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Scale invariance and lack of self-averaging in fragmentation
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We derive exact statistical properties of a recursive fragmentation process. We show that introducing a
fragmentation probability 0,p,1 leads to a purely algebraic size distribution,P(x)}x22p, in one dimension.
In d dimensions, the volume distribution diverges algebraically in the small fragment limit,P(V);V2g, with
g52p1/d. Hence, the entire range of exponents allowed by mass conservation is realized. We demonstrate that
this fragmentation process is non-self-averaging as the momentsYa5( ixi

a exhibit significant sample to
sample fluctuations.

PACS number~s!: 05.40.2a, 64.60.Ak, 62.20.Mk
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Numerous physical phenomena are characterized by a
of variables, say$xj%, which evolve according to a random
process, and are subject to the conservation law( j xj

5const. An important example is fragmentation, with app
cations ranging from geology@1# and fracture@2# to the
breakup of liquid droplets@3# and atomic nuclei@4,5#. Other
examples include spin glasses@6#, wherexj represents the
equilibrium probability of finding the system in thej th val-
ley, genetic populations, wherexj is the frequency of thej th
allele @7,8#, and random Boolean networks@9,10#.

In most cases, stochasticity governs both the way the f
ments are produced and the number of fragmentation ev
they experience. For example, in fragmentation of solid
jects due to impact with a hard surface fragments m
bounce several times before coming to a rest@11#. The typi-
cal number of fragmentation events may vary greatly
pending on the initial kinetic energy. Another seemingly u
related example is provided by DNA segmentati
algorithms@12#, where homogeneous subsequences are
duced recursively from an inhomogeneous sequence un
predefined homogeneity level is reached. Here, the num
of segmentation events is determined by the degree of ho
geneity of the original sequence.

In this study, we examine a fragmentation process w
two types of fragments: stable fragments which do not br
anymore and unstable fragments. We show that the size
tribution is algebraic, and that the entire range of power-la
allowed by the underlying conservation law can be realiz
by tuning the fragmentation probability. Additionally, the
fragmentation processes are characterized by large samp
sample fluctuations, as seen from analysis of the momen
the fragment size distribution.

Specifically, we consider the followingrecursive frag-
mentation process. We start with the unit interval and choos
a break pointl in @0,1# with a uniform probability density.
Then, with probabilityp, the interval is divided into two
fragments of lengthsl and 12 l , while with probability q
512p, the interval becomes ‘‘frozen’’ and never frag
mented again. If the interval is fragmented, we recursiv
apply the above fragmentation procedure to both of the
sulting fragments.
PRE 611063-651X/2000/61~2!/993~4!/$15.00
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First, let us examine the average total number of fra
ments,N. With probability q a single fragment is produced
and with probabilityp the process is repeated with two fra
ments. Hence,N5q12pN, yielding

N5H q/~122p!, if p,1/2,

`, if p>1/2.
~1!

The average total number of fragments becomes infinite
the critical pointpc51/2, reflecting the critical nature of th
underlying branching process@13#.

Next, we studyP(x), the density of fragments of lengthx.
The recursive nature of the process can be used to obtain
fragment length density

P~x!5qd~x21!12pE
x

1dy

y
PS x

yD . ~2!

The second term indicates that a fragment can be cre
only from a larger fragment, and they21 kernel reflects the
uniform fragmentation density. Equation~2! can be solved
by introducing the Mellin transform

M ~s!5E dx xs21P~x!. ~3!

Equations~2! and~3! yield M (s)5q12ps21M (s) and as a
result

M ~s!5qF11
2p

s22pG . ~4!

The average total number of fragmentsM (1)5N is consis-
tent with Eq.~1!, and the total fragment lengthM (2)51 is
conserved in accord with 15*dx xP(x). ~Here and in the
following the integration is carried over the unit interval, i.e
0,x,1.! The inverse Mellin transform of Eq.~4! gives

P~x!5q@d~x21!12p x22p#. ~5!

