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We study statistics of first passage inside a cone in arbitrary spatial dimension. The probability
that a diffusing particle avoids the cone boundary decays algebraically with time. The decay expo-
nent depends on two variables: the opening angle of the cone and the spatial dimension. In four
dimensions, we find an explicit expression for the exponent, and in general, we obtain it as a root of
a transcendental equation involving associated Legendre functions. At large dimensions, the decay
exponent depends on a single scaling variable, while roots of the parabolic cylinder function specify
the scaling function. Consequently, the exponent is of order one only if the cone surface is very close
to a plane. We also perform asymptotic analysis for extremely thin and extremely wide cones.
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I. INTRODUCTION

Random walks are widely used to model natural pro-
cesses in physics, chemistry, and biology [1–4]. In partic-
ular, first-passage and persistence statistics [5, 6] of mul-
tiple random walks underlie reaction-diffusion processes
[7], spin systems [8–10], and polymer dynamics [11, 12].

First-passage processes involving multiple random
walks are equivalent to diffusion in a restricted region
of space. For example, the probability that N ordinary
random walks do not meet is equivalent to the probability
that a “compound” walk in N dimensions remains con-
fined to the region x1 < x2 < . . . < xN . This probability
decays as t−N(N−1)/4 in the long-time limit [13–15].

When there are only two or three particles, the com-
pound walk is, in many cases, confined to a wedge,
formed by two intersecting planes. Moreover, the well-
known properties of diffusion inside an absorbing wedge
[5] explain the long-time kinetics [13, 16–19]. In general,
however, the absorbing boundary is defined by multiple
intersecting planes in a high-dimensional space. Apart
from a few special cases, diffusion subject to such com-
plicated boundaries conditions remains an open problem
[18–22].

Our goal is to use cones in high dimensions to ap-
proximate the absorbing boundaries that underlie such
first-passage processes. In this study, we obtain analytic
results for the survival probability of a diffusing particle
inside an absorbing cone in arbitrary dimension. In a
follow-up study [23], we demonstrate that cones provide
useful approximations to first-passage characteristics of
multiple random walks [24].

We consider a single particle that diffuses inside an
unbounded cone with opening angle α in spatial dimen-
sion d (Figure 1). The central quantity in our study is
the probability S(t) that the particle does not reach the
cone boundary up to time t. Regardless of the starting
position, this survival probability decays algebraically,
S ∼ t−β , in the long-time limit.

First, we find the exponent β analytically by solving
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FIG. 1: Illustration of a cone with opening angle α. The
initial location of the particle is parametrized by the radial
distance r and the polar angle θ.

the Laplace equation inside the cone. In dimensions two
and four, this exponent is an explicit function of the open-
ing angle α, and in particular, β = (π − α)/2α when
d = 4. In general dimension, we find β as a root of a
transcendental equation involving the associated Legen-
dre functions.

Second, we derive scaling properties of the exponent.
Interestingly, the exponent β becomes a function of a
single scaling variable in the large-d limit. We obtain the
scaling function as a root of the transcendental equation

D2β(y) = 0 with y = (cosα)
√
d (1)

involving the parabolic cylinder function Dν . The ex-
ponent β is of order one only in a small region around
α = π/2. The width of this region shrinks as d−1/2 in
the infinite dimension limit. The exponent diverges al-
gebraically, β(y) ≃ y2/8 as y → ∞, and it is exponen-

tially small, β(y) ≃
√

y2/8π exp(−y2/2) when y → −∞.
Thus, in the large-d limit, the exponent β is huge if the
opening angle is acute, and conversely, it is tiny if the
opening angle is obtuse. Strikingly, if we fix the open-
ing angle α and take the limit d → ∞, there are three
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distinct possibilities,

lim
d→∞

βd(α) =











∞ α < π/2,

1/2 α = π/2,

0 α > π/2.

(2)

Of course, a cone with opening angle α = π/2 is simply
a plane, and hence, β(α = π/2) = 1/2 for all d.

