
this theory is valid, then we should be able to define an
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equilibrium such that two systems in equilibrium with
a third system are also in equilibrium with each other.
That is, no net volume will be transferred between the
two systems when they are placed in contact with each
other if they have the same value of X.

In a thermal system we can write the specific heat in
two ways as follows:

CV = dE0/dT |V = 〈(E − E0)
2/kBT 2, (3)

where E0 is the equilibrium average of the energy E of
the system, kB is Boltzmanns constant, T is the temper-
ature, and 〈· · ·〉 represents the time average. In Edwards
theory for a powder the analogous quantity to the specific
heat of a thermal system given in Eq. (3) becomes

C = dVss/dX = 〈(V − Vss)
2〉/λX2, (4)

where Vss is the steady-state volume. Since we have mea-
sured the density fluctuations in the steady state (Figs. 3-
5), we are in a position to explicitly calculate the vari-
ance, 〈(V − Vss)

2〉, of volume fluctuations for a given
steady-state volume Vss defined here as Vss = 1/ρss. We
can then write

∫ V2

V1

dVss/〈(V − Vss)
2〉 =

∫ X2

X1

dX/λX2 = 1/λX1 − 1/λX2.

(5)

Equation (5) allows us to measure the difference in com-
pactivities for any two volumes as long as we know the
fluctuations of the volumes (i.e., densities) as a function
of the average volume. This is equivalent to obtaining
the difference in temperatures for a thermal system be-
tween any two energies. Clearly, as Vss increases X is
expected to increase as well. Equation (5) allows the
determination of an absolute value for the compactivity
only once a suitable point of reference can be found. In
Fig. 10 we show the experimentally obtained values of
〈(V − Vss)

2〉 for several steady-state volumes along the
reversible branch of Fig. 2 over the range 4 < Γ < 7 [33].
The solid curve through the data for the top of the pile
represents a linear fit to the function:

〈(V − Vss)
2〉 = a + bVss, (6)

where a = −7.2× 10−4 and b = 4.9× 10−4. This implies
that the magnitude of the fluctuations goes to zero at
ρ = 0.68, that is, near the close-packed density. Using
this form for the dependence of the fluctuations on Vss

in Eq. (5) we find that

1/λX ∝ ln(a + bVss). (7)

This functional dependence is valid only over the limited
range of experimental data, and may not be an adequate
description of the general behavior. Below, we discuss
a similar analysis for the simulation data for which a
broader range of volumes can be explored. Using Eq.

(6), we can evaluate the difference in inverse compactivi-
ties between any two steady-state volumes. We find that
1/λX1 − 1/λX2 = 0.04 where the subscripts 1 and 2 re-
fer to the smallest and largest volumes for which we have
data. This result explicitly demonstrates how the com-
pactivity increases for larger volumes (smaller densities).

It is also interesting to consider the size of the fluc-
tuating volumes that give rise to the observed variance.
This can be estimated by assuming that the fractional
fluctuations scale as 〈δρ2〉/ρ2

ss = 〈δV 2〉/Vss = κ2/N ,
where δV = V − Vss . This is the usual N−1/2 classi-
cal self-averaging property of N in dependently fluctu-
ating variables. The parameter κ accounts for the fact
that there exists a maximum range of density changes
for each grain that does not compromise the mechanical
stability of the granular assembly. Figure 10 indicates
that 〈δV 2〉/V 2

ss > 1/40, 000, and as an upper bound we
let κ = ρxtal − ρRLP = 0.74 − 0.55 ≈ 0.2. We then
find that N > 1600. Since we know that each capaci-
tor averages over a volume corresponding to 6000 beads,
this suggests that there are roughly 1600 independently
fluctuating clusters each consisting of ∼ 4 beads (lower
bound).

FIG. 10. The average variance of the experimental volume
fluctuations (open symbols) as a function of the steady-state
volume. The trend is for the variance to increase with in-
creasing volume and depth into the pile. The solid symbols
represent the variance as determined from the distribution of
fluctuation amplitudes in Fig. 4 (see text). The dashed lines
are linear fits to the solid symbols.

