
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Density fluctuations in vibrated granular materials

Edmund R. Nowak, James B. Knight,* Eli Ben-Naim,† Heinrich M. Jaeger, and Sidney R. Nagel
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 22 May 1997; revised manuscript received 23 October 1997!

We report systematic measurements of the density of a vibrated granular material as a function of time.
Monodisperse spherical beads were confined to a cylindrical container and shaken vertically. Under vibrations,
the density of the pile slowly reaches a final steady-state value about which the density fluctuates. We have
investigated the frequency dependence and amplitude of these fluctuations as a function of vibration intensity
G. The spectrum of density fluctuations around the steady state value provides a probe of the internal relaxation
dynamics of the system and a link to recent thermodynamic theories for the settling of granular material. In
particular, we propose a method to evaluate the compactivity of a powder, first put forth by Edwards and
co-workers, that is the analog to temperature for a quasistatic powder. We also propose a stochastic model
based on free volume considerations that captures the essential mechanism underlying the slow relaxation. We
compare our experimental results with simulations of a one-dimensional model for random adsorption and
desorption.@S1063-651X~98!07602-8#

PACS number~s!: 81.05.Rm, 05.40.1j, 46.10.1z, 81.20.Ev
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I. INTRODUCTION

One of the salient features of noncohesive granular m
rials is that they can be packed over a range of densities
still retain their resistance to shear. For example, a sta
conglomeration of monodisperse spheres can exist wit
packing fractionr ranging fromr'0.55 ~the random loose
packed limit! to r'0.64~the random close packed limit! and
even tor'0.74 ~the crystalline state!. Because thermal en
ergies,kBT, are insignificant when compared to the energy
takes to rearrange a single particle, each metastable con
ration will persist indefinitely until an external vibratio
comes along to knock it into another state. Thus, no ther
averaging takes place to equilibrate the system. The den
of the material is determined both by its initial preparati
and by the manner in which it was handled or process
since such activities normally introduce some vibrations i
the material. The phase space for the granular medium
explored not by fluctuations induced by ordinary temperat
but by fluctuations induced by external noise sources, s
as vibrations. It is the goal of this paper to provide an e
perimental foundation for the use of such fluctuations a
probe of the dynamics as well as the microstructure of gra
lar media in the quasistatic, densely packed limit.

Granular compaction involves the evolution from an in
tial low-density packing state to one with higher final dens
and provides a model system for nonthermal relaxation
disordered medium. In a previous study@1#, we focused on
the approach to a final steady-state density as vibrations w
applied to the system. In particular, we studied the densit
monodisperse spherical particles in a tall cylindrical tube a
series of external excitations, consisting of discrete, vert
shakes or ‘‘taps,’’ were applied to the container. Such d
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indicate that the compaction process is exceedingly slow:
density approaches its final steady-state value approxima
logarithmically in the number of taps. A typical example
such behavior, in Fig. 1, shows that in excess of 104 taps
may be required before the density has relaxed to its ste
state value. However, if one vibrates for a long enough ti

ty,

ar
.

FIG. 1. The time evolution of the volume densityr at three
different depths near the top, middle, and bottom of the pile
beads. The curves represent a single run~no ensemble averaging! at
a vibration intensityG56.8. The pile settles slowly from its initia
low density configuration towards a higher steady-state densit
long times,t.104 taps. The dashed lines are fits to Eq.~1! with
typical values of parameters:0.637<r`<0.647, 0.036<Dr`

<0.044, 0.20<B<0.40, 10<t<18.
1971 © 1998 The American Physical Society
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a steady-state density, depending on the intensity of the t
will be attained. Even after the density reaches the stea
state value, one can discern fluctuations in the density a
that value: after each ‘‘tap,’’ the density will be slightl
higher or lower than it was before. These fluctuations
reminiscent of thermal fluctuations about an equilibriu
state, yet such a connection so far has not been investig
experimentally.

In statistical mechanics the study of fluctuations is
great physical interest. The fluctuation-dissipation theor
relates the dissipative response of a system to an exte
perturbation with the microscopic dynamics of the system
a state of equilibrium. Energy fluctuations in thermal syste
can be used to investigate the set of distinct, microsco
states that are accessible to a system maintained at a
temperature. Likewise, a study of density fluctuations
granular media may provide a framework for understand
the physical phenomenon of compaction, i.e., how a vibra
powder, that is not in a steady state, finally approache
steady state.

In a granular system, density fluctuations from the ste
state represent the different volume configurations acces
to particles subject to an external vibration. It is desirable
develop an analogy between the role that vibrations play
nonthermal systems, such as granular media, and the ro
temperature in thermal systems. Theoretically, this issue
addressed by Edwards and co-workers@2–4# who introduced
a statistical mechanics for powders. The idea is based on
assertion that an analogy can be drawn between the ener
a thermal system and the volumeV occupied by a powder
The entropyS of a powder is defined in the usual sense,
the logarithm of the number of available configurations. E
wards and co-workers then put forth the concept of an ef
tive temperature for a powder, called the compactivityX,
which is defined asX[]V/]S. The significance of this ef-
fective temperature is that it allows for the characterizat
of a static granular system. This is distinct from the case
rapid granular flows where a ‘‘granular temperature’’ giv
by the mean-square value of the fluctuating component of
particle velocities can be written down@5–7#. The compac-
tivity is then a measure of ‘‘fluffiness’’ in the powder: whe
X50, the powder is in its most compact configuratio
whereas forX5` the powder is the least dense.

Recently, another approach@8–10# that describes the
static packing of powders has adapted a statistical model
contains geometric frustration as an essential ingredient.
granular materials, frustration arises in the form of hard-c
repulsive constraints and the interlocking of grains of diff
ent shapes, which prevents local rearrangements. Both
static and dynamic~in the presence of vibration and gravity!
properties of this model exhibit complex behavior with fe
tures that are common to granular packing, such as the l
rithmic relaxation of density under tapping@1#.