Third, we study the limiting cases of very thin and
very wide cones. The exponent diverges algebraically,
β ∼ α−1, when the cone is extremely thin. When the
cone is extremely wide, the exponent is exponentially
small, β ∼ (π − α)d−3.

The rest of this paper is organized as follows. In Sec-
tion II, we write the diffusion equation that governs the
survival probability, and show that finding the leading
asymptotic behavior of the survival probability requires
a solution to the Laplace equation [25–29]. We present
the solutions to this Laplace equation in two and four di-
mensions in Section III, and for an arbitrary dimension
in Section IV. The bulk of the paper deals with asymp-
totic analysis for very large dimensions. In particular,
we derive scaling properties of the exponent and obtain
the limiting behaviors of the scaling function (Section
V). Asymptotic results for extremely thin and extremely
wide cones are detailed in Sections VI and VII, respec-
tively. We also obtain the first-passage time (Section
VIII) and conclude with a discussion in Section IX.

II. THE DIFFUSION EQUATION

Consider a particle undergoing Brownian motion [30,
31] inside an unbounded cone in spatial dimension d. The
opening angle α, that is, the angle between the cone axis
and its surface, fully specifies the cone (Figure 1). The
range of opening angles is 0 ≤ α ≤ π, and for α = π/2,
the cone surface is planar. Moreover, the exterior of the
cone is itself a cone with opening angle π − α. In two
dimensions, the cone is a wedge, and in three dimensions,
the cone is an ordinary circular cone.

At time t = 0, the particle is released from a certain
location inside the cone. Our goal is to determine the
probability that the particle does not reach the cone sur-
face up to time t. By symmetry, this survival probability,
S ≡ S(r, θ, t), depends on the initial distance to the apex
r, and the initial angle with the cone axis θ. Using a
spherical coordinate system where the origin is located
at the cone apex and the z-axis is along the cone axis,
the pair of parameters (r, θ) are simply the radial and the
polar angle coordinates of the initial location (Figure 1).

The survival probability fully quantifies the first-
passage process. For example, the probability that the
particle first reaches the cone surface during the time in-
terval (t, t+ dt) equals [−dS(r, θ, t)/dt] × dt. In general,
the survival probability satisfies the diffusion equation [2]

∂S(r, θ, t)

∂t
= D∇2S(r, θ, t), (3)

where D is the diffusion constant. The initial condi-
tion is S(r, θ, t = 0) = 1, and the boundary condition
is S(r, α, t) = S(0, θ, t) = 0.

We are primarily interested in the large-time kinetics.
Based on the behavior in two and three dimensions [5], we
expect that the survival probability decays algebraically,

S(r, θ, t) ≃ Φ(r, θ) t−β , (4)

as t → ∞. The exponent β ≡ βd(α) depends on the
spatial dimension d and the opening angle α. The de-
pendence on the initial location enters only through the
amplitude Φ.

We now substitute the leading asymptotic behavior (4)
into the diffusion equation (3). Since the time derivative
becomes negligible in the long-time limit, the amplitude
Φ satisfies Laplace’s equation,

∇2Φ(r, θ) = 0, (5)

subject to the boundary conditions Φ(r, α) = Φ(0, θ) = 0.
The survival probability is finite and positive everywhere
inside the cone, and consequently, the amplitude must
be finite and positive, 0 < Φ(r, θ) < ∞ for all θ < α. In
addition, dΦ/dθ|θ=0 = 0, to avoid a cusp along the cone
axis.

We use dimensional analysis [32] to solve Eq. (5). The
survival probability is dimensionless, and hence, (4) im-
plies [Φ] = T β where T denotes dimension of time. The
amplitude Φ depends on three variables: the radial coor-
dinate r with dimension of length, [r] = L, the diffusion
coefficient D with [D] = L2/T , and the dimensionless an-
gle θ. As the quantity (r2/D)β is the only combination
of the variables r and D with dimension T β , we seek a
solution in the form

Φ(r, θ) =

(

r2

D

)β

ψ(θ). (6)

The angular function ψ(θ) must be finite and positive
everywhere inside the cone, 0 < ψ(θ) < ∞ for θ < α,
and it vanishes on the cone surface, ψ(α) = 0.