An important feature that can be seen in Fig. 10
is that the variance becomes systematically larger the
deeper into the pile one goes [see also D(δρ) for Γ = 5.1
in Fig. 4]. For the middle and bottom sections of the
column, the variance appears nonmonotonic with a peak
near Vss = 1.592, see open symbols in Fig. 10. Examina-
tion of the corresponding distributions of fluctuation am-
plitudes (Γ = 5.9 in Fig. 4) indicates that the increased
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variance is due to a non-Gaussian tail in the distributions
(see the description of Fig. 4, above). For comparison,
we have also determined the variance from the slopes of
the distribution functions in Fig. 4. We used the slopes
corresponding to the low-density side of the distributions
because these were most consistent with a Gaussian form
over all accelerations and depths. In this way, the effect
of the non-Gaussian tails in some of the distributions
can be avoided. These results are shown as solid symbols
in Fig. 10 and the dashed lines correspond to linear fits
through the data. Here too, it is evident that the vari-
ance is larger for larger depths. A larger variance implies
a correspondingly larger phase space. At first this seems
counterintuitive be-cause the time records [Fig. 3(a)] and
power spectra (Fig. 5) indicate that density fluctuations
are slower at the bottom of the pile. Although the kinet-
ics near the bottom of the pile may be slower, there is a
greater number of configurations with different volumes
that are accessible to those beads.

FIG. 11. The average variance of the volume fluctuations
in the simulation as a function of the steady-state volume,
Vss. The fractional variance as a function of Vss −1 is plotted
on logarithmic axes in the inset. The solid line is a power-law
fit given by 0.0124(Vss − 1)1.37.

A depth dependence to the variance also suggests the
presence of a gradient in the compactivity. In Fig. 10,
we used the average steady-state volumes Vss , obtained
from optical measurements of the total column height.
One possibility is that this average volume density does
not accurately represent the density in the different sec-
tions of the pile. If so, the larger compactivity near the
bottom of the pile then implies that the bottom beads
are actually in a less compact state than those at the top.
However, from the trend in 〈δV 2〉 versus Vss in Fig. 10
the difference in packing fraction be-tween the top and
bottom of the pile that would be necessary to have the
variances be equal would be ∆ρ ≈ 0.035. Since this dif-
ference is huge on the scale of ρ(Γ) for the reversible

branch in Fig. 2 we do not believe this to be a plausi-
ble explanation. Rather, it appears that there is another
variable, such as pressure, in addition to the volume, that
controls the depth dependence of the fluctuations. In-
deed, supporting evidence to this effect can also be seen
in Fig. 6, which shows that the high-frequency corner
ωH decreases with increasing depth into the pile. Nev-
ertheless, we expect that the system is entirely jammed
〈δV 2〉 → 0 at the same density (i.e., ρmax) for all depths
in the pile.

FIG. 12. The left hand side of Eq. (5) is numerically evalu-
ated and plotted as a function of steady-state volume for the
simulation data. As plotted, the difference in inverse com-
pactivities between the highest density configuration (Vss−1)
and a low density configuration (higher Vss) can be read off
directly.

With the simulation described above, a broader range
of densities can be explored than that which is exper-
imentally accessible. Figure 11 shows the dependence
of the variance in volume fluctuations as a function of
steady-state volume for the 1D parking lot model. The
rapid decrease in variance near Vss − 1 suggests that
there may be a diverging length or time scale as the sys-
tem approaches its most compact state. Indeed, plot-
ting the normalized variance as a function of the free
volume (Vss − 1) does reveal power-law-like behavior
〈δV 2〉 ∝ (Vss−1)β with β ≈ 1.4. This is shown in the in-
set of Fig. 11. Proceeding with the compactivity analysis,
the data in Fig. 11 was numerically integrated to yield
the left-hand side of Eq. (5) to within a constant. An
absolute value cannot be established with just our data.
In Fig. 12 we plot the difference in inverse compactivity
as a function of volume. This difference is with respect
to the state Vss = 1.1. Figure 12 indicates a nontriv-
ial functional dependence to the increase in compactivity
with system volume.

