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Scale invariance and lack of self-averaging in fragmentation
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We derive exact statistical properties of a recursive fragmentation process. We show that introducing a
fragmentation probability & p<1 leads to a purely algebraic size distributi®{x)x 2", in one dimension.
In d dimensions, the volume distribution diverges algebraically in the small fragment g\t~ V™7, with
y=2p*. Hence, the entire range of exponents allowed by mass conservation is realized. We demonstrate that
this fragmentation process is non-self-averaging as the moméentss;x* exhibit significant sample to
sample fluctuations.

PACS numbgs): 05.40—-a, 64.60.Ak, 62.20.Mk

Numerous physical phenomena are characterized by a set First, let us examine the average total number of frag-
of variables, say{x;}, which evolve according to a random ments,N. With probability g a single fragment is produced,
process, and are subject to the conservation [Byx; and with probabilityp the process is repeated with two frag-
=const. An important example is fragmentation, with appli-ments. HenceN=q+2pN, yielding
cations ranging from geologyl] and fracture[2] to the .
breakup of liquid droplet§3] and atomic nuclef4,5]. Other N= 9/(1-2p), if p<1/2,
examples include spin glassgs], wherex; represents the o, if p=1/2.
equilibrium probability of finding the system in thje¢h val- o
ley, genetic populations, where is the frequency of theth The average 'total number of fragmentg _becomes infinite at
allele[7,8], and random Boolean networks, 10]. the critical pointp.= 1/2, reflecting the critical nature of the

In most cases, stochasticity governs both the way the frag!Nderlying branching proce$s3].

ments are produced and the number of fragmentation evenﬁshN?Xt' VrV(?vStund)f(rX)’;rt]ﬁ dePsny of fre;]ggwnts gftlen%ffnin th
they experience. For example, in fragmentation of solid ob- € recursive nature of the process can be used to obta €

jects due to impact with a hard surface fragments ma};ragment length density

bounce several times before coming to a {@4f. The typi- iy [x

cal number of fragmentation events may vary greatly de- P(x)=q5(x—1)+2pf —P(—). 2
pending on the initial kinetic energy. Another seemingly un- x Yy

related example is  provided by DNA segmentatlon.l_he second term indicates that a fragment can be created

algorlthms[lz_], where hom(_)geneous subsequences are p.roo'nly from a larger fragment, and the ! kernel reflects the
duced recursively from an inhomogeneous sequence until

Gniform f tation density. Equatid@ be solved
predefined homogeneity level is reached. Here, the numb fform fragmentation density. Equatia@) can be solve

) g ) GHy introducing the Mellin transform
of segmentation events is determined by the degree of homo-

geneity of the original sequence.

In this study, we examine a fragmentation process with M(S)Zf dx X *P(x). €)
two types of fragments: stable fragments which do not break
anymore and unstable fragments. We show that the size digquations(2) and(3) yield M(s)=q+2ps M(s) and as a
tribution is algebraic, and that the entire range of power-lawsesult
allowed by the underlying conservation law can be realized

()

by tuning the fragmentation probability. Additionally, these

fragmentation processes are characterized by large sample to M(s)=q| 1+ s—2p|’ (4)
sample fluctuations, as seen from analysis of the moments of

the fragment size distribution. The average total number of fragmemg1)=N is consis-

Specifically, we consider the followingecursive frag-  tent with Eq.(1), and the total fragment lengt (2)=1 is
mentation processVe start with the unit interval and choose conserved in accord with 2 fdx xP(x). (Here and in the
a break point in [0,1] with a uniform probability density. following the integration is carried over the unit interval, i.e.,

Then, with probabilityp, the interval is divided into two g<x<1.) The inverse Mellin transform of Eq4) gives
fragments of length$ and 11, while with probability q