In this paper, we make contact with these ideas throug
detailed study of the process of granular compaction. In p
ticular, we propose a method for evaluating the compactiv
of a vibrated powder through a definition of a ‘‘granul
specific heat’’ and measurements of density fluctuations
served in the reversible regime of steady-state behavior.
also elaborate on a theoretical model@11,12#, based on the
idea that the rate of increase in volume density is expon
s,
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tially reduced by the free volume, which captures many
the significant features of our experiments. A model addre
ing the compaction of binary mixtures consisting of grai
with very different sizes was recently proposed by de Gen
@13#. That model is similar to ours in that it incorporates fr
volume constraints and also exhibits a similar inverse lo
rithmic dependence for the density relaxation.

In the next section we will describe the experimental d
tails of the system, review how to obtain reproducible a
reversible densities, and present our results for the den
fluctuations. In Sec. III we discuss several models in relat
to our experimental results and motivate the relevance of
volume constraints for granular compaction. In Sec. IV,
present the theoretical model and the results of related si
lations of compaction. Finally, in the last section we discu
the central result of this paper, namely, how our data can
related to thermodynamic approaches for understand
granular media.

II. EXPERIMENTAL RESULTS

Experimental method

The details of the experimental apparatus and meas
ment technique were published elsewhere@1#. Monodisperse,
spherical soda-lime glass beads~of 2 mm diameter! were
confined to a 1.88 cm diameter Pyrex tube measuring 1 m in
height. The tube was subjected to discrete vertical shakes~or
‘‘taps’’ ! each consisting of one complete cycle of a 30
sine wave. The vibration intensity was parametrized byG,
which is the ratio of the peak accelerationA that occurs
during a single tap to the gravitational accelerationg
59.8 m/s2: G5A/g. The beads were baked prior to loadin
in the tube and precautions were taken to minimize com
cations resulting from electrostatic charging, convection, a
external humidity fluctuations. The column of beads was p
pared in a low density initial state by flowing high pressu
dry nitrogen gas from the bottom to the top of the tube. T
top layer of the beads was free to move, i.e., there was
load or dead-weight surcharge applied to the column
beads. The density, or equivalently the packing fractionr,
which is the percentage of volume occupied by the bea
was determined either by a measurement of the total he
of the beads within the tube or using capacitors that w
mounted on the outside wall of the tube. For the latter,
capacitance was found to vary linearly with packing fractio
Each capacitor averaged the density over sections contai
approximately 6000 beads. Measurements ofr were taken as
a function of time, i.e., number of tapst and as a function of
the intensity of the vibrations,G. Corrections for instrumen-
tal drift were made by using simultaneously acquired d
from a second, stationary tube~identically prepared with the
same type of beads and connected to the same vacuum
tem!. Our instrumentation allowed shaking intensities up
G'7 and provided a resolutionDr50.0006 in measured
packing fraction changes.

The desired outcome of a shake cycle is to provide clea
defined periods of uniform dilation of the bead assemb
During these periods of dilation the beads have some f
dom to rearrange their positions relative to their neighb
and thereby replace one stable close-packed configuratio
another. Previously@1,14#, we have shown that the overa
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57 1973DENSITY FLUCTUATIONS IN VIBRATED GRANULAR . . .
behavior of the compaction process is qualitatively simila
different depths into the container~see also Fig. 1!. Spurious
effects from continuous vibrations, such as period doubl
or surface waves@12#, were avoided by spacing the tap
sufficiently far apart in time to allow the system to come
complete rest between taps. Also, by using a tall conta
with smooth, low-friction interior walls shear-induced dila
tion and granular convection were suppressed@15#. Although
friction between beads and with the tube walls can affect
mechanical stability of a bead configuration, we argue be
that the motion of beads is limited primarily by geomet
constraints imposed by the presence of other beads, par
larly at the high densities investigated here.

The ratio of the container diameter to the bead diame
can also influence the compaction process. For small va
of this ratio, ordering~crystallization! induced by the con-
tainer walls@16# will increase the measured packing fractio
over its bulk value, leading to densities that can exceed
random close-packed limit. This may be responsible for
high maximum packing fractions seen in Fig. 2. Previo
studies@1,14# indicate that the qualitative behavior of th
compaction process is similar for varying bead sizes. T
container walls can also place constraints on the density fl
tuations. Since it is our aim to investigate these density fl
tuations, the choice of bead size was a compromise betw
maximizing the container-to-bead diameter ratio and
having the amplitude of the density fluctuations be obscu
by statistical averaging over a large number of particles.

Reaching the steady state

At a high accelerationG the steady-state density,rss can
be approached by simply applying a very large number
taps~often greater than 104– 105!. An example is shown in
Fig. 1 for G56.8. The three panels correspond to the cap
tively measured density near the top, middle, and bott
sections of the pile of beads.~The tap numbert is offset by
11 tap so that the initial density can be included on
logarithmic axis.! Note that these curves represent asingle

FIG. 2. The dependence ofr on the vibration history. The bead
were prepared in a low density initial configuration and then
acceleration amplitudeG was slowly first increased~solid symbols!
and then decreased~open symbols!. At each value ofG the system
was tapped 105 times after which the density was recorded andG
was subsequently incremented byDG'0.5. The upper branch tha
has the higher density is reversible to changes inG, see square
symbols.G* denotes the irreversibility point~see text!.
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run, and separate runs starting from the same initial den
differ in the details of the density fluctuations but show
similar overall behavior. The behavior ofr(t), obtained by
averaging many runs of this kind, appears to be homo
neous throughout the pile at these high accelerations. As
cussed in Ref.@1#, the time evolution of this ensemble ave
aged density is well fitted by the expression

r~ t !5r`2
Dr`

@11B ln~11t/t!#
, ~1!

where the parametersr` , Dr` , B, andt depend only on the
accelerationG. Equation~1! was found to fit the ensembl
averaged density over the whole range 0,G,7 better than
other functional forms that were tried~i.e., exponential,
stretched exponential, or algebraic forms, see Ref.@1#!. The
dashed lines in Fig. 1 show a fit to Eq.~1!. Here, the value of
the final density,r` , is approximately equal to the observe
steady-state densityrss.

