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We study structural properties of trees grown by preferential attachment. In this mechanism,
nodes are added sequentially and attached to existing nodes at a rate that is strictly proportional
to the degree. We classify nodes by their depth n, defined as the distance from the root of the

tree, and find that the network is strongly stratified. Most notably, the distribution f
(n)
k of nodes

with degree k at depth n has a power-law tail, f
(n)
k ∼ k−γ(n). The exponent grows linearly with

depth, γ(n) = 2+ n−1
〈n−1〉

, where the brackets denote an average over all nodes. Therefore, nodes that

are closer to the root are better connected, and moreover, the degree distribution strongly varies
with depth. Similarly, the in-component size distribution has a power-law tail and the characteristic
exponent grows linearly with depth. Qualitatively, these behaviors extend to a class of networks
that grow by redirection.

PACS numbers: 89.75,Hc, 05.40.-a, 02.50.Ey, 05.20.Dd

I. INTRODUCTION

Unlike the ordered crystalline structure of solid-state
matter [1], a wide array of natural and man-made net-
works ranging from chemical reaction pathways and so-
cial groups to the Internet and airline routes have a
strongly heterogeneous structure [2–4]. The connectiv-
ity of an element in such complex networks varies across
multiple scales: most of the nodes have a very small num-
ber of connections, but there is also a small number of
highly connected hubs.

The degree distribution measures the connectivity in
the network and is widely used to characterize the struc-
ture of complex networks. This distribution uniformly
samples all nodes in the network. Yet, given the highly
heterogeneous structure of complex networks, it is plau-
sible that different subsets of nodes have very different
structural characteristics. In this study, we show that the
degree distribution strongly varies in a given network.

We focus on the basic preferential attachment mecha-
nism [5, 6] which provides a useful model of growing net-
works [7, 8]. The preferential attachment network, where
nodes are added sequentially and attached to existing
nodes at a rate proportional to the degree, demonstrates
how a “rich-gets-richer” mechanism generates networks
with highly connected nodes and with a broad distribu-
tion of connectivities.

For the preferential attachment network, which has a
tree topology, it is natural [9, 10] to classify nodes by
their depth n, defined as the distance from the root. This
depth representation divides the network into layers: the
first layer includes nodes with depth n = 1, the second
layer includes nodes with depth n = 2, etc. Our main

result is that the distribution f
(n)
k of nodes with degree

k at the nth layer has an algebraic tail with a depth-
dependent exponent,

f
(n)
k ∼ k−γ(n), γ(n) = 2 +

n − 1

〈n − 1〉 . (1)

Interestingly, the exponent γ grows linearly with depth,
and thus, nodes that are closer to the root tend to be bet-
ter connected. The degree distribution (1) matches the
total degree distribution, f total

k ∼ k−3, only at the aver-
age depth, n = 〈n〉. The tail of the degree distribution
is overpopulated with respect to the total distribution
below the average depth and conversely, the tail is un-
derpopulated above the average depth. Therefore, the
network is stratified. In particular, the structure of the
network changes with depth because the degree distribu-
tion is not uniform across the network.

This qualitative behavior extends to other structural
features of the network. In particular, the in-component
size distribution that measures the total number of nodes
that emanate from a given node has a very similar be-
havior: in any layer the distribution has an algebraic
tail and the corresponding exponent grows linearly with
depth. Furthermore, the tail of the in-component size
distribution is shallow below the average depth but steep
above the average depth. We generalize these results to
the broader class of redirection networks, and find similar
network structures.

The rest of this paper is organized as follows. We de-
scribe the preferential attachment network and discuss
the distribution of depth in section II. We analyze the
depth dependence of the degree distribution and the in-
component size distribution in sections III and IV, re-
spectively. We briefly discuss redirection networks in sec-
tion V and conclude in section VI. The correction to the
leading asymptotic behavior in large but finite networks
is derived in Appendix A.