=1-p, the interval becomes “frozen” and never frag- P(x)=q[ 8(x—1)+2p x~2P]. 5
mented again. If the interval is fragmented, we recursively

apply the above fragmentation procedure to both of the reApart from the obviouss-function, the length density is a
sulting fragments. purely algebraic function. In particular, the fragment distri-
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bution diverges algebraically in the limit of small fragments. Using the dth root of unity, {=€?™/9, and the identity
Given such an algebraic divergence near the ori§i(x) (s 1) *=d *Sg_y=q_1X(s—¥), M(s) can be ex-
~x"7, length conservation restricts the exponent range tressed as a sum over simple poles&dt Consequently, the
y<2. In our casey=2p, and since 8p<1, the entire inverse Mellin transform is given by a linear combination of
range of acceptable exponents emerges by tuning the ontypower laws:

control parametep.

Interestingly, there is no analytic change in the fragment Y d-1 o
length distribution as the critical poimt.= % is passed. Yet, P(V)=q| 6(V-1)+ IZO v (13)

the fragment length distribution becomes independent of the
initial interval length at the critical point. Starting from an

interval of lengthL., Eq. (5) can be generalized to yield One can verify that this expression equals its complex con-

jugate, and hence, it is real. Additionally, the one-
dimensional caséb) is recovered by settind=1.
The small-volume tail of the distribution can be obtained
y noting that the sum in Eq11) is dominated by the first
grm in the series, which leads to

P(x)=q8(x—L)+2pqL2P~1x 2P, (6)

Thus, the critical point may be detected by observing th
point at which the segment distribution becomes independe
of the original interval length.

The recursive fragmentation process can be generalized to P(V)= 7_qu7 as V—0. (12)
d dimensions. For instance, in two dimensions we start with d
the unit square, choose a point (x,) with a uniform prob- )
ability density, and divide, with probabilitp, the original Althoggh th? value of the.exponem:Zp changes with .
square into four rectangles of Siz&sXx,, X;X(1—X,), the dlmenS|ond, the p055|bl_e range of exponents for this
(1—x;) X X5, and (1—x;) X (1—X5). With probabilityq, the ~ Process remains the same sincep*<2 when 0<p<1.
ment it. The process is repeated recursively whenever a neWniversal:P(V)~V~2,

1d

fragment is produced. The leading behavior oP(V) in the large size limit can
Let P(X), X=(Xy, . .. Xg), be the probability density of b%_dlerkived by using the Taylor expan;ion and _the _identity
fragments of size; X - - - Xx4. This quantity satisfies 2ol "= 8hpo for n=0, ... d—1. One finds that in higher

dimensions the volume distribution vanishes algebraically

dy X1 Xqg near its maximum value,
P(x)=q5(x—1)+2dpf —, =, @
Yi---Yd V1 Yd v
: _ _ P(V)= (1-Vv)¥ ! asVv-1. (13
with fdy=[dy;---fdy,. Following the steps leading to (d=1)!
Eq. (4), we find that thed-dimensional Mellin transform,
defined byM(g)=fdx x5 *.. -xzd_lP(x) with the short- In fact, the entire multivariate fragment length density can
hand notatiors=(s; , . . . S5) obeys _be also obtalneq expl!cnly. This can be achieved by expand-
ing the geometric series,
d
M(9)=q| 1+ ——3|, with y=2p™. (8 ¥ P
S sy — L -3 .
S *S4— Y n=0i=1\S

Equation(8) gives the total average number of fragments,

N=M(1)=q/(1-2%) if p<2~9 and N=w« if p=2-9  and performing the inverse Mellin transform for each vari-
One can also verify that the total voluni(2)=1 is con- able separately. Using the identity'dxx*~*(In 1/x)"
served. Interestingly, there is an additional infinite set of con="n! s~ "~ gives

served quantities: all moments whose indices belong to the

hyper-surfaces? - - - s} =29 satisfyM(s*)=1. In a continu- P(x)=q[8(x— 1)+ ¥'F4(2)], (14
ous time formulation of this process the same moments were_ )

found to be integrals of motiofl4—16. The existence of an With the shorthand notations

infinite number of conservation laws is surprising, because

only volume conservation has a clear physical justification. =z ¢ 1\
Next, we study the volume densiB(V) defined by Fd(Z)ZnZO o7 andz=y Iﬂl In x| (15
P(V)=J dX P(X) 8(V—X;- - - Xq). (99  Intwo dimensionsF,(z)=1,(2z) wherel, is the modified
Bessel function.