For comparison, the 3D experimental results corre-
spond to relatively high densities in the 1D simulation
because in 3D the available void volume is with respect
to the random close packed limit (≈ 0.64) while the cor-
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responding limit in 1D is 1. Taking this into account,
the 30% increase in 〈δV 2〉 in the experimental results
shown in Fig. 10 compares well with the simulation data
in Fig. 11 over a similarly restricted range in Vss.

VI. CONCLUSIONS

In this paper, we have examined the volume fluctua-
tions about a steady-state density for a granular system.
For these measurements to provide a useful analogy with
a thermal system, it is essential that the fluctuations be
measured in steady-state conditions. For this reason, we
have explicitly taken data on the reversible density line
as shown in Fig. 2. From these measurements, we have
been able to determine experimentally the compactivity,
which is the quantity analogous to the temperature in
the theory of Edwards et al.

Theories based on free volume seem particularly well
suited for describing the data. As the system approaches
its final state, a growing number of particles have to be
rear-ranged in order for the density to be increased lo-
cally. The rate of increase in the density is exponentially
reduced by this number leading to a logarithmically slow
approach to the steady-state density as observed experi-
mentally. Monte Carlo simulations of a one-dimensional
adsorption-desorption process based on these ideas show
fluctuations about the steady state density that are strik-
ingly similar to those observed experimentally. These re-
sults attest to the importance of volume exclusion for
granular relaxation and steady-state dynamics under vi-
bration.

Despite this models simplicity and obvious shortcom-
ings, it appears to capture an essential mechanism under-
lying the remarkably slow relaxation and the nature of
the density fluctuations. This mechanism is associated
with the reduction of free volume available for particle
motion as the density increases. Although our simple
model cannot predict the experimental values of the fit-
ting parameters in Eq. (1), the inverse logarithmic den-
sity relaxation towards the steady state is the same one
observed for granular compaction (see Fig. 1).

In the simulation model, our treatment was restricted
to one-dimensional processes, but we expect that the re-
sults hold in higher dimensions as well. There are other
important distinctions between the model and real gran-
ular media. One difference is that in the structure of a
granular assembly the particles form contact networks.
The creation of a void (a desorption event in the model)
therefore requires the rearrangement of several particles
and is thus restricted just as is the annihilation of voids.
Another difference is the mechanical stability of a gran-
ular assembly. This property will place limits on the free
volume available for large void creation. For instance, for
spherical particles in three dimensions and in the pres-
ence of gravity the available free volume is deter-mined
by the restricted range of accessible volume fractions,

namely, between the random close packed ρ ≈ 0.64 and
random loose packed ρ ∼= 0.55 configurations.

It is interesting to speculate whether the reduction in
free volume leads to a crossover from a simple indepen-
dent particle picture for compaction to a more complex
process at higher densities, presumably involving corre-
lations over increasingly longer length and time scales.
In this regard, we have demonstrated that density fluc-
tuations are an important probe of the underlying micro-
scopic dynamics. Indeed, the study of fluctuations may
elucidate the physics of independent and cooperative-
particle motions, which lead to the macroscopic response
of a powder subject to vertical vibrations. For instance,
it is interesting to note that from both the experimental
and simulation data there appear to be two characteristic
time scales, related to the corner frequencies ωL and ωH

in the power spectra, that characterize the steady-state
dynamics. This behavior may be related to the results
found in 3D simulations of vibrated powders by Mehta
and Barker [17,20,34] and in simulations of a frustrated
lattice gas [8-10]. Those results suggested the existence of
two exponential relaxation mechanisms: the faster of the
two involves the motions of independent particles while
the slower involves collective particle motions, which were
found to be diffusive. However, we emphasize again that
both our experimental and simulation data are not con-
sistent with a superposition of two independent exponen-
tially decaying processes.

In this paper we have presented results for monodis-
perse spherical particles subject to vertical shaking. Re-
alistic powders are far more complicated with proper-
ties that depend on factors like cohesive forces, polydis-
persity in size, and ir-regularity or anisotropy in shape.
Nevertheless, our results can provide a valuable bench-
mark for evaluating the predictions of theoretical models
and simulations. The applicability of concepts such as
compactivity or “granular temperature in the descrip-
tion of quasistatic granular media requires further explo-
ration. In particular, it would be interesting to ex-amine
the properties of granular systems comprised of particles
with shape anisotropies and subject to isotropic shak-
ing. Furthermore, our experimental data suggest that
the steady-state properties of a granular assembly can-
not be fully described by a single state variable, i.e., the
volume. Rather, another variable is required to account
for the depth dependence of the volume fluctuations.