II. THE PREFERENTIAL ATTACHMENT

NETWORK

In the preferential attachment model of network
growth, nodes are added one at a time. Each new node
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FIG. 1: Illustration of the redirection process. The new node,
indicated by a bullet, links with equal probabilities to a ran-
domly selected node or to its parent.

is linked to a target node that is selected with probabil-
ity strictly proportional to the degree. This attachment
mechanism favors strongly connected nodes over weakly
connected ones. We assume that initially there is a sin-
gle node, the root. Since each attachment event adds one
node and one link, the network maintains a tree topology.

We use link redirection [9] to emulate preferential at-
tachment. In the redirection process, following the addi-
tion of a new node, an existing node is selected at ran-
dom. With probability 1

2 , the new node links to this

randomly selected node, and with equal probability 1
2 ,

the new node links to the parent of the selected node,
as in figure 1. A node with degree k has one outgoing
link and k − 1 incoming links, and the total probability
Pk of attachment to such a node includes two contribu-
tions: the probability of a direct link is 1

2N where N
is the total number of nodes while the probability of a
redirected link is k−1

2N . Thus, the total attachment proba-

bility Pk = k
2N is strictly proportional to the degree, and

this link redirection process is equivalent to preferential
attachment. Redirection does not explicitly involve the
degree of a node, and is therefore convenient for both
theoretical analysis and numerical simulation [9, 11].

Let us label the nodes in the network by their depth n,
defined as the distance from the root. With this defini-
tion, nodes are grouped by layers: the first layer consists
of nodes with n = 1, the second layer consists of nodes
with n = 2, etc, as illustrated in figure 2. As a prelimi-
nary step, we evaluate Mn(N), the expected number of
nodes at the nth layer in a network with N nodes. This
quantity obeys the difference equation

Mn(N + 1) − Mn(N) =
Mn−1(N) + Mn(N)

2N
. (2)

The boundary condition is M0 = 1 because there is a
single root. The first gain term on the right hand side ac-
counts for direct links and the second term for redirected
links. Also, the right hand side is inversely proportional
to the total number of nodes. This difference equation
can be converted into a differential equation when the
network is large, N À 1,

dMn

dN
=

Mn−1 + Mn

2N
. (3)

n=2

n=1

n=0

FIG. 2: Illustration of the layer structure. Indicated in the
figure are the first three layers.

Henceforth, the N -dependence is implicit. The num-
ber of nodes at the first layer, M1 ∼ N1/2, fol-
lows from dM1/dN = M1/(2N) [9]. In general, the
transformation Mn = M1mn reduces equation (3) to
dmn/dN = mn−1/(2N) with the boundary condition
m1 = 1. Solving this latter equation recursively

yields m2 = 1
2 ln N , m3 = 1

2!

(

1
2 ln N

)2
, and in general,

mn = 1
(n−1)!

(

1
2 ln N

)n−1
. Therefore, the distribution of

depth is

Mn ∼ N1/2

(

1
2 ln N

)n−1

(n − 1)!
. (4)

Accordingly, the distribution of the variable n − 1 is
Poissonian and is fully characterized by the average that
grows logarithmically with the total number of nodes,

〈n − 1〉 ' 1

2
lnN. (5)

Furthermore, the variance, σ2 = 〈(n − 1)2〉 − 〈n − 1〉2,
equals the average, σ2 ' 1

2 ln N .
In principle, the Poisson depth distribution (4) is Gaus-

sian in the vicinity of the average depth. Specifically, the
the variable ξ = [(n − 1) − 〈n − 1〉]/σ obeys Gaussian
statistics. In practice, since the depth and the variance
both grow logarithmically with the network size, statis-
tics of the depth are not fully captured by the Gaussian
distribution even in very large networks.

We measure the depth in units of the average using the
normalized depth

y =
n − 1

〈n − 1〉 . (6)

The average number of nodes with normalized depth y
grows as a power-law with the total number of nodes,

Mn ∼ Nν , ν =
1 + y − y ln y

2
. (7)

This result is obtained by substituting n−1 = y
2 ln N into

(4) and then evaluating the quantity ln Mn ' ν ln N us-
ing the Stirling formula, ln n! ∼ n ln n − n. As expected,
the total number of nodes at the average depth is propor-
tional to the system size, ν(1) = 1, and the total number
of nodes at the first layer is consistent with (4), ν(0) = 1

2 .
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In general, the exponent ν that characterizes the popu-
lation of nodes at a given depth is continuously varying,
and in particular, this exponent vanishes at a nontrivial
maximal depth, ymax = 3.59112, specified as the root of
the equation 1 + ymax = ymax ln ymax. Therefore, there
are no nodes with depth larger than this maximal depth,
0 ≤ y ≤ ymax.