We now write the Laplacian operator in (5) explicitly
by using

∇2 ≡ ∂2

∂r2
+
d−1

r

∂

∂r
+

1

r2(sin θ)d−2

∂

∂θ
(sin θ)d−2 ∂

∂θ
.

Next, we substitute (6) into the Laplace equation and
find that the angular function ψ ≡ ψ(θ) satisfies the
eigenvalue equation [25–29]

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 dψ

dθ

]

+2β(2β+d−2)ψ = 0. (7)

The boundary conditions are ψ′(0) = 0 and ψ(α) = 0.
From equations (4) and (6), the leading asymptotic

behavior is

S(r, θ, t) ≃ ψ(θ)

(

D t

r2

)

−β

, (8)
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as t → ∞. In particular, the survival probability grows
algebraically with distance, S ≃ r2β . We note that the
problem of finding the leading asymptotic behavior of the
survival probability reduces to an electrostatic problem
[33, 34] as the amplitude satisfies Laplace’s equation (5).

Our goal is to find the exponent β and the angu-
lar function ψ(θ). We expect that the exponent is a
monotonically decreasing function of the opening angle
α. Also, in all dimensions, β(α = π/2) = 1/2 because
a cone with opening angle α = π/2 is a half-space and
consequently, the first-passage probability is identical to
that of a particle in the vicinity of a trap in one dimension
[5].

III. DIMENSIONS TWO AND FOUR

We first discuss two special cases where explicit so-
lutions are possible. In dimension two, the second or-
der differential equation (7) reads ψθθ + (2β)2 ψ = 0, and
the two independent solutions are simply cos(2βθ) and
sin(2βθ). The boundary condition ψ′(0) = 0 excludes
the latter and therefore,

ψ2(θ) = cos(2βθ). (9)

Henceforth, the subscript indicates the dimension. Since
the linear equation (7) specifies the angular function
only up to an overall constant, we set the prefactor to
one throughout this paper. The boundary condition
ψ(α) = 0 and the requirement that the angular function
must be positive everywhere inside the cone together im-
ply 2βα = π/2. Therefore, the exponent is [5]

β2(α) =
π

4α
. (10)

As expected, the exponent is a monotonically decreas-
ing function of α, and β2(π/2) = 1/2. The exponent is
minimal, yet finite, β2(π) = 1/4, for an absorbing needle
[35]. Thus, in dimension two, a diffusing particle reaches
a needle with certainty.

In dimension four, the transformation
ψ4(θ) = (sin θ)−1u(θ) reduces the eigenvalue equation
(7) to uθθ + (2β + 1)2u = 0. Now, the two independent
solutions are sin[(2β + 1)θ] and cos[(2β + 1)θ], but the
latter is forbidden because the function ψ must be finite.
Therefore,

ψ4(θ) =
sin [(2β + 1)θ]

sin θ
. (11)

The boundary condition ψ(α) = 0 and the requirement
ψ(θ) > 0 for θ < α together give (2β + 1)α = π. Hence,
the exponent is an explicit function of the opening angle
in dimension four as well,

β4(α) =
π − α

2α
. (12)

The exponent vanishes, β4(α) → 0 as α → π, so it is
no longer guaranteed that a diffusing particle reaches a
needle.

IV. GENERAL DIMENSION

In general dimension, we transform the eigenvalue
equation (7) using the variable µ = cos θ. In terms of
this variable, the function ψ ≡ ψd(µ) satisfies

(1−µ2)
d2ψ

dµ2
− (d− 1)µ

dψ

dµ
+2β(2β+ d− 2)ψ = 0. (13)

The boundary condition is ψ(cosα) = 0. We now use a
second transformation,

ψ(µ) =
(

1 − µ2
)−δ/2

Ψ(µ) with δ =
d− 3

2
.