Apart from the obviousd-function, the length density is a
purely algebraic function. In particular, the fragment dist
R993 ©2000 The American Physical Society
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bution diverges algebraically in the limit of small fragmen
Given such an algebraic divergence near the origin,P(x)
;x2g, length conservation restricts the exponent range
g,2. In our caseg52p, and since 0,p,1, the entire
range of acceptable exponents emerges by tuning the
control parameterp.

Interestingly, there is no analytic change in the fragm
length distribution as the critical pointpc5 1

2 is passed. Yet,
the fragment length distribution becomes independent of
initial interval length at the critical point. Starting from a
interval of lengthL, Eq. ~5! can be generalized to yield

P~x!5qd~x2L !12pqL2p21x22p. ~6!

Thus, the critical point may be detected by observing
point at which the segment distribution becomes independ
of the original interval length.

The recursive fragmentation process can be generalize
d dimensions. For instance, in two dimensions we start w
the unit square, choose a point (x1 ,x2) with a uniform prob-
ability density, and divide, with probabilityp, the original
square into four rectangles of sizesx13x2 , x13(12x2),
(12x1)3x2, and (12x1)3(12x2). With probabilityq, the
square becomes frozen and we never again attempt to
ment it. The process is repeated recursively whenever a
fragment is produced.

Let P(x), x[(x1 , . . . ,xd), be the probability density o
fragments of sizex13•••3xd . This quantity satisfies

P~x!5qd~x21!12dpE dy

y1•••yd
PS x1

y1
, . . . ,

xd

yd
D , ~7!

with *dy5*dy1•••*dyd . Following the steps leading to
Eq. ~4!, we find that thed-dimensional Mellin transform,
defined byM (s)5*dx x1

s121
•••xd

sd21P(x) with the short-
hand notations[(s1 , . . . ,sd) obeys

M ~s!5qF11
gd

s1•••sd2gdG , with g52p1/d. ~8!

Equation~8! gives the total average number of fragmen
N5M (1)5q/(122dp) if p,22d and N5` if p>22d.
One can also verify that the total volumeM (2)51 is con-
served. Interestingly, there is an additional infinite set of c
served quantities: all moments whose indices belong to
hyper-surfaces1* •••sd* 52d satisfyM (s* )51. In a continu-
ous time formulation of this process the same moments w
found to be integrals of motion@14–16#. The existence of an
infinite number of conservation laws is surprising, beca
only volume conservation has a clear physical justificatio

Next, we study the volume densityP(V) defined by

P~V!5E dx P~x! d~V2x1•••xd!. ~9!

The Mellin transform,M (s)5*dVVs21P(V), can be ob-
tained from Eq.~8! by settingsi5s,

M ~s!5qF11
gd

sd2gdG . ~10!
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Using the dth root of unity, z5e2p i /d, and the identity
(sd21)215d21(0<k<d21zk/(s2zk), M (s) can be ex-
pressed as a sum over simple poles atgzk. Consequently, the
inverse Mellin transform is given by a linear combination
d power laws:

P~V!5qFd~V21!1
g

d (
k50

d21

zkV2gzkG . ~11!

One can verify that this expression equals its complex c
jugate, and hence, it is real. Additionally, the on
dimensional case~5! is recovered by settingd51.

The small-volume tail of the distribution can be obtain
by noting that the sum in Eq.~11! is dominated by the first
term in the series, which leads to

P~V!.
gq

d
V2g as V→0. ~12!

Although the value of the exponentg52p1/d changes with
the dimensiond, the possible range of exponents for th
process remains the same since 0,2p1/d,2 when 0,p,1.
In the infinite dimension limit, the volume density becom
universal:P(V);V22.

The leading behavior ofP(V) in the large size limit can
be derived by using the Taylor expansion and the iden
(k50

d21zkn5dn,0 for n50, . . . ,d21. One finds that in higher
dimensions the volume distribution vanishes algebraica
near its maximum value,

P~V!.
gd

~d21!!
~12V!d21 as V→1. ~13!