III. THE DEGREE DISTRIBUTION

We now discuss the unnormalized degree distribution,

F
(n)
k , defined as the average number of nodes with depth

n and degree k. We begin with the first layer, n = 1,

where the quantity F
(1)
k obeys the rate equation

dF
(1)
k

dN
=

(k − 1)F
(1)
k−1 − kF

(1)
k

2N
+

M0 + M1

2N
δk,1. (8)

Throughout this study, we assume that the network is
large and treat N as a continuous variable. In other
words, we use rate equations as in (3) rather than differ-
ence equations as in (2). The first two gain terms on the
right hand side account for augmentation in the degree of
an existing node due to attachment, and the correspond-
ing rate of attachment to nodes with degree k equals
the attachment probability Pk = k

2N . The last two gain
terms, accounting respectively for redirected links and
direct links, correspond to the new nodes.

We now introduce the degree distribution f
(1)
k , the

fraction of first layer nodes with degree k, defined by

F
(1)
k = M1f

(1)
k . (9)

This distribution is normalized,
∑

k f
(1)
k = 1. With the

definition (9), the evolution equation (8) becomes

M0 + M1

2N
f

(1)
k = M1

(k − 1)f
(1)
k−1 − kf

(1)
k

2N
+

M0 + M1

2N
δk,1.

In writing this equation, we kept the rate of change of the
total number of nodes in the first layer dM1/dN given by
(3), but neglected the sub-dominant N -dependence of the

normalized degree distribution df
(1)
k /dN . The number of

nodes at the zeroth layer, M0 = 1, is negligible compared
with the number of nodes at the first layer, M0 ¿ M1,

and as a result, the degree distribution f
(1)
k obeys the

simple recursion equation

(k + 1)f
(1)
k = (k − 1)f

(1)
k−1 + δk,1. (10)

Hence, the degree distribution is f
(1)
k = 1

1·2 , 1
2·3 , 1

3·4 for
k = 1, 2, 3, and in general, this quantity is remarkably
simple,

f
(1)
k =

1

k(k + 1)
. (11)
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FIG. 3: The degree distribution at different depths. Shown is
the closed form expression (14) for five, equally-spaced, values
of the normalized depth y defined in (6).

This distribution is properly normalized,
∑

k f
(1)
k = 1.

Interestingly, the tail of the normalized degree dis-

tribution, f
(1)
k ∼ k−2 is overpopulated with respect

to that of the total degree distribution, f total
k ∼ k−3

[6–8]. Nevertheless, the expected number of nodes

with degree k at the first layer, F
(1)
k ∼ N1/2k−2, re-

mains smaller than the total number of nodes with
degree k, F tot

k ∼ Nk−3, because the maximal degree

in the network is bounded, k ¿ N 1/2. The maxi-
mal degree in the network, kmax ∼ N1/2, is esti-
mated by equating the cumulative degree distribution
Qk =

∑

j≥k F tot
j ∼ Nk−2 to one, Qk ∼ 1. Equation (11)

clearly shows that nodes at the first layer tend to be much
more connected compared with the rest of the network.