Note added in proof. The width of the density fluctu-
ations in the parking lot model can be calculated in the
mean-field approach described in the Appendix. For de-
tails see E. Ben-Naim et al., Physica D (to be published).
Such calculation predicts a power law as seen in the inset
to Fig. 11 for the simulation data, but with an exponent
β = 2.

12



VII. ACKNOWLEDGMENTS

We are grateful to M. L. Povinelli and S. Tseng for as-
sistance on certain aspects of this work. It is a pleasure
to acknowledge stimulating discussions with S. Copper-
smith and T. Witten. This work was supported by the
NSF through MRSEC Grant DMR-9400379 and through
Grant No. CTS-9710991. We acknowledge additional
support from the David and Lucile Packard Foundation,
and from the Research Corporation.

APPENDIX

For the one-dimensional parking lot model an analyt-
ical mean-field description exists. On the continuum, an
approximate rate equation for the density evolution was
constructed from the exact steady-state void distribu-
tion. This equation yields an approach to the steady
state that is essentially identical to that found in the ex-
periment [i.e., Eq. (1)]. However, it is less successful in
capturing the fluctuation behavior, particularly for the
high densities relevant here. We summarize the salient
analytic results for the model. Details can be found in
Refs. [23-25]. A modified Langmuir equation can be
written for the rate of change in density [24]:

dρ/dt = k+(1 − ρ)e−ρ/(1−ρ) − k−ρ. (A1)

The gain term is proportional to the fraction of unoc-
cupied space, which is modified by an “excluded volume
constraint. It was previously shown that in steady state
the prob-ability s(ρ) that an adsorption event is success-
ful is given by s(ρ) = e−ρ/(1−ρ) [24]. This so-called “stick-
ing coefficient vanishes exponentially as ρ → 1. This ef-
fectively reduces the sticking rate, k+ → k+(ρ) = k+s(ρ).
The desorption process, on the other hand, is unre-
stricted and so the loss term is proportional to the density
itself. The steady-state density ρss , which is obtained
by imposing dρ/dt = 0, can be determined as a function
of the adsorption to desorption rate ratio, k = k+/k−,
from the following transcendental equation:

αeα = k, with α = ρss/(1 − ρss). (A2a)

The following leading behavior in the two limiting cases
is found

ρss(k) ∼=

{

k, k ¿ 1;
1 − (ln k)−1, k À 1.

(A2b)

The effect of the volume exclusion constraint is strik-
ing, a huge adsorption to desorption rate ratio, k > 109,
is necessary to achieve a 0.95 steady-state density. We
now focus on the relaxation properties of the system. The
granular compaction process corresponds to the high den-
sity limit, and we thus consider the desorption-controlled
case, k À 1. Hence, let us fix k+ = 1 and consider the

limit k− → 0 of Eq. (A1). For t À 1/k+ , it can be shown
that the system approaches complete coverage, ρ∞ = 1,
according to [24,25]

ρ(t) ∼= ρ∞ − 1/(ln k+t). (A2)

This is confirmed by numerical simulations in one dimen-
sion (see Ref. [24] and Sec. IV). We conclude that the
excluded volume constraint gives rise to a slow relaxation.

Equation (A3) holds indefinitely only for the truly ir-
reversible limit of the parking process, i.e., for k = ∞.
For large but finite rate ratios, the final density is given
by Eq. (A2b). By computing how a small perturba-
tion from the steady state decays with time, an ex-
ponential relaxation towards the steady state is found
|ρss − ρ(t)| ∝ e−1/T for t À 1/k−. The relaxation time
is

T = (1 − ρss)
2/k−. (A3)

The above results can be simply understood: the early
time behavior of the system follows the irreversible limit
of k− = 0. Once the system is sufficiently close to the
steady state, the density relaxes exponentially to its final
value.
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