) The small size behavior d#(x) can be obtained by using
The Mellin transform,M(s)=/dVV*"'P(V), can be ob- the steepest decent method. The leading tail behavior,
tained from Eq.(8) by settings;=s, Fa(2)=(2mz)(t~92e?9 for z>1, corresponds to the case
when at least one of the lengths is small, he1. Return-
ing to the original variables we see that the fragment distri-

M(s)=q bution exhibits a “log-stretched-exponential” behavior

,yd
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1/d averaging. Hence, statistical properties obtained by

averaging over all realizations are insufficient to probe
sample to sample fluctuations. This behavior is reminiscent
of the lack of self-averaging found in fragmentation pro-

The fragment size distribution represents an average ové&ESSes that exhibit a shattering transitia8].
infinitely many realizations of the fragmentation process, and N Principle, higher order averages such(a4,) can be
hence, it does not capture sample to sample fluctuation§alculated recursively by the procedure outlined above. The

These fluctuations are important in non-self-averaging sysiesulting expressions are cumbersome and not terribly illu-
tems, where they do not vanish in the thermodynamic limitminating. Instead, one may study the distributiQq(Y),
Useful quantities for characterizing such fluctuations are thavhich obeys

momentg17,1§ Q.(Y,)=0qd8(Y,—1)

P(x)~

d —(d—1)/2d d
11 Ini exgdy| [] Ini
=1 X i=1 X

- a Y, 1 z\ 1 Y,~Z
Yo= 2, 17 +pfd|f dz-Q,l = Q. .
0 I« [/ (1-H* (-«
where the sum runs over all fragments. (22)

We are interested in the average val(@¥g) and(Y,Y ).
For integera, (Y,) is the probability thatr points randomly  In addition to the recursive nature of the process, we have
chosen in the unit interval belong to the same fragment. Themployed extensivity, i.e{Y,)«<L® in an interval of length
expected value oY , satisfies .
Clearly, Yo=N and Y;=1, and therefore,Q,(Y,)
-~ o o =0(Y1—1) andQy(N) can also be determined analytically
<Y“>_q+p<Y“>f dyly*+(1=y)"]. (18 as well. Generally, different behaviors emerge dor 1 and
a<1. We concentrate on the former case where the support
The first term corresponds to the case where the unit intervglf the distributionQ,(Y) is the interval[0,1]. The Laplace
is not fragmented, and the second term describes the sitUgransform,R (\)=[3dY, e Y+Q,(Y,), obeys
tion when at least one fragmentation event has occurred.

Equation(18) gi
quation(18) gives R,(\)=qge + pfldl RJIMARIN(I-D]. (23
0

<Ya>=q[1+2—p} (19) . . - .
a+1-2p The behavior ofQ_(Y,) in the limit Y_,—0 is reflected by

, ) the asymptotics ofR,(\) as A—oe. Substituting R,(\)

if @>2p—1, and(Y,)= if a<2p—1. As expected, EQ. _gxpn"A\%) into both sides of Eq(23), evaluating the in-

(19) agrees with the moments &f(x) obtained by integrat-  (eqra| using the method of steepest decent, and equating the
ing Eq. (5), (Yo)=/dx x*P(x). left- and right-hand sides give8=1/«. Consequently, we

However, higher order averages such(a§Y) do not  fing that the distribution has an essential singularity near the
follow directly from the fragment size density. For integer origin,

and B, (Y,Yp) is the probability that, ifa+ 8 points are

chosen at random, the firat points all lie on the same frag- Q.Y ~exp —BY, YY) asy,—0. (29
ment, and the lasB points all lie on anothefpossibly the
same fragment. This quantity satisfies Extremal properties can be viewed as an additional probe

of sample to sample fluctuations. Thus, we consider the

_ « « length density of the largest fragmeni(x). Clearly, £(x)
= +B _ +B
<YaY,B> q+ p<YaYB>f dy[y +(1 y) ] _ P(X) for x= 1/2, i.e.,