In fact, the entire multivariate fragment length density c
be also obtained explicitly. This can be achieved by expa
ing the geometric series,

gd

s1•••sd2gd 5 (
n>0

)
i 51

d S g

si
D n11

,

and performing the inverse Mellin transform for each va
able separately. Using the identity*dx xs21(ln 1/x)n

5n!s2n21 gives

P~x!5q@d~x21!1gdFd~z!#, ~14!

with the shorthand notations

Fd~z!5 (
n50

` S zn

n! D
d

andz5gS )
i 51

d

ln
1

xi
D 1/d

. ~15!

In two dimensions,F2(z)5I 0(2z) whereI 0 is the modified
Bessel function.

The small size behavior ofP(x) can be obtained by using
the steepest decent method. The leading tail behav
Fd(z).(2pz)(12d)/2ezd for z@1, corresponds to the cas
when at least one of the lengths is small, i.e.,xi!1. Return-
ing to the original variables we see that the fragment dis
bution exhibits a ‘‘log-stretched-exponential’’ behavior
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P~x!;F)
i 51

d

ln
1

xi
G2(d21)/2d

expFdgS )
i 51

d

ln
1

xi
D 1/dG .

~16!

The fragment size distribution represents an average
infinitely many realizations of the fragmentation process, a
hence, it does not capture sample to sample fluctuati
These fluctuations are important in non-self-averaging s
tems, where they do not vanish in the thermodynamic lim
Useful quantities for characterizing such fluctuations are
moments@17,18#

Ya5(
i

xi
a , ~17!

where the sum runs over all fragments.
We are interested in the average values^Ya& and^YaYb&.

For integera, ^Ya& is the probability thata points randomly
chosen in the unit interval belong to the same fragment.
expected value ofYa satisfies

^Ya&5q1p^Ya&E dy@ya1~12y!a#. ~18!

The first term corresponds to the case where the unit inte
is not fragmented, and the second term describes the s
tion when at least one fragmentation event has occur
Equation~18! gives

^Ya&5qF11
2p

a1122pG ~19!

if a.2p21, and^Ya&5` if a<2p21. As expected, Eq
~19! agrees with the moments ofP(x) obtained by integrat-
ing Eq. ~5!, ^Ya&5*dx xaP(x).

However, higher order averages such as^YaYb& do not
follow directly from the fragment size density. For integera
and b, ^YaYb& is the probability that, ifa1b points are
chosen at random, the firsta points all lie on the same frag
ment, and the lastb points all lie on another~possibly the
same! fragment. This quantity satisfies

^YaYb&5q1p^YaYb&E dy@ya1b1~12y!a1b#

1p^Ya&^Yb&E dy@ya~12y!b1~12y!ayb#,

~20!

which yields

^YaYb&5q1
2pq

a1b1122p

12p
G~a11!G~b11!

G~a1b11!

^Ya&^Yb&
a1b1122p

~21!

if a,b,a1b.2p21, and^YaYb&5` otherwise.
Equation~21! shows that̂ YaYb&Þ^Ya&^Yb&, and in par-

ticular, ^Ya
2&Þ^Ya&2. Therefore, fluctuations inYa are sig-

nificant and the recursive fragmentation process is non-s
er
d
s.
s-
t.
e

e

al
a-
d.

lf-

averaging. Hence, statistical properties obtained
averaging over all realizations are insufficient to pro
sample to sample fluctuations. This behavior is reminisc
of the lack of self-averaging found in fragmentation pr
cesses that exhibit a shattering transition@19#.

In principle, higher order averages such as^Ya
n& can be

calculated recursively by the procedure outlined above. T
resulting expressions are cumbersome and not terribly
minating. Instead, one may study the distributionQa(Y),
which obeys

Qa~Ya!5qd~Ya21!

1pEdlE
0

Ya
dZ

1

l a
QaS Z

l aD 1

~12 l !a
QaS Ya2Z

~12 l !aD .

~22!

In addition to the recursive nature of the process, we h
employed extensivity, i.e.,̂Ya&}La in an interval of length
L.