The equation governing F
(n)
k , the average number of

nodes with degree k at the nth layer, is given by a
straightforward generalization of (8),

dF
(n)
k

dN
=

(k − 1)F
(n)
k−1 − kF

(n)
k

2N
+

Mn−1 + Mn

2N
δk,1. (12)

Following the steps leading to (10), the degree distribu-

tion, f
(n)
k , defined as in (9), F

(n)
k = Mnf

(n)
k , obeys the

recursion equation

(k + 1 + y)f
(n)
k = (k − 1)f

(n)
k−1 + (1 + y)δk,1 (13)

with the shorthand notation y = Mn−1/Mn. The pa-
rameter y is equivalent to the normalized depth de-
fined in (6). The degree distribution follows immediately
from the recursion equation (13). First, the fraction of

leafs is f
(n)
1 = (1 + y)(2 + y). Second, using the ratio

f
(n)
k /f

(n)
k−1 = (k − 1)(k + 1 + y) and the following prop-

erty of the Gamma function, Γ(x + 1)/Γ(x) = x, we ex-
press the degree distribution in a closed form in terms of
the Gamma function,

f
(n)
k = (1 + y)

Γ(2 + y)Γ(k)

Γ(k + 2 + y)
. (14)
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Therefore, there is a family of degree distributions, pa-
rameterized by the normalized depth y. From the well-
known asymptotic behavior of the ratio of Gamma func-
tions, limx→∞[xaΓ(x)/Γ(x + a)] = 1, we find that the
degree distribution has a power-law tail,

f
(n)
k ' Ak−γ(n) (15)

for k À 1. The characteristic exponent γ = 2 + y grows
linearly with depth

γ(n) = 2 +
n − 1

〈n − 1〉 , (16)

and the prefactor is A = (1 + y) Γ(2 + y). The power-
law behavior (15) strictly holds only for infinitely large
networks. The appendix describes the correction to this
leading asymptotic behavior in large but finite networks.

As shown in figure 3, the degree distribution is not
uniform across the network and the characteristic ex-
ponent γ(n) increases linearly with depth n. There-
fore, nodes that are closer to the root tend to have a
larger number of connections. The tail of the degree
distribution is overpopulated with respect to the total
degree distribution below the average depth as γ < 3
for n < 〈n〉. Similarly, the tail is underpopulated with
respect to the total degree distribution above the aver-
age depth, γ > 3 for n > 〈n〉. The degree distribu-
tion at the average depth equals the total degree distri-

bution f
(〈n〉)
k = f total

k = 4/[k(k + 1)(k + 2)] because the
depth distribution (4) gradually narrows around the av-
erage depth (5) as the network grows. Nevertheless, there
is still an appreciable number of nodes at depths other
than the average, as indicated by the power-law growth
in (7). Finally, we note that since the depth is bounded
by the maximum value ymax = 3.59112, the characteristic
exponent has a nontrivial upper bound, 2 ≤ γ ≤ 5.59112.

IV. THE IN-COMPONENT SIZE

DISTRIBUTION

Each node is in itself a root of the sub-tree that em-
anates from it. This sub-tree is termed the in-component
of the node and we denote by s the size of the in-
component. We note that the size of the in-component
is at least as large as the degree of the node: s ≥ k. The
minimal size s = 1 corresponds to dangling nodes with-

out descendants. Let G
(n)
s be the average number of nth

layer nodes with in-components of size s. This quantity
satisfies the rate equation

dG
(n)
s

dN
=

(

s − 3
2

)

G
(n)
s−1 −

(

s − 1
2

)

G
(n)
s

N
+

Mn−1 + Mn

2N
δs,1.

With probability s
N a node in an in-component of size

s is selected at random following the addition of a new
node, and all such events, with the exception of redirec-
tion away from the root of the sub-tree, result in attach-
ment of an additional node to the in-component. Since
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FIG. 4: The in-component size distribution at different
depths. Shown is the closed form expression (18) for y =
0, 1/2, 1, 3/2, 2.

redirection away from the root of the sub-tree occurs with
probability 1

2N , the probability of attaching an additional

node to the in-component equals s−1/2
N . Hence, the first

two terms on the right hand side. The last two terms are
as in (12).