+p<Ya><Yﬂ>J dy[ya(l_y)ﬁ'i‘(l_y)ayﬁ], ﬁ(X):q5(X— 1)+2pq X 2P for x=1/2. (25)

In the complementary case 8K 1/2, £(x) satisfies

(20)
hich yields —ogqozy | X o2 [t 9Y . [X
(YaY >:q+i 1-xdy [x X
«'p a+B+1-2p +2p3 7£<)7)£(1Ty), (26)
Fla+)I(B+1) (Y )XYp) (21)

where £_(u)=[gdvL(v). The first term on the right-hand

side of Eq.(26) describes the situation when the unit interval

if a,B,a+B>2p—1, and(Y,Yz) == otherwise. was fragmented into two intervals of lengtksand 1-Xx,
Equation(21) shows thatY, Y 5) #(Y,)(Yz), and in par-  with stable smaller fragment and unstable longer fragment

ticular, (Y2)#(Y,)2. Therefore, fluctuations i, are sig-  (hence the factogp?). The latter._ factor guarantees that

nificant and the recursive fragmentation process is non-selsubsequent fragmentation of the unstable interval does not

INa+p+1l) a+p+1-2p
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lead to a fragment longer thamlIf one of the first generation linear combination ofd power laws, and consequently, an
fragments is shorter thax then only the longest first gen- algebraic divergence characterizes the small-fragment tail of
eration fragment contributes; this leads to the second term othe distribution. A number of recent impact fragmentation
the right-hand side of Eq26). The next term describes the experiments reported algebraic mass distributions with the
situation when both first generation fragments are longegorresponding exponents ranging from 1 tf12]. It will be
thanx, so the longest fragment can arise out of breaking anynteresting to further examine whether our simplified model
of the two fragments. The factof  guarantees that the g syitable for describing fragmentation of solid objects.
longest fragment of lengtk comes from the corresponding  \ye have also found that the recursive fragmentation pro-
first generation fragment, and the fa_ctm’r guarantees that  cegs exhibits a number of features that arise in other complex
both first generation fragments remain unstable. S0  4nq disordered systems, such as non-self-averaging behavior
o_b_eys different equations in different regions, it Iosgs .ar,‘alyénd the existence of an infinite number of singularities in the
ticity on the boundaries. Namely,(x) possesses an infinite - yigyip ition of the largest fragment. These features indicate

set of singulanites ak=1/k that become weaker at in- that large sample to sample fluctuations exist, and that

creases. Similar singularities underly extremal properties ofﬁ ' .
. : .knowledge of first order averages may not be sufficient for
number of random processes, including random walks, spin

glasses, random maps, and random tf@8,17,18,20 characterizing the system. Our 1D model is equivalent to

For completeness, we note that the above results extend f(opplylng the aforementioned DNA segmentation algorithm

X a random sequence. It will be interesting to study self-
a complementary class of fragmentation processes wherge . . :
. . . averaging and extremal properties of genetic sequences,
first fragmentation occurs, and then fragments remain un- - . N
X . . : which are known to have commonalities with disordered sys-
stable with probabilityp. In this case, thes function drops,

and the the size distribution becomes purelv al ebraiCtems. Indeed, if these subtle features are found for genetic
P(x)=2qx 2P purely aig Sequences as well, this would suggest that much caution

: . should be exercised in statistical analysis of DNA.
In summary, we have found that recursive fragmentation

is scale free, i.e., the fragment length distribution is purely We thank S. Redner and O. Weiss for fruitful discussions,
algebraic. In higher dimensions, the volume distribution is aand DOE, NSF, ARO, NIH, and DFG for support.
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