Clearly, Y05N and Y151, and therefore,Q1(Y1)
5d(Y121) andQ0(N) can also be determined analytical
as well. Generally, different behaviors emerge fora.1 and
a,1. We concentrate on the former case where the sup
of the distributionQa(Y) is the interval@0,1#. The Laplace
transform,Ra(l)5*0

1dYa e2lYaQa(Ya), obeys

Ra~l!5q e2l1pE
0

1

dl Ra@l l a#Ra@l~12 l !a#. ~23!

The behavior ofQa(Ya) in the limit Ya→0 is reflected by
the asymptotics ofRa(l) as l→`. Substituting Ra(l)
;exp(2Alb) into both sides of Eq.~23!, evaluating the in-
tegral using the method of steepest decent, and equating
left- and right-hand sides givesb51/a. Consequently, we
find that the distribution has an essential singularity near
origin,

Qa~Ya!;exp~2BYa
21/(a21)! as Ya→0. ~24!

Extremal properties can be viewed as an additional pr
of sample to sample fluctuations. Thus, we consider
length density of the largest fragment,L(x). Clearly, L(x)
5P(x) for x>1/2, i.e.,

L~x!5qd~x21!12pq x22p for x>1/2. ~25!

In the complementary case ofx,1/2, L(x) satisfies

L~x!52qp2L2S x

12xD12p2E
12x

1 dy

y
L S x

yD
12p3E

x

12x dy

y
L S x

yDL2S x

12yD , ~26!

whereL2(u)5*0
udvL(v). The first term on the right-hand

side of Eq.~26! describes the situation when the unit interv
was fragmented into two intervals of lengthsx and 12x,
with stable smaller fragment and unstable longer fragm
~hence the factorqp2). The latterL2 factor guarantees tha
subsequent fragmentation of the unstable interval does
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lead to a fragment longer thanx. If one of the first generation
fragments is shorter thanx, then only the longest first gen
eration fragment contributes; this leads to the second term
the right-hand side of Eq.~26!. The next term describes th
situation when both first generation fragments are lon
thanx, so the longest fragment can arise out of breaking
of the two fragments. The factorL2 guarantees that th
longest fragment of lengthx comes from the correspondin
first generation fragment, and the factorp3 guarantees tha
both first generation fragments remain unstable. SinceL(x)
obeys different equations in different regions, it loses ana
ticity on the boundaries. Namely,L(x) possesses an infinit
set of singulariites atx51/k that become weaker atk in-
creases. Similar singularities underly extremal properties
number of random processes, including random walks, s
glasses, random maps, and random trees@7,8,17,18,20#.

For completeness, we note that the above results exten
a complementary class of fragmentation processes w
first fragmentation occurs, and then fragments remain
stable with probabilityp. In this case, thed function drops,
and the the size distribution becomes purely algebr
P(x)52qx22p.

In summary, we have found that recursive fragmentat
is scale free, i.e., the fragment length distribution is pur
algebraic. In higher dimensions, the volume distribution i
ev
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linear combination ofd power laws, and consequently, a
algebraic divergence characterizes the small-fragment ta
the distribution. A number of recent impact fragmentati
experiments reported algebraic mass distributions with
corresponding exponents ranging from 1 to 2@11#. It will be
interesting to further examine whether our simplified mod
is suitable for describing fragmentation of solid objects.

We have also found that the recursive fragmentation p
cess exhibits a number of features that arise in other com
and disordered systems, such as non-self-averaging beh
and the existence of an infinite number of singularities in
distribution of the largest fragment. These features indic
that large sample to sample fluctuations exist, and t
knowledge of first order averages may not be sufficient
characterizing the system. Our 1D model is equivalent
applying the aforementioned DNA segmentation algorith
to a random sequence. It will be interesting to study se
averaging and extremal properties of genetic sequen
which are known to have commonalities with disordered s
tems. Indeed, if these subtle features are found for gen
sequences as well, this would suggest that much cau
should be exercised in statistical analysis of DNA.
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