Substituting this form into (13) shows that the auxil-
iary function Ψ ≡ Ψd(µ) satisfies the associated Legendre
equation [36, 37]

(1 − µ2)
d2Ψ

dµ2
− 2µ

dΨ

dµ
(14)

+

[

(2β + δ)(2β + δ + 1) − δ2

1 − µ2

]

Ψ = 0.

The two independent solutions of this equation are
P δ

2β+δ(µ) and Qδ
2β+δ(µ), the associated Legendre func-

tions of degree 2β + δ and order δ. In even dimensions,
the first solution is not physical because it implies a diver-
gence of ψ as θ → 0 [37]. In odd dimensions, the second
solution is excluded for the same reason. Therefore [38],

ψd(θ) =

{

(sin θ)−δP δ
2β+δ(cos θ) d odd,

(sin θ)−δQδ
2β+δ(cos θ) d even.

(15)

The boundary condition ψ(α) = 0 relates the exponent
β and the opening angle α,

P δ
2β+δ(cosα) = 0 d odd,

Qδ
2β+δ(cosα) = 0 d even.

(16)

In general dimension, the exponent β is the smallest root
of the transcendental equation (16) involving the asso-
ciated Legendre functions. We must always choose the
smallest root because ψ(θ) > 0 for all θ < α.

We can verify that the exponent β decreases monoton-
ically with the opening angle α, and that β(π/2) = 1/2
(Figure 2). In all dimensions, the exponent diverges for
extremely thin cones, α→ 0, and when d ≥ 3, the expo-
nent vanishes when α→ π.

Let us fix the opening angle and increase the dimen-
sion. There are two possibilities: (i) if α < π/2, the
first-passage process speeds up with increasing dimension
because β increases (Figure 2) and ψ(θ) declines (Figure
3a); (ii) if α > π/2, the first-passage process slows down
because β shrinks (Figure 2) and ψ(θ) grows (Figure 3b).
Ultimately, in the infinite-dimension limit, first passage
becomes instantaneous for acute angles but infinitely long
for obtuse angles.
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FIG. 2: The survival exponent β versus cosα at different
dimensions. This exponent is given explicitly by (10) and
(12) in dimensions d = 2 and d = 4, respectively. In general,
the exponent is a root of the transcendental equation (16).

In dimension three, δ = 0, and the solution (15) re-
duces to the Legendre function of index 2β, namely,
ψ3(θ) = P2β(cos θ) [36, 37]. Also, the exponent β is the
smallest root of the transcendental equation [5]

P2β(cosα) = 0. (17)

For half-integer values of the exponent, β = n/2, the
angular function ψd(θ) is a polynomial of degree n in
cos θ. This follows directly from equation (13). For ex-
ample,

ψd(θ) =











cos θ β = 1/2,

d cos2 θ − 1 β = 1,

(d+ 2) cos3 θ − 3 cos θ β = 3/2.

(18)

In three dimensions, the polynomials coincide with the
Legendre polynomials: ψ3(θ) = Pn(cos θ) when β = n/2.
Using ψ(α) = 0, we find the opening angles for which the
exponent is a half-integer:

βd(α) =











1/2 cosα = 0,

1 cosα = 1/
√
d,

3/2 cosα =
√

3/(d+ 2).