The normalized distribution g
(n)
s of nodes with in-

degree s and depth n, defined by G
(n)
s = Mn g

(n)
s , obeys

the recursion equation

(

s +
y

2

)

g(n)
s =

(

s − 3

2

)

g
(n)
s−1 +

1 + y

2
δs,1 . (17)

This equation is very similar in structure to the equa-
tion (13) governing the degree distribution. Dan-
gling nodes have s = k = 1 and there-

fore, g
(n)
1 = f

(n)
1 = (1 + y)(2 + y). Using the ra-

tio g
(n)
s /g

(n)
s−1 = (y − 3/2)/(s + y/2), we obtain the in-

component size distribution in closed form

g(n)
s =

1 + y

2 + y

Γ
(

2 + y
2

)

Γ
(

1
2

)

Γ
(

s − 1
2

)

Γ
(

s + 1 + y
2

) . (18)

Again, there is a family of distributions that is governed
by y. Therefore, the in-component size distribution has
a power-law tail

G(n)
s ' B s−β(n) (19)

and the characteristic exponent varies continuously with
depth, β = (3 + y)/2 or

β(n) =
3

2
+

1

2

n − 1

〈n − 1〉 . (20)

The prefactor in (19) is B = (1 + y)Γ(1 + y/2)/
√

4π.
The in-component size distribution is very similar to

the degree distribution (Figure 4). Nodes that are closer
to the root tend to have larger in-components. The
tail of the in-component size distribution is overpopu-
lated below the average depth, β < 2 when n < 〈n〉,
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while the tail is underpopulated above the average depth,
β > 2 for n > 〈n〉. The in-component size distri-
bution matches the total distribution at the average

depth, G
(〈n〉)
s = Gtotal

s = 2 [4s2 − 1]−1. Moreover, the in-
component size distribution is steepest, βmax = 4.29556,
at the maximal depth ymax = 5.59112.

For completeness, we also quote the in-component size
distribution in the first layer,

g(1)
s =

1√
4π

Γ
(

s − 1
2

)

Γ(s + 1)
, (21)

and the corresponding tail, g
(1)
s ∼ s−3/2.

V. REDIRECTION NETWORKS

We briefly discuss the broader class of redirection net-
works [9]. This family of networks is also grown by se-
quential addition of nodes. Subsequent to the addition
of a new node, one existing node is selected at random.
With the redirection probability r, the new node attaches
to the parent of the randomly selected node while with
the complementary probability 1 − r, the new nodes at-
taches to the randomly selected node itself. Redirec-
tion networks are therefore parameterized by the redi-
rection probability r. The probability Pk of attachment
to a node of degree k varies linearly with the degree,
Pk = (k − 1)r + (1 − r) or equivalently,

Pk =
kr + 1 − 2r

N
. (22)

As mentioned above, the special case r = 1/2 yields the
preferential attachment network. The limiting case r = 0
corresponds to the random recursive tree where the at-
tachment probability is uniform [12–18].

The depth distribution obeys the following generaliza-
tion of (3)

dMn

dN
=

(1 − r)Mn−1 + rMn

N
. (23)

Here, the first gain term accounts for direct links and the
second term, for redirected links. The depth distribution
is always Poissonian

Mn ∼ Nr [(1 − r) ln N ]
n−1

(n − 1)!
(24)

and fully characterized by the average
〈n − 1〉 ' (1 − r) ln N .

The degree distribution is obtained by replacing the at-
tachment probability Pk = k

2N in (12) with (22). We skip
the straightforward derivation of the degree distribution
and merely quote the final result,

f
(n)
k =

r + y − ry

1 + y − ry

Γ
(

1+r+y−ry
r

)

Γ
(

1−r
r

)

Γ
(

k + 1−2r
r

)

Γ
(

k + 1+y−ry
r

) . (25)

The parameter y is the same normalized depth (6) with
the appropriate average 〈n−1〉 ' (1−r) ln N . Therefore,
the degree distribution decays algebraically as in (15)
with the exponent γ = 2 + [(1 − r)y]/r or equivalently

γ(n) = 2 +
1 − r

r

n − 1

〈n − 1〉 . (26)

The in-component size distribution

g(n)
s =

r + y − ry

1 + y − ry

Γ(2 + y − ry)

Γ(1 − r)

Γ(s − r)

Γ(s + 1 + y − ry)
(27)

is obtained by replacing the attachment probability s−1/2
N

in (17) with s−r
N . As expected, this distribution decays

algebraically as in (19) with the exponent

β(n) = 1 + r + (1 − r)
n − 1

〈n − 1〉 . (28)

There is no substantive change in the behaviors of the
degree distribution and the in-component size distribu-
tion. These distributions are characterized by power-law
tails that become steeper with increasing depth, so that
the further from the root a node is, the less likely that
the node is highly connected. Generally, the degree dis-
tribution is non-uniform throughout the network.

VI. CONCLUSIONS

In conclusion, we studied how the degree distribution
depends on depth, defined as the distance from the root,
in the preferential attachment network and found that
the network is strongly stratified. There is a family of
degree distributions that is parameterized by the depth
and the total degree distribution is a special case that
corresponds to the behavior at the average depth. The
degree distribution has a shallow power-law tail below
the average depth, and a steep tail above the average
depth as the characteristic exponent grows linearly with
depth. Interestingly, this exponent has a non-trivial up-
per bound. The in-component size distribution exhibits
very similar qualitative behaviors.

The structure of the network changes considerably
with the depth as nodes that are closer to the root tend
to have a larger number of connections. Such stratifica-
tion is empirically observed in complex networks includ-
ing the internet [19], and can be intuitively understood as
follows. There are strong correlations between the depth
of a node and its age because young nodes must be less
connected. Since younger nodes are also further from
the root, there are correlations between the degree and
the depth. A natural complementary classification of the
nodes is by their age, and we anticipate that similarly,
the degree distribution exhibits age dependence.

The above results are not limited to trees. This is
seen from a generalization of the preferential attachment
process where new nodes attach to two nodes: one target
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node that is selected with probability proportional to its
degree and one, randomly selected, parent of the target
node. Thus, each new node adds a three-node cycle,
and the network has at least as many cycles as there are
nodes. Yet, the governing equations do not change and
the behavior of the degree distribution and in-component
size distribution are basically, the same [20].

One issue, open to further investigations, is the behav-
ior in finite systems. The analysis in the appendix relies
on the continuum approximation. Yet, this approxima-
tion is asymptotically exact for degrees that are much
smaller than the maximal one. A discrete approach with
difference equations, rather than differential ones, is nec-
essary [21–23] to determine the behavior for the degrees
that are of the order of the maximal degree.
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APPENDIX A: FINITE NETWORKS

Throughout this investigation, we implicitly consid-
ered the leading asymptotic behavior for large networks.
In particular, the sub-dominant dependence of the nor-
malized degree distribution on the size of the network was
ignored in (13). However, the logarithmic dependencies
of the average depth and the variance suggest that ex-
tremely large networks may be needed to clearly observe
the large-N asymptotics (15).

To investigate how the degree distribution depends on

the total number of nodes N , we rewrite the governing
equation (12) in continuum form for large k,

∂F

∂N
+

1

2N

∂

∂k
(kF ) = 0. (A1)

In deriving this equation, we omitted the superscript and

the subscript, F ≡ F
(n)
k . We now include the term

∂f/∂N describing how the degree distribution changes
with system size in the evolution equation for the nor-
malized distribution, defined by F = Mf ,

2N
∂f

∂N
+ k

∂f

∂k
+ (2 + y)f = 0. (A2)

The normalized depth (6) is y = 2(n − 1)/ ln N and
therefore, dy/dN = −y/ (N ln N). We now assume that
the power-law tail (15) is modified by a correction,
f(k,N) ' Ak−(2+y)u(k,N). From (A2), the correction
function u satisfies

∂u

∂k
+ 2y

ln k

k ln N
u = 0 (A3)

Therefore, the correction function is log-normal,
u = exp[−2y(ln k)2/ ln N ], and the normalized distribu-
tion has the following tail

f
(n)
k ' Ak−2−y exp

[

−2y
(ln k)2

ln N

]

. (A4)

Indeed, the correction is irrelevant for infinitely large net-
works: u → 1 when N → ∞. For large but finite systems,
there are two consequences. First, at moderate degrees,
the correction is sub-dominant and the tail is power-law,
although the exponent may appear slightly larger than
the asymptotic value (16). Second, at large degrees, the
correction is dominant and the tail is log-normal.
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