For small values ofG, however,r` corresponds to a
metastable state and not the steady-state density. In par
lar, for values of the applied accelerationG,3, it is difficult,
if not experimentally impossible, to reach the steady-state
merely applying a sufficiently large number of taps of ide
tical intensity. In this case, the steady state can be reache
‘‘annealing’’ @14# the system. The annealing is controlled b
the ramp rate,DG/Dt, at which the vibration intensity is
varied over time. Experimentally, we slowly raise the val
of G from 0 to a value beyondG* in increments ofDG
'0.5. At each intermediate value ofG we apply Dt
5105 taps. G* defines an ‘‘irreversibility point’’ in the
sense that, once it has been exceeded, subsequent incr
as well asdecreasesin G at a sufficiently slow rateDG/Dt
lead to reversible, steady-state behavior. We found thatG*
'3 for 1, 2, and 3 mm beads@14#. A typical run is shown in
Fig. 2. Here we have used 2 mm beads, and started with
initial density ofr'0.59. The highest densities are achiev
by annealing the system, i.e., decreasingG slowly from G*
back down toG50. If G is rapidly reduced to 0~large
DG/Dt! then the system falls out of ‘‘equilibrium.’’ This
leads to lower final densities and a curve forr~G! that is not
reversible. A crucial result emerging from data such as
Fig. 2 is that along the reversible branch, the density
monotonically related to the acceleration. We note that in
simulations of granular compaction by Mehta and Bark
@17# a similar monotonic decrease in steady-state volu
fraction as a function of shaking intensity was found. Th
only once the steady-state has been reached is there a s
valued correspondence between the average density an
applied acceleration.

Density fluctuations about the steady state

After the granular material has been vibrated for a su
ciently long time, it reaches a steady-state densityrss. Al-
though there is a well-defined average density, Fig. 1 alre
hints that there are large fluctuations about this value. T
magnitude of the fluctuations depends on the vibration int
sity and depth within the container. Figure 3 shows in mo
detail an example of these fluctuations as a function of tim
dr(t)5r(t)2rss. In Fig. 3~a! we plot dr(t) for a fixed

e



t
e

t is
th
ca

i
th
nt
13
v

e

e
in

th
ot
r-

that
s,
d

in-
be

cter.

rly
ia-
ive
be
the

state
son
the

c-
ther
l-
s-
er

nd
alf

ll
ore-
the

ype
on-
late
ec-

e
of
is-
ree

e-

to
he

ow

rate

tent
il,

of

ds,

ta
re
n

n

1974 57NOWAK, KNIGHT, BEN-NAIM, JAEGER, AND NAGEL
value of acceleration,G55.9, but measured at differen
depths in the container. Note that the rate at which the d
sity varies in time decreases with depth into the pile. Tha
the top of the pile has more high frequency noise than
bottom. The curve marked ‘‘reference’’ is the reference
pacitor to which no vibrations are applied. This last curve
essential to compensate for drifts that could occur in
electronics over the very long period of our measureme
Each record shown here is 4096 taps long and up to
successive such records were assembled to produce one
long time sequence. Figure 3~b! shows the fluctuations in th
density measured at the bottom capacitor as a function
accelerationG. As G is increased both the magnitude of th
fluctuations and the amount of high-frequency noise
crease.

From data as in Fig. 3 we can obtain the shape of
distribution function for the fluctuation amplitudes. We pl
in Fig. 4 the logarithm of the relative probability of occu

FIG. 3. Fluctuations in the volume densitydr(t)5r(t)2rss

after the system has had sufficient time to relax to a steady-s
density rss. In ~a! the fluctuations at three different depths a
shown forG55.9. The reference capacitor is used to correct for a
instrumental drift. The dependence of the fluctuations onG is
shown in~b! for the beads near the bottom of the pile. Fluctuatio
over a broad range of time scales are evident.
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rence D(dr) versus C25(r2rss)
2 sgn(r2rss) so that a

Gaussian random process will have a triangular shape. In
figure we plotD(dr) for the entire range of acceleration
4,G,7, for which fluctuations could be reliably measure
with our equipment. All data records were corrected for
strumental drifts using the reference capacitor. As can
seen in Fig. 4, the majority of data shows Gaussian chara
For a small fraction of runs~e.g.,G55.9!, however, we find
significant deviations from Gaussian behavior, particula
near the middle and bottom of the pile. When such dev
tions are present they tend to preferentially occur for posit
values ofC2, i.e., higher densities. The deviations could
due to a metastable state, away from the mean, in which
system gets trapped. Fluctuations about this metastable
may even be distributed in a Gaussian fashion. The rea
why such metastable states favor the lower portion of
column and why they are prominent at certain values ofG is
unclear.

We can qualitatively check whether the distribution fun
tions correspond to a stationary random process or whe
they conceal a slow drift away from an originally wel
defined mean density.~Strictly speaking, a stationary Gaus
ian process is one for which correlation functions of ord
higher than second are zero, see Ref.@18#!. This is done by
dividing each time record into two equal length halves a
then determining the distribution functions for each h
separately, as shown for selected values ofG and depths by
the open symbols in Fig. 4. We find that in practically a
cases the fluctuations do appear to be stationary and, m
over, that in the very few nonstationary cases observed,
Gaussian character is recovered atlater times ~i.e., in the
second half of the record!.

By assembling 132 successive time traces of the t
shown in Fig. 3, we can obtain continuous time records c
taining 540 672 data points. From such records we calcu
both the density autocorrelation function and the power sp
trum for the density fluctuations,Sr(v), where the fre-
quencyv is measured in units of inverse taps. In Fig. 5 w
plot Sr(v) versusv for the three depths at various values
acceleration,G54.3, 5.1, 5.9, and 6.8. We note several d
tinctive features to these power spectra. In particular, th
characteristic regimes emerge:~i! a white noise regime,
Sr(v)}v0 below a low-frequency cornervL , ~ii ! an
intermediate-frequency regime with nontrivial power-law b
havior, and~iii ! a simple roll-offSr(v)}v22 above a high-
frequency corner,vH . This classification appears to apply
all traces shown in Fig. 5. It is most pronounced for t
spectrum in the lower right hand panel. For spectra wherevL
andvH are sufficiently separated in frequency, the data sh
that the spectral dependence betweenvL andvH cannot be
approximated by just a simple superposition of two sepa
Lorentzians each having a frequency dependenceS}t/(1
1v2t2) but different characteristic timest. A comprehen-
sive analysis of this region reveals that the most consis
description for all the data is obtained with a Lorentzian ta
Sr( f )}v22 just abovevL , followed by a region with
Sr(v)}v2d ~with d'0.960.2! stretching up tovH , the
high-frequency corner.