(19)

V. SCALING PROPERTIES

The special values listed in (19) suggest that the sur-
vival exponent has the scaling form

βd(α) → β(y) with y = (cosα)
√
d, (20)

in the limit d → ∞. From equation (19), we deduce

β(y = 0) = 1/2, β(y = 1) = 1, and β(y =
√

3) = 3/2. To
show the scaling behavior (20) in general, we introduce
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FIG. 3: The function ψ(θ) versus the normalized polar angle
θ/α at different dimensions. The function ψ(θ) is normalized
such that ψ(0) = 1. Figure 3a shows the behavior for an acute
opening angle, α = π/4, and Figure 3b shows the behavior
for an obtuse opening angle, α = 3π/4.

the variable z = µ
√
d. Performing this scaling trans-

formation on the Laplace equation (13) shows that the
angular function depends on a single scaling variable,
ψd(µ) → ψ(z), in the d → ∞ limit. The scaling func-
tion ψ(z) satisfies

ψzz − z ψz + 2βψ = 0. (21)

The boundary condition is ψ(z = y) = 0, and addition-
ally, ψ(z) > 0 for all y < z <∞.

Using the transformation ψ(z) = exp(z2/4)u(z), we
recast (21) into the parabolic cylinder equation [39]

uzz +

(

2β +
1

2
− z2

4

)

u = 0.

The two independent solutions of this equation are
D2β(z) and D2β(−z) where Dν(z) is the parabolic cylin-
der function of index ν. The second solution is not
physical: the asymptotic behavior Dν(−z) ∼ exp(z2/4)
as z → ∞ [39] implies a divergent survival probability in
the limit θ → 0. Therefore,

ψ(z) = ez2/4D2β(z). (22)
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FIG. 4: The exponent β, specified by equation (23), versus

the scaling variable y = (cosα)
√
d.

As always, we set the overall proportionality constant to
one. The boundary condition ψ(z = y) = 0 relates the
scaling function β(y) and the scaling variable y, defined
in (20),

D2β(y) = 0. (23)

The proper solution is the largest root of the parabolic
cylinder function. For half-integer values of the expo-
nent, the parabolic cylinder function is related to a Her-
mite polynomial, D2β(z) ∝ Hn(z/

√
2) exp(−z2/4), and

hence, (23) is equivalent to Hn(y/
√

2) = 0, where the
largest root is the appropriate one. Therefore, the half-
integer values of the scaling function β(y) occur at ze-
roes of Hermite polynomials. In addition to the afore-

mentioned values, we also quote β
(

√

3 +
√

6
)

= 2 and

β
(

√

5 +
√

10
)

= 5/2.
The scaling behavior (20) is valid in the limits α→ π/2

and d → ∞ with the scaling variable y = (cosα)
√
d or

alternatively y = (π/2 − α)
√
d kept finite. Hence, the

scaling function in (23) quantifies the shape of β in a
“scaling window” [40–42] centered on α = π/2. The size
of this window shrinks as d−1/2 at large dimensions. As
shown in Figure 4, β vanishes as y → −∞, and it diverges
as y → ∞. Surprisingly, if we fix the opening angle α
and then take the d → ∞ limit, there are three distinct
possibilities, as stated in (2): the exponent vanishes if
α > π/2, it always equals 1/2 when α = π/2, and it
diverges if α < π/2.

We also note that the approach to the scaling behavior
is not uniform. The scaling exponent β converges rapidly
to the scaling function for negative y, but the convergence
is quite slow for positive y (Figure 5).

To find the asymptotic behavior when y → ∞, we use
the fact that the largest root ξ ≡ ξ(ν) of the parabolic
cylinder function of index ν, Dν(ξ) = 0, is located at [36]

ξ ≃ (4ν)1/2 − |a1| ν−1/6,
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FIG. 5: The convergence to the scaling behavior. The expo-
nent β ≡ βd(α), specified by (16), is plotted versus the scaling

variable y = (cosα)
√
d for d = 10 and d = 100. Also shown

is the scaling function β(y).

when ν → ∞. Here, a1
∼= −2.338107 is the first root

of the Airy function. Substituting ν = 2β into this ex-
pression, we find y ≃ (8β)1/2 − |a1|(2β)−1/6 as β → ∞.
Therefore, the leading behavior is β ≃ y2/8. Further-
more, the first correction to this asymptotic form is

β ≃ y2

8
+ |a1|2−5/3 y2/3. (24)

Thus, the exponent β diverges algebraically when
y → ∞.

We use perturbation analysis to find how β vanishes in
the complementary limit y → ∞. Equation (21) shows
that the angular function becomes constant when β → 0.
Thus, ψ(z) ≃ 1+β g(z). Substituting this form into (21),
the correction function g ≡ g(z) obeys

gzz − zgz + 2 = 0. (25)

The boundary condition

gz(0) =
√

2π (26)

follows from the small-β, small-z, behavior of the scaling
solution (22)

ψ(z) ≃ 1+
D′

2β(0)

D2β(0)
z = 1−

√
2 Γ( 1

2 − β)

Γ(−β)
z ≃ 1+

√
2π β z.

Here, we used the values D2β(0) =
√
π 2β/Γ(1/2 − β)

and D′

2β(0) = −√
π 2β+1/2/Γ(−β) [39], as well as the

identities Γ(1/2) =
√
π and (−β)Γ(−β) = Γ(1 − β).

Using the integrating factor I(z) = exp(−z2/4), we
simplify Eq. (25) to d(gz I)/dz = −2I. Integration of this
equation subject to the boundary condition (26) gives

g(z) = 2

∫ z

0

dt et2/2

∫

∞

t

ds e−s2/2. (27)
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The second integral approaches a constant, and
consequently, g(z) ≃ −

√

8π/z2 exp(z2/2), when
z → −∞. We now impose the boundary condition
ψ(y) = 1 + β g(y) = 0, and find that the exponent is
exponentially small,

β(y) ≃
√

y2

8π
e−y2/2, (28)

in the limit y → −∞.
In summary, the scaling function β(y) has the following

extremal behaviors

β(y) ≃
{

√

y2/8π exp
(

−y2/2
)

y → −∞,

y2/8 y → ∞.
(29)

At large dimensions, these limiting behaviors apply only
inside the scaling window, that is, when |π/2 − α| is of
the order d−1/2. In the next two sections, we perform
asymptotic analysis for the limiting cases of extremely
thin cones (θ → 0) and extremely wide cones (θ → π).

VI. THIN CONES

The explicit expressions (10) and (12) show that the
exponent is inversely proportional to the opening angle,
β ∼ α−1, when the cone is extremely thin. We anticipate
that this divergence is generic.

When the cone is very thin, we have sin θ ≃ θ and equa-
tion (7) simplifies,

d2ψ

dθ2
+
d− 2

θ

dψ

dθ
+ (2β)2ψ = 0. (30)

This equation holds as long as dα2 ≪ 1. In writing this
equation we tacitly assumed a divergent β. We now intro-
duce the scaling variable x = 2βθ and transform equation
(30) as follows,

ψxx +
d− 2

x
ψx + ψ = 0.

Next, we seek a solution in the form ψ(x) = x−δu(x),
where as in (15), δ = d−3

2 . Performing this second trans-
formation gives the Bessel equation [43]

x2 uxx + xux +
(

x2 − δ2
)

u = 0.

This equation has two independent solutions: the Bessel
functions Jδ(x) and Yδ(x). The boundary condition
ψ′(0) = 0 excludes the latter and hence,

ψ(x) = x−δJδ(x). (31)

The other boundary condition, ψ(α) = 0, gives an im-
plicit relation Jδ(2βα) = 0 between the exponent β and
the opening angle α. We see that the exponent is in-
versely proportional to the opening angle in all dimen-
sions:

βd(α) ≃ Bd α
−1 with Bd = 1

2ζ(δ), (32)

d Bd

2 0.785398

3 1.202412

4 1.570796

5 1.915852

6 2.246704

7 2.567811

8 2.881729

9 3.190080

10 3.493966

TABLE I: The coefficient Bd in (32) for d ≤ 10. Equations
(9) and (11) yield B2 = π/4 and B4 = π/2, respectively.

as α → 0. Here, ζ(δ) is the first positive zero of the
Bessel function, Jδ(ζ) = 0. Table I lists the coefficients
Bd for d ≤ 10.

At large dimensions, we use the asymptotic behavior
[36, 37]

ζ(δ) ≃ δ + |a1|(δ/2)1/3

when δ → ∞. Again, a1
∼= −2.338107 is the first root of

the Airy function. Thus, to leading order, the prefactor
Bd is linear in the dimension, Bd ≃ d/4. The correction
to the leading asymptotic behavior is given by

Bd ≃ d

4
+ |a1|2−5/3d1/3, (33)

for d → ∞. The divergence (32) shows that a diffusing
particle quickly reaches the cone surface when the cone
is thin. Moreover, equation (33) implies β ≃ d/4α, and
hence, the first-passage process becomes even faster as
the dimension increases.

VII. WIDE CONES

For all d ≥ 3, the solutions to equation (16) show that
the exponent vanishes when the interior of the cone oc-
cupies all of space (Figure 2). In this case, equation (7)
becomes

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 dψ

dθ

]

+ 2β(d− 2)ψ = 0. (34)

We obtain β by repeating the perturbation analysis lead-
ing to (28). For all d ≥ 3, we write ψ(θ) ≃ 1+β g(θ). The
boundary condition ψ′(0) = 0 implies g′(0) = 0. From
(34), the correction g ≡ g(θ) obeys

d

dθ

[

(sin θ)d−2 dg

dθ

]

= −2(d− 2)(sin θ)d−2. (35)

Integrating this equation twice and using the boundary
condition g′(0) = 0, we find the correction up to a con-
stant,

g(θ) = g0 − 2(d−2)

∫ θ

0

dφ

(sinφ)d−2

∫ φ

0

dϕ (sinϕ)d−2. (36)
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d 3 4 5 6 7 8 9 10

Ad 0 1

2π
1

4

1

π
3

8

4

3π
15

32

8

5π

TABLE II: The coefficient Ad given by equation (38) for
d ≤ 10.

In the limit θ → π, the second integral approaches the
constant

Sd =

∫ π

0

dθ (sin θ)d−2 =
Γ

(

d−1
2

)

Γ
(

1
2

)

Γ
(

d
2

) .

Moreover, the term (sinφ)−(d−2) ≃ (π − φ)−(d−2) domi-
nates the first integral and therefore, the correction func-
tion diverges,

g(θ) ≃ −2(d− 2)Sd

d− 3
(π − θ)−(d−3),

as θ → π. We now impose the boundary condition
ψ(α) = 1 + βg(α) = 0 and find that the exponent β
vanishes exponentially as α→ π,

βd(α) ≃ Ad (π − α)d−3. (37)

The coefficient Ad = d−3
2(d−2)Sd

is given by

Ad =
Γ

(

d−2
2

)

2Γ
(

1
2

)

Γ
(

d−3
2

) . (38)

In particular A4 = 1/2π, in agreement with equation
(12). Table II lists the coefficients Ad for d ≤ 10. The
asymptotic property Γ(x + a)/Γ(x) → xa as x → ∞
shows that the coefficient grows algebraically with di-
mension, Ad ≃

√

d/8π.
In the marginal case d = 3, the coefficient in (37) van-

ishes, A3 = 0. In this case, the exponent vanishes gently,

β3 ≃ 1

4 ln 2
π−α

(39)

as follows from (17) [43]. This behavior is consistent with
the near-π behavior of (36), g(θ) ≃ −4 ln 1

π−θ .
As the opening angle approaches its maximal value, the

cone surface turns into an infinitely long, yet infinitesi-
mally thin needle. In two dimensions, a diffusing particle
is bound to reach such a needle. Yet, in dimensions three
and higher, the particle may or may not reach the needle.
Moreover, the exponentially small exponent (37) shