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The one-dimensional contact process is analyzed by a cluster approximation. In this approach,
the hierarchy of rate equations for the densities of finite length empty intervals are truncated under
the assumption that adjacent intervals are not correlated. This assumption yields a first order
phase transition from an active state to the adsorbing state. Despite the apparent failure of this
approximation in describing the critical behavior, our approach provides an accurate description
of the steady state properties for a significant range of desorption rates. Moreover, the resulting
critical exponents are closer to the simulation values in comparison with site mean-field theory.

The contact process (CP) is an irreversible lattice
model involving nearest neighbor interactions only [1,2].
This model incorporates spontaneous desorption and
nearest-neighbor induced adsorption. This stochastic
process can be used to mimic epidemic spread as well as
catalytic reactions. This model belongs to a general class
of nonequilibrium models exhibiting a continuous phase
transition. Near the critical point, the system exhibits
divergence of spatial and temporal correlations. Such
properties, conveniently characterized by critical expo-
nents, can be used to classify different models. The CP
belongs to the same universality class as Sclögel’s first
model [3], Reggeon field theory [4], directed percolation
[5], and the ZGB model [6] of catalysis. Field theoretic
renormalization group studies [7,8] provide considerable
understanding of the critical behavior of the CP. How-
ever, the best estimates for the characteristic exponents
were found numerically by Monte Carlo simulations [9]
and by series expansion analysis [10,11] .

Motivated by the incomplete theoretical understand-
ing, we introduce an approximate approach to the CP.
We study the temporal evolution of the density of empty
intervals. The corresponding rate equations lead to an
infinite hierarchy of equations. By writing the density of
pairs of neighboring empty intervals as a product over
single interval densities, we obtain a closed set of equa-
tions. We use the generating function technique to obtain
the steady-state properties of the system. Within this ap-
proximation, the system exhibits a discontinuous phase
transition from an active state to the empty state. As
the system approaches the critical point, the relaxation
time, associated with the temporal approach to the fi-
nal state, diverges. Consequently, at the critical point,
an anomalously slow decay towards the final state takes
place. We find the corresponding kinetic exponent by
scaling techniques, as well as by numeric integration of
the rate equations.

We compare the cluster approximation predictions
with the results of site mean-field theory and with se-
ries analysis of this process. Despite the failure to pre-
dict a continuous transition, the cluster approximation
provides a good approximation for the final density and
the empty interval density for a reasonable range of des-
orption rates. Moreover, the resulting estimates for the
critical exponents are closer to the numeric values in com-

parison with site mean-field theory. The cluster approach
is also applicable to generalizations of the contact pro-
cess, such as the A model and the N3 model. We verify
that the resulting critical behavior of these processes is
identical with the contact process. Our approach is ad-
vantageous since it can be improved systematically by
considering the evolution of higher order empty interval
densities.

In the CP, a particle desorbs spontaneously with rate
λ. On the other hand, a particle adsorbs at a given site
at a rate proportional to the number of neighboring occu-
pied sites. In other words, the adsorption rate at a par-
ticular site is given by np/ns, with ns the total number of
neighboring sites and np the number of neighboring par-
ticles. Since every neighboring particle contributes inde-
pendently to the adsorption rate, this stochastic process
can viewed as an interacting particle system with nearest-
neighbor interactions only. The above process possesses
an adsorbing “vacuum” state: once the system reaches
the empty state, adsorption becomes impossible. In suf-
ficiently high dimensions, neighboring sites are not corre-
lated, and the density follows from dρ/dt = ρ(1−ρ)−λρ.
The adsorption term represents the density of vacant
sites that neighbor an occupied site. This site mean-field
theory (SMF) gives a steady state concentration equal to
1− λ. Hence, at λc = 1 this process undergoes a simple
continuous transition.
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Figure 1. The Contact Process.

We consider the one-dimensional case only (see Fig-
ure 1), where studying the density of empty interval has
proven useful in adsorption processes [12], as well as in
reaction processes [13]. Denote by En(t) the probabil-
ity that a randomly chosen string of n sites is empty
(see Figure 1). We emphasize the fact that the actual
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empty string might be of length larger than n. Let us
also consider Rn(t), the probability that a random string
of length n+ 1 has n consecutive vacant sites and a par-
ticle at the extreme right site. For symmetric processes,
such as the CP, Rn(t) also represent the probability of
finding an empty string with a particle at the extreme
left. These two interval densities are related by

Rn = En − En+1 or En = 1−R0 · · · −Rn−1, (1)

for n ≥ 0. For n = 0, the definition of En is trivial,
leading to the following conditions satisfied by the empty
interval densities,

E0 = 1 or
∞∑
n=0

Rn = 1. (2)

The condition for Rn is obtained by using Eq. (1) and
noting that the sum over En reduces to an alternating se-
ries. The above interval densities are useful in describing
macroscopic properties; for example, the concentration is
given by ρ(t) = R0(t).

En = Prob(◦ · · · ◦︸ ︷︷ ︸
n

) Rn = Prob(◦ · · · ◦︸ ︷︷ ︸
n

•)

Figure 2. Empty interval densities.

We write the rate equations governing En(t) by con-
sidering the adsorption and the desorption processes sep-
arately. Adsorption can contribute only to loss of empty
intervals. Empty intervals of length n can be destroyed
when a particle is desorbed at the edge of the inter-
val. This occured only where the empty interval has an
occupied site at its edge. By taking into account con-
tributions from adsorption at either boundary, we find
dEn/dt

∣∣
ads

= −Rn. Desorption, on the other hand,
leads only to creation of empty intervals. When a parti-
cle desorbs, the two empty intervals it borders create a
larger empty interval. We define the pair density El,m
as the density of two neighboring empty intervals, with
lengths at least equal to l and m, separated by a sin-
gle particle. Note that from this definition the rela-
tion E0,n = En,0 = Rn is satisfied. In terms of this
pair density, the increase in the density of empty inter-
vals of length at least n due to desorption is described
by dEn/dt

∣∣
des

= λ
∑n−1
l=0 El,n−1−l. We then approximate

the pair density, El,m, by the product El,m ∼= RlRm/R0,
where the factor 1/R0 ensures the normalization condi-
tion E0,n = Rn. Combining contributions from both
adsorption and desorption yields the following rate equa-
tion for the empty interval density,

dEn
dt

= −Rn +
λ

R0

n−1∑
l=0

RlRn−1−l, n > 0. (3)

The steady-state properties can be obtained by requir-
ing that the time derivative in Eq. (3) vanishes. We in-
troduce the generating function R(z) =

∑
nRnz

n/R0,
with Rn being the steady-state interval densities. Divid-
ing Eq. (3) by R0, summing over all n, and solving the
resulting quadratic equation yields

R(z) =
1−
√

1− 4λz
2λz

, λ < 1/4. (4)

The normalization condition of Eq. (2) shows that ρ =
R0 = 1/R(z)

∣∣
z=1

and, consequently, the concentration is
given by

ρ =
1 +
√

1− 4λ
2

, λ < 1/4. (5)

For λ > λc = 1/4 the system indeed exhibits a tran-
sition to the absorbing state, where the concentration
vanishes. The nature of this transition is discontinuous,
while for the actual CP, the transition is continuous. For
the CP, the approach to the critical density is an alge-
braic one,

ρ− ρc ∼ (λc − λ)β . (6)

Note that while for a continuous transition to a vacuum
state one has ρc = 0, the critical density of the cluster
approximation is finite, ρc = 1/2. Extensive power series
studies suggest β ∼= 0.277, and λc ∼= 0.3032 [10,11]. The
corresponding values obtained by the cluster approxima-
tion, β = 1/2 and λc = 1/4, are closer than the SMF
values β = λc = 1. While the critical point depends
heavily on the microscopic definition of the process, the
critical exponents are universal. Applying the cluster ap-
proximation to variants of the CP always yields β = 1/2.