One result from the data in Fig. 5 is the dependence
both corner frequencies on the accelerationG. To determine
these frequencies we used a combination of two metho
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FIG. 4. The distribution functionsD(dr) for the occurrence of fluctuation amplitudes in the steady state are shown~solid circles! for the
three depths at variousG. Plotted as a function ofC25dr2 sgn(dr) a Gaussian distribution has a triangular shape. For selected panel
time dependence of the distributions is shown by plotting the distribution functions for only the first~open squares! or second~open
triangles! half of the time record. The majority of data appears stationary even when significant non-Gaussian deviations are obser
at G55.9 near the middle and bottom of the pile.
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which we illustrate here for the simple case of a Lorentz
spectrum. First, for any Lorentzian, the productvSr has a
maximum precisely atv51/t so thatvL and vH can be
associated with the frequencies at whichvSr exhibits peaks.
Second, even though we were using extremely long t
records they are still of finite length. Figure 5 clearly ind
cates cases wherevL is difficult to obtain because of th
large statistical variance (;25%) in Sr throughout the low-
est decade in frequencies. In these instances we empl
the additional information contained in the one-sided s
transform of the density-density autocorrelation function. F
example, for a single Lorentzian for which the autocorre
tion function is simply}e2t/t, the ratio of sine to cosine
transform of the autocorrelation function is given byvt,
which depends only ont. A plot of this ratio versusv then
allows one to obtainvL51/t even if this frequency falls
n

e

ed
e
r
-

outsidethe experimentally accessible frequency window.
detailed discussion of the more general case, where the
nal consists of a superposition of independent fluctua
with a distribution of relaxation timest will be presented
elsewhere@19#.

Figure 6 plots the resulting corner frequencies as a fu
tion of applied acceleration. The trend is for bothvL andvH
to increase as a function of increasingG and with decreasing
depth into the pile, see Fig. 6~a!. We note that over the rela
tively small available range ofG, the variation ofvH is con-
sistent with behavior reminiscent of thermal activation:vH
5v0 exp(2G0 /G). In this context,G0 would represent an
energy barrier andv0 would be an attempt frequency. W
find that a value ofG0'15 is consistent with all the data, an
that the greatest variation is in the parameterv0 , which var-
ies from 231023 to 731022 for vL and 1 to 15 forvH .
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FIG. 5. The power spectral densitySr ~taps! of the fluctuations as a function of frequencyv in the steady state is shown for the thre
depths at variousG. For most spectra, two characteristic corner frequencies,vL andvH , are discernible which shift to higher frequencies f
increasingG and decreasing depth. The characteristic regimes of behavior are denoted by the dashed lines in the lower right ha
which are guides to the eye.
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III. DISCUSSION

Several mechanisms@17,20–22# have been proposed t
explain the kinetics of compaction. Although the propos
mechanisms are compelling, their quantitative predictio
fail to describe the time dependence observed experimen
@1#. In light of our experimental results, we pay special
tention to models based on free volume considerations
appears that they not only capture the experimentally
served slow relaxation towards the steady state, but may
provide a valid framework for understanding the fluctuati
spectrum. Such models@8–10,12,13# include strong nearest
neighbor repulsive interactions between particles that ef
tively block the occupation of adjacent sites. On very gene
grounds it is reasonable to assume that for the case of gr
lar compaction, the rate of increase in volume density
exponentially reduced by free volume@23–25#. One alterna-
d
s
lly
-
it

b-
lso

c-
al
u-

s

tive approach to the compaction problem is due to Linz@26#
who proposes a phenomenological decay law for succes
inverse packing fractions. Moreover, recent models based
the dynamics of crystalline clusters in the material have b
proposed by Gavrilov@27# and by Head and Rogers@28#.
These approaches lead to a time evolution that is essent
equivalent to Eq.~1!.

A simple heuristic argument@12,24# for the compaction
process illustrates how the effects of free volume can lea
the observed inverse logarithmic behavior. If each grain
a volumeVg and we start with a numbern of grains per unit
volume, then the volume fraction is given byr5nVg . In
general there exists a maximum possible volume fracti
rmax, corresponding to the configuration of grains that occ
pies the least amount of volume. Then, at some volume f
tion r, the average free volume available to each grain
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57 1977DENSITY FLUCTUATIONS IN VIBRATED GRANULAR . . .
rearrangements isVf5Vg(1/r21/rmax). During compaction,
individual hard-core grains move, and when a void lar
enough to contain a grain is created, it is quickly filled by
new particle. When the volume fraction is large, voids t
size of a particle are rare and a large number of voids m
rearrange to accommodate an additional particle. We can
timate the rate of compaction by assuming thatN grains
must rearrange in such a way that they contribute their en
free volume to create a grain-sized void,NVf5Vg . We find
that this number increases asN5rrmax/(rmax2r) during the
compaction process. For independent, random grain mo
during a tap, the probability forN grains to rearrange an
open up a grain-size void is thene2N. Consequently,

dr/dt}~12r!e2N5~12r!e2rrmax/~rmax2r!. ~2!

The rate at which the density increases is proportional to
void volume and the probability for such a rearrangeme
The latter exponential factor reduces the rate and domin
for large r. In the limit r→rmax we haveN'(rmax)

2/(rmax
2r) and the solution of this equation is given asymptotica
by r(t)5rmax2A/@B1ln(t)#, whereA and B are constants
@10,13,24,25#. This result closely approximates our expe
mentally based fitting form, Eq.~1!, for the ensemble-
averagedr(t) as it approaches the steady state.

The solution to Eq.~2! always approaches the maximu
densityrmax and does not allow for a lower steady-state de
sity. The reason that this model leads to jamming is the

FIG. 6. The characteristic frequencies,vL ~open symbols! and
vH ~solid symbols!, in the power spectra plotted as a function
1/G. The general trend is for bothvL and vH to increase with
increasingG and decreasing depth into the pile. The dashed line
~b! is a guide to the eye, indicating that the trend is consistent w
an activated-like behaviorv}exp(2G0 /G), with G0'15. For com-
parison,~a! shows the dependence ofvH on G.
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sence of any void-creating mechanism that would be rep
sented by a competing term on the right-hand side of Eq.~2!.
~The consequences of including a mechanism for the gen
tion of voids are discussed in the next section for the ‘‘pa
ing lot model’’ and in Appendix A.! The competition be-
tween void annihilation and creation during tapping natura
leads to density fluctuations. We can also examine our d
for the dependence of the corner frequencies on the
celeration G @Fig. 6~b!#, where we found thatvH
5v0 exp(2G0 /G). We use the fact thatr is a monotonic
function of G in the reversible steady-state regime~Fig. 2!
and write to first orderr(G)'rmax2mG, wherem is a posi-
tive constant, locally approximating the slopeDr/DG ~see
Ref. @14# for data on other bead sizes!. Substituting in forG,
the expression forvH can then be rewritten asvH
5v0exp@2mG0 /(rmax2r)#. This has the same form as th
right-hand side of Eq.~2! ~in the limit that r→rmax! and
indicates that the kinetics depend sensitively on the availa
free volume,}(1/rmax21/r). As G is reduced and the den
sity approaches the maximum density, the kinetics sl
down rapidly. The manner in which the kinetics slow dow
is reminiscent of the Vogel-Fulcher form used to descr
another class of disordered metastable materials, nam
glasses@29#. Similarities to glasses have recently been fou
in another approach to the compaction process@8–10#.

IV. THEORETICAL MODEL AND SIMULATIONS
OF COMPACTION

The parking lot model

In an attempt to explicitly work out some of the cons
quences of the free volume approach to granular compac
we next discuss a simplified model. The model was pre
ously studied in the context of chemisorption@23–25,30,31#
and protein binding@32#. Despite its simple nature, it give
remarkably good qualitative agreement with the experim
tal data, both for the approach to the steady state and for
spectrum of fluctuations in the steady state. This model
the advantage that it readily lends itself to computer simu
tions; we restrict ourselves to the one-dimensional~1D! case,
but extensions to higher dimensions are straightforwa
Moreover, much is known about its low-density limit, fo
which mean-field equations exist that are amenable to a
lytic treatment~see the Appendix!. In 1D, the model can be
compared to parallel curbside parking where there are
marked parking spaces. For the person wishing to par
vehicle, the familiar situation is that there exist large, but n
quite large enough, spaces between previously parked
The analogous question to the one we have been askin
‘‘How many other cars have to be moved just a bit for t
additional one to fit in?’’

The model is defined as follows: identical particles of u
length adsorb uniformly from the bulk onto a substrate w
ratek1 and desorb with ratek2 . In other words,k1 adsorp-
tion attempts are made per unit time per unit length, a
similarly, the probability that an adsorbed particle desorbs
an infinitesimal time interval betweent and t1dt is k2dt.
While the desorption process is unrestricted, the adsorp
process is subject to free volume constraints, i.e., parti
cannot adsorb on top of previously adsorbed particles;
Fig. 7. This stochastic process is well-defined in arbitra
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1978 57NOWAK, KNIGHT, BEN-NAIM, JAEGER, AND NAGEL
dimension and clearly satisfies detailed balance so that
system eventually reaches a steady-state density. In on
mension,rmax51.

Mapping the model on to the experiment, we associate
adsorption event with the annihilation or filling of a vo
within the pile of beads, whereas a desorption event is a
ciated with the creation of a void. The ratio of adsorption
desorption rates,k5k1 /k2 , determines the final steady
state density in the model~see also the Appendix!. Thus one
can associatek in the model with the magnitude of the a
celerationG in our experiment.

Simulation of compaction based on the parking lot model

In this section we compare the experimental results w
Monte Carlo simulations of the 1D parking process. The
tails of the simulation are described elsewhere@24#. Here we
report our results for a system size of 100; similar resu
were found for a system size of 25.

The simulations were started from a zero density ini
state and allowed to evolve to various steady-state dens
by varyingk2 at a fixed value ofk151. In Fig. 8 we show
the time evolution of the density as it approaches a stea
state densityrss50.84. The steady-state densities obtain
after equilibration coincide with those predicted by E
~A2a! in the Appendix. We find that the simulations repr
duce the slow logarithmic relaxation towards the steady s
in agreement with Eq.~1!.

We now turn to the density fluctuations. In this case,
simulations ran long enough to ensure that a steady-s

FIG. 7. The adsorption-desorption process. Adsorption is s
cessful only in spaces large enough to accommodate a par
Desorption of a particle, on the other hand, is unrestricted.

FIG. 8. The time evolution of the density in the simulation f
k5103 (rss50.84). Time is in units of Monte Carlo steps~MCS!.
The solid line represents a fit to Eq.~1!.
he
di-

n

o-

h
-

s

l
ies

y-
d
.

te

e
te

density was attained before density fluctuations were
corded. For low densitiesrss,0.37 we find that in the simu-
lation the power spectra of the fluctuations are best descr
by a Lorentzian having a single characteristic time scale
expected from the mean-field analysis@see Eq.~A4! in the
Appendix#. However, at higher densities~higher k! local
fluctuations dominate the dynamics and the power spe
show the emergence of two distinct corner frequenc
which become progressively more separated. This is sh
in Fig. 9 for a wide range of ratiosk, wherek1 was fixed at
a value of 1. Most notable is the low-frequency corn
which shifts rapidly to lower frequencies for small incr
ments in density. By comparison, the high-frequency cor
decreases much more slowly.

Our simulations find power spectra,Sr(v), strikingly
similar in shape to those obtained experimentally whenrss
.0.50. Again we see three distinct regimes~Fig. 9!. Below a
corner frequency,vL , there is white noise@Sr(v)}v0#.
Above a high-frequency corner,vH , Sr(v)}v22. The
simulations offer the advantage of allowing the separat
betweenvL andvH to be tuned by increasing the value ofk
or, equivalently, increasing the density. This allows the s
tematic investigation of the spectral dependence in the in
mediate regime between the two corner frequencies. A
the experimental data, we find that there is a Lorentzian
Sr(v)}v22 just abovevL . At higher frequencies, stretch
ing up to the high-frequency cornervH , we find a power-
law regimeSr(v)}v2d. The exponentd appears to depend
slightly on the separation between the two corner frequ
cies. For the largest separations that span nearly 5 decad
frequency we findd'0.5. This value is smaller than tha
found in the experimental data (d'0.9), but again is incon-
sistent with a simple superposition of two Lorentzians ha
ing characteristic time scalesvL

21 andvH
21.

V. ANALOGY WITH THERMAL FLUCTUATIONS

In ordinary statistical mechanics, the fluctuatio
dissipation theorem allows the determination of the respo

c-
le.

FIG. 9. Power spectra,Sr ~MCS!, of the density fluctuations in
the simulation of the one-dimensional parking process. The ev
tion of the spectral dependence is shown for values of the ratk
533,102,103,104, corresponding to final steady-state densitiesrss

50.72, 0.77, 0.84, and 0.88, respectively~see text!. The strongest
dependence onk is for vL , which decreases rapidly as the dens
increases. Such spectra are similar to those found in the experim
see Fig. 5.
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of a system to a small perturbation from its thermal fluctu
tions about equilibrium. In this section, we will explore th
possibility that we can derive similar information about t
granular system from its fluctuations about its steady-s
density. In the granular thermodynamics theory develo
by Edwards and co-workers, an analogy is made betw
granular and thermal systems. The basic assumption is
the volume Vof a powder is analogous to theenergyof a
statistical system~we note thatV here refers to the tota
volume and not just to the free volume!. Instead of a Hamil-
tonian, there is a function that specifies the volume of
system in terms of the positions of the individual grains. T
‘‘entropy’’ is thus the logarithm of the number of configura
tions: S5l ln *d ~all configurations! wherel is the analog
of Boltzmann’s constant. Using this they defined a quan
analogous to a temperature in a thermal system, which
call the ‘‘compactivity’’ X: X5]V/]S. In contrast to the
notion of ‘‘granular temperature,’’ which depends on t
random motion of the particles, the compactivity charact
izes the static system after it has reached a steady-state
sity via some preparation algorithm. Such an algorith
would be one as we have described above, where we h
vibrated the granular system until it has reached the rev
ible steady-state density. If this theory is valid, then
should be able to define an equilibrium such that two s
tems in equilibrium with a third system are also in equili
rium with each other. That is, no net volume will be tran
ferred between the two systems when they are place
contact with each other if they have the same value ofX.

In a thermal system we can write the specific heat in t
ways as follows:

CV5dE0 /dTuV5^~E2E0!2&/kBT2, ~3!

whereE0 is the equilibrium average of the energyE of the
system,kB is Boltzmann’s constant,T is the temperature
and^•••& represents the time average. In Edwards’ theory
a powder the analogous quantity to the specific heat o
thermal system given in Eq.~3! becomes

C5dVss/dX5^~V2Vss!
2&/lX2, ~4!

where Vss is the steady-state volume. Since we have m
sured the density fluctuations in the steady state~Figs. 3–5!,
we are in a position to explicitly calculate the varianc
^(V2Vss)

2&, of volume fluctuations for a given steady-sta
volumeVss defined here asVss51/rss. We can then write

E
V1

V2
dVss/^~V2Vss!

2&5E
X1

X2
dX/lX251/lX121/lX2 .

~5!

Equation~5! allows us to measure the difference in compa
tivities for any two volumes as long as we know the fluctu
tions of the volumes~i.e., densities! as a function of the
average volume. This is equivalent to obtaining the diff
ence in temperatures for a thermal system between any
energies. Clearly, asVss increasesX is expected to increas
as well. Equation~5! allows the determination of an absolu
value for the compactivity only once a suitable point of re
erence can be found.

In Fig. 10 we show the experimentally obtained values
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^(V2Vss)
2& for several steady-state volumes along the

versible branch of Fig. 2 over the range 4,G,7 @33#. The
solid curve through the data for the top of the pile represe
a linear fit to the function:

^~V2Vss!
2&5a1bVss,

wherea527.231024 andb54.931024. This implies that
the magnitude of the fluctuations goes to zero atr'0.68,
that is, near the close-packed density. Using this form for
dependence of the fluctuations onVss in Eq. ~5! we find that

1/lX} ln~a1bVss!. ~6!

This functional dependence is valid only over the limit
range of experimental data, and may not be an adequate
scription of the general behavior. Below, we discuss a si
lar analysis for the simulation data for which a broader ran
of volumes can be explored. Using Eq.~6!, we can evaluate
the difference in inverse compactivities between any t
steady-state volumes. We find that 1/lX121/lX250.04
where the subscripts 1 and 2 refer to the smallest and lar
volumes for which we have data. This result explicitly dem
onstrates how the compactivity increases for larger volum
~smaller densities!.

It is also interesting to consider the size of the fluctuat
volumes that give rise to the observed variance. This can
estimated by assuming that the fractional fluctuations sc
as ^dr2&/rss

2 5^dV2&/Vss
2 5k2/N, wheredV5V2Vss. This

is the usualN21/2 classical self-averaging property ofN in-
dependently fluctuating variables. The parameterk accounts
for the fact that there exists a maximum range of dens
changes for each grain that does not compromise the
chanical stability of the granular assembly. Figure 10 in
cates that̂ dV2&/Vss

2 >1/40 000, and as an upper bound w
let k5rxtal2rRLP50.7420.55'0.2. We then find thatN
>1600. Since we know that each capacitor averages ov
volume corresponding to 6000 beads, this suggests that t
are roughly 1600 independently fluctuating clusters e
consisting of;4 beads~lower bound!.

An important feature that can be seen in Fig. 10 is that
variance becomes systematically larger the deeper into

FIG. 10. The average variance of the experimental volume fl
tuations~open symbols! as a function of the steady-state volum
The trend is for the variance to increase with increasing volume
depth into the pile. The solid symbols represent the variance
determined from the distribution of fluctuation amplitudes in Fig
~see text!. The dashed lines are linear fits to the solid symbols.
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1980 57NOWAK, KNIGHT, BEN-NAIM, JAEGER, AND NAGEL
pile one goes@see alsoD(dr) for G55.1 in Fig. 4#. For the
middle and bottom sections of the column, the variance
pears nonmonotonic with a peak nearVss51.592, see open
symbols in Fig. 10. Examination of the corresponding dis
butions of fluctuation amplitudes~G55.9 in Fig. 4! indicates
that the increased variance is due to a non-Gaussian ta
the distributions~see the description of Fig. 4, above!. For
comparison, we have also determined the variance from
slopes of the distribution functions in Fig. 4. We used t
slopes corresponding to the low-density side of the distri
tions because these were most consistent with a Gaus
form over all accelerations and depths. In this way, the ef
of the non-Gaussian tails in some of the distributions can
avoided. These results are shown as solid symbols in Fig
and the dashed lines correspond to linear fits through
data. Here too, it is evident that the variance is larger
larger depths. A larger variance implies a correspondin
larger phase space. At first this seems counterintuitive
cause the time records@Fig. 3~a!# and power spectra~Fig. 5!
indicate that density fluctuations are slower at the bottom
the pile. Although the kinetics near the bottom of the p
may be slower, there is a greater number of configurati
with different volumes that are accessible to those beads

A depth dependence to the variance also suggests
presence of a gradient in the compactivity. In Fig. 10,
used the average steady-state volumesVss, obtained from
optical measurements of the total column height. One po
bility is that this average volume density does not accura
represent the density in the different sections of the pile
so, the larger compactivity near the bottom of the pile th
implies that the bottom beads are actually in a less com
state than those at the top. However, from the trend in^dV2&
versusVss in Fig. 10 the difference in packing fraction be
tween the top and bottom of the pile that would be necess
to have the variances be equal would beDr'0.035. Since
this difference is huge on the scale ofr~G! for the reversible
branch in Fig. 2 we do not believe this to be a plausi
explanation. Rather, it appears that there is another varia
such as pressure, in addition to the volume, that controls
depth dependence of the fluctuations. Indeed, supporting
dence to this effect can also be seen in Fig. 6, which sh
that the high-frequency cornervH decreases with increasin
depth into the pile. Nevertheless, we expect that the sys
is entirely jammed̂ dV2&→0 at the same density~i.e., rmax!
for all depths in the pile.

With the simulation described above, a broader range
densities can be explored than that which is experiment
accessible. Figure 11 shows the dependence of the vari
in volume fluctuations as a function of steady-state volu
for the 1D parking lot model. The rapid decrease in varian
nearVss51 suggests that there may be a diverging length
time scale as the system approaches its most compact
Indeed, plotting the normalized variance as a function of
free volume (Vss21) does reveal power-law-like behavio
^dV2&/Vss

2 }(Vss21)b with b'1.4. This is shown in the in-
set of Fig. 11. Proceeding with the compactivity analysis,
data in Fig. 11 was numerically integrated to yield the le
hand side of Eq.~5! to within a constant. An absolute valu
cannot be established with just our data. In Fig. 12 we p
the difference in inverse compactivity as a function of v
ume. This difference is with respect to the stateVss51.1.
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Figure 12 indicates a nontrivial functional dependence to
increase in compactivity with system volume.

For comparison, the 3D experimental results corresp
to relatively high densities in the 1D simulation because
3D the available void volume is with respect to the rando
close packed limit ('0.64) while the corresponding limit in
1D is 1. Taking this into account, the 30% increase in^dV2&
in the experimental results shown in Fig. 10 compares w
with the simulation data in Fig. 11 over a similarly restricte
range inVss.

VI. CONCLUSIONS

In this paper, we have examined the volume fluctuatio
about a steady-state density for a granular system. For t
measurements to provide a useful analogy with a ther
system, it is essential that the fluctuations be measure
steady-state conditions. For this reason, we have explic
taken data on the reversible density line as shown in Fig
From these measurements, we have been able to deter
experimentally the compactivity, which is the quantity ana
gous to the temperature in the theory of Edwardset al.

FIG. 11. The average variance of the volume fluctuations in
simulation as a function of the steady-state volume,Vss. The frac-
tional variance as a function ofVss21 is plotted on logarithmic
axes in the inset. The solid line is a power-law fit given
0.0124(Vss21)1.37.

FIG. 12. The left hand side of Eq.~5! is numerically evaluated
and plotted as a function of steady-state volume for the simula
data. As plotted, the difference in inverse compactivities betw
the highest density configuration (Vss51.1) and a low density con-
figuration ~higherVss! can be read off directly.



e
s
a
h
b

th
n
n
tio
t
i

n

-
ly
si
tio
ity
e

d

t
su
an
O
th

r-
as
ni
ce
n
an
te
n

re
pa
a

in
w

rta
th
o
d
tic
m

o
e
he
t
e

d
o

tw
he
re
ha

tent
e-

erse
w-
on

ir-
ults
dic-
lity
e’’
fur-
x-
par-
pic
t the
fully
her,
en-

s
eld
en-

the

is-
to

ith
gh
S-
he
e-

cal
xi-
ted
ion
den-

ior,
a-
be

ed
-

ob-
by

,
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Theories based on free volume seem particularly w
suited for describing the data. As the system approache
final state, a growing number of particles have to be re
ranged in order for the density to be increased locally. T
rate of increase in the density is exponentially reduced
this number leading to a logarithmically slow approach to
steady-state density as observed experimentally. Mo
Carlo simulations of a one-dimensional adsorptio
desorption process based on these ideas show fluctua
about the steady state density that are strikingly similar
those observed experimentally. These results attest to the
portance of volume exclusion for granular relaxation a
steady-state dynamics under vibration.

Despite this model’s simplicity and obvious shortcom
ings, it appears to capture an essential mechanism under
the remarkably slow relaxation and the nature of the den
fluctuations. This mechanism is associated with the reduc
of free volume available for particle motion as the dens
increases. Although our simple model cannot predict the
perimental values of the fitting parameters in Eq.~1!, the
inverse logarithmic density relaxation towards the stea
state is the same one observed for granular compaction~see
Fig. 1!.

In the simulation model, our treatment was restricted
one-dimensional processes, but we expect that the re
hold in higher dimensions as well. There are other import
distinctions between the model and real granular media.
difference is that in the structure of a granular assembly
particles form contact networks. The creation of a void~a
desorption event in the model! therefore requires the rea
rangement of several particles and is thus restricted just
the annihilation of voids. Another difference is the mecha
cal stability of a granular assembly. This property will pla
limits on the free volume available for large void creatio
For instance, for spherical particles in three dimensions
in the presence of gravity the available free volume is de
mined by the restricted range of accessible volume fractio
namely, between the random close packedr'0.64 and ran-
dom loose packedr'0.55 configurations.

It is interesting to speculate whether the reduction in f
volume leads to a crossover from a simple independent
ticle picture for compaction to a more complex process
higher densities, presumably involving correlations over
creasingly longer length and time scales. In this regard,
have demonstrated that density fluctuations are an impo
probe of the underlying microscopic dynamics. Indeed,
study of fluctuations may elucidate the physics
independent- and cooperative-particle motions, which lea
the macroscopic response of a powder subject to ver
vibrations. For instance, it is interesting to note that fro
both the experimental and simulation data there appear t
two characteristic time scales, related to the corner frequ
cies vL and vH in the power spectra, that characterize t
steady-state dynamics. This behavior may be related to
results found in 3D simulations of vibrated powders by M
hta and Barker@17,20,34# and in simulations of a frustrate
lattice gas@8–10#. Those results suggested the existence
two exponential relaxation mechanisms: the faster of the
involves the motions of independent particles while t
slower involves collective particle motions, which we
found to be diffusive. However, we emphasize again t
ll
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both our experimental and simulation data are not consis
with a superposition of two independent exponentially d
caying processes.

In this paper we have presented results for monodisp
spherical particles subject to vertical shaking. Realistic po
ders are far more complicated with properties that depend
factors like cohesive forces, polydispersity in size, and
regularity or anisotropy in shape. Nevertheless, our res
can provide a valuable benchmark for evaluating the pre
tions of theoretical models and simulations. The applicabi
of concepts such as compactivity or ‘‘granular temperatur
in the description of quasistatic granular media requires
ther exploration. In particular, it would be interesting to e
amine the properties of granular systems comprised of
ticles with shape anisotropies and subject to isotro
shaking. Furthermore, our experimental data suggest tha
steady-state properties of a granular assembly cannot be
described by a single state variable, i.e., the volume. Rat
another variable is required to account for the depth dep
dence of the volume fluctuations.

Note added in proof. The width of the density fluctuation
in the parking lot model can be calculated in the mean-fi
approach described in the Appendix. For details see E. B
Naim et al., Physica D~to be published!. Such calculation
predicts a power law as seen in the inset to Fig. 11 for
simulation data, but with an exponentb52.
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APPENDIX

For the one-dimensional parking lot model an analyti
mean-field description exists. On the continuum, an appro
mate rate equation for the density evolution was construc
from the exact steady-state void distribution. This equat
yields an approach to the steady state that is essentially i
tical to that found in the experiment@i.e., Eq.~1!#. However,
it is less successful in capturing the fluctuation behav
particularly for the high densities relevant here. We summ
rize the salient analytic results for the model. Details can
found in Refs.@23–25#. A modified Langmuir equation can
be written for the rate of change in density@24#:

dr

dt
5k1~12r!e2r/~12r!2k2r. ~A1!

The gain term is proportional to the fraction of unoccupi
space, which is modified by an ‘‘excluded volume’’ con
straint. It was previously shown that in steady state the pr
ability s(r) that an adsorption event is successful is given
s(r)5e2r/(12r) @24#. This so-called ‘‘sticking coefficient’’
vanishes exponentially asr→1. This effectively reduces the
sticking rate,k1→k1(r)5k1s(r). The desorption process
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on the other hand, is unrestricted and so the loss term
proportional to the density itself.

The steady-state densityrss, which is obtained by impos
ing dr/dt50, can be determined as a function of the adso
tion to desorption rate ratio,k5k1 /k2 , from the following
transcendental equation:

aea5k, with a5rss/~12rss!. ~A2a!

The following leading behavior in the two limiting cases
found

rss~k!>H k for k!1

12~ ln k!21 for k@1.
~A2b!

The effect of the volume exclusion constraint is striking
huge adsorption to desorption rate ratio,k>109, is necessary
to achieve a 0.95 steady-state density.

We now focus on the relaxation properties of the syste
The granular compaction process corresponds to the
density limit, and we thus consider the desorption-control
case,k@1. Hence, let us fixk151 and consider the limit
o
e
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k2→0 of Eq. ~A1!. For t@1/k1 , it can be shown that the
system approaches complete coverage,r`51, according to
@24,25#

r~ t !>r`21/~ ln k1t !. ~A3!

This is confirmed by numerical simulations in one dimens
~see Ref.@24# and Sec. IV!. We conclude that the exclude
volume constraint gives rise to a slow relaxation.

Equation~A3! holds indefinitely only for the truly irre-
versible limit of the parking process, i.e., fork5`. For large
but finite rate ratios, the final density is given by Eq.~A2b!.
By computing how a small perturbation from the steady st
decays with time, an exponential relaxation towards
steady state is foundurss2r(t)u}e21/T for t@1/k2 . The re-
laxation time is

T5~12rss!
2/k2 . ~A4!

The above results can be simply understood: the early t
behavior of the system follows the irreversible limit ofk2

50. Once the system is sufficiently close to the steady st
the density relaxes exponentially to its final value.
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