In Figure 3, we plot the cluster approximation density
vs. the series study density. For desorption rates <∼ 0.2
both curves are practically identical and, for example, at
λ = 0.2 the relative difference is less than 0.5%. We con-
clude that despite the failure near the transition point,
the cluster approximation is useful in describing the pro-
cess for a substantial dynamic range. Another way to
determine the accuracy of the approximation is by ex-
panding Eq. (5) as a power series in λn, and comparing
to the coefficients, obtained by the series expansion study
[11]. We find that both expansions are identical to the
third order,

ρ(λ) =
{

1− λ− λ2 − 2λ3 − 5λ4 +O(λ5) CA,
1− λ− λ2 − 2λ3 − 4 1

2λ
4 +O(λ5) CP. (7)

Since Rn is of order λn, we expect similar correspon-
dence between the approximate interval density from our
rate equations and the actual contact process densities.
To test this, we have performed a Monte-Carlo simula-
tion with 105 particles at λ = 0.2. Indeed, the average
over 200 different realizations yields values for Rn that
agree with the approximate density to within 0.5%, for
n = 0, 1, 2, 3. The quality of the approximation gradually
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decreases as n increases and for example for n = 4 the
discrepancy is 4%.

The interval density also exhibits an interesting crit-
ical behavior. By expanding the generating function of
Eq. (4), one finds Rn = ρλn(2n)!/n!(n + 1)! for λ ≤ λc.
This expression shows that for λ < λc the interval density
depends exponentially on the interval length,

Rn ∼ n−3/2 exp
(
−4∆n

)
∆� 1, (8)

where ∆ = λc − λ. The Stirling formula was used to ob-
tain the above form of the interval density. At the critical
point, power-law decay is recovered, Rn ∼ n−3/2.

These static properties are closely related to the kinet-
ics of the system. Far from the critical point, the density
rapidly relaxes to its steady-state value from any initial
conditions. As the system approaches the critical point,
the relaxation time diverges and a power-law decay of
the concentration takes place. We thus expect that for
sufficiently large times and close enough to the critical
point, the temporal approach to the final state is given
by the scaling form [10,14]

ρ− ρc ∼ t−δψ
(
∆t1/ν

)
. (9)

In other words, the critical exponent δ characterizes the
critical kinetics, while the exponent ν characterizes the
sub-critical relaxation time. The above scaling form
should match the steady-state form of Eq. (6) at large
times and hence we conclude that ψ(x) ∼ xβ for x � 1.
To cancel the temporal dependence, the scaling relation
β = δν must be satisfied. Furthermore, Eq. (8) indicates
that the relaxation length associated with the steady-
state interval density diverges as 1/∆ as the system ap-
proaches the critical point. Thus, it is natural to as-
sume that Rn(t) depends on time through a rescaled size,
n → nt−α, as well as a rescaled adsorption rate. Noting
that R0 = ρ, we postulate the following scaling behavior
for Rn(t):

Rn(t) ∼ φ
(

∆t1/ν , nt−α
)
. (10)

On the other hand, Eq. (8) indicates that the steady-state
density depends on the size and the rate only through the
variable n∆. Hence, φ(x, y) ∼ φ̃(xy), and by eliminat-
ing the temporal dependence we find the scaling relation
αν = 1.

Thus far, our scaling analysis involved matching the
anticipated kinetic behavior to the exact steady-state
properties. To determine the critical temporal decay,
ρ− ρc ∼ t−δ, we study the rate equations at λc = 1/4.
Using the duality relations between En and Rn (see
Eq. (1)), the rate equations for λ = λc can be rewrit-
ten in terms of Rn only,

n−1∑
l=0

dRl
dt

=
1

4R0

n−1∑
l=0

RlRn−1−l −Rn. (11)

To analyze this equation by scaling techniques, we match
the leading asymptotic terms in both sides of the above
equation. The left hand side is governed by n terms
of order Rn. Hence, by taking into account the time
derivative, we conclude that the left hand side is pro-
portional to nRn/t. The right hand side is dominated
by the first few terms in the expansion, namely l � n
and n − l � n. Therefore, we approximate the sum by
2Rn(R0 +R1 + · · ·)/R0 = 2Rn/R0, using the normaliza-
tion condition of Eq. (2). Finally, we write the resulting
expression Rn (1− 1/2R0(t)) in terms of the concentra-
tion,

n

t
Rn ∝ Rn(ρ− ρc). (12)

We conclude that nt−1 ∼ tα−1 ∼ t−δ, or equivalently
α+ δ = 1. The three scaling relations yield the following
exponents, δ = 1/3, ν = 3/2 and α = 2/3. Numeri-
cal integration of the rate equation at λ = λc confirms
the scaling prediction for δ (see Figure 4). In Table 1,
we compare the exponents, that result from our cluster
approximation (CA), with the corresponding series ex-
pansion and the SMF values. We conclude that the CA
exponents provide significant improvement in compari-
son with those from SMF.

Table 1 Static and Critical decay exponents obtained by
series studies (CP), Cluster Approximations (CA) and
Site Mean-Field (SMF).

β δ ν
CP 0.277 0.160 1.735
CA 1/2 1/3 3/2
SMF 1 1 1

Recently, several variants of the CP where introduced
and it was shown that they belong to the same univer-
sality class as the original model. In these models, the
adsorption process is modified while the desorption pro-
cess remains unchanged. The adsorption rate is set to
θ/2 if only one neighboring site is occupied, while the
rate remains unity in the case when both neighboring
sites are occupied. The empty interval method can be
easily generalized to this case and we merely quote the
resulting subcritical steady state density

ρ =
θ +

√
θ2 − 4λ(θ − η)
2(θ − η)

, η =
λ(1− θ)(θ − 2λ)

θ2 + (1− θ)(θ − 2λ)
.

(13)

For the basic CP, θ = 1, we recover Eq. (5). Clearly, the
discontinuous nature of the transition is independent of
the microscopic details of the model and the exponent
β = 1/2 is indeed robust. The critical point, however,
depends on θ and can be found by equating the square
root in Eq. (13) to zero. If the adsorption rates are in-
dependent of the number of neighboring particles, θ = 2,
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the predicted critical point is λc ∼= 0.4608, while series
studies yield λc ∼= 0.574 for this so-called A model. In
the case where θ = 1/2 (the N3 model), the critical point
is λc = 0.1366, while series studies yield λc = 0.162. For
the general θ case, the cluster approach yields less accu-
rate estimates for the concentration than for basic CP.

In summary, we have presented an approximate ap-
proach to the contact process. Based on the assump-
tion that neighboring empty intervals are not correlated,
we solved for the steady state properties. In addition,
the kinetic approach towards the steady state was found
by scaling techniques. The above approximation is valid
for a significant subcritical range. The cluster approxi-
mation predicts a discontinuous transition but gives im-
proved exponents in comparison with simple site mean-
field theory.

The cluster approximation can be systematically im-
proved by considering higher order interval densities. In-
deed, our preliminary results indicate that the second
order cluster approximation yields a continuous phase
transition. Moreover, the approximation appears to be
valid over a significantly larger range of desorption rates.
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FIGURE CAPTIONS

Figure 1. The Contact Process.
Figure 2. Empty interval densities.
Figure 3. The cluster approximation density (solid) vs.
the actual CP density (dashed). The latter density rep-
resent the [12,12] Padé approximant obtained from the
perturbation study of ref [11].
Figure 4. The critical approach towards the steady-
state. Numeric solution to the rate equations (dots) for
the case λ = λc = 1/4 is plotted. For comparison a line
of slope −1/3 is also shown (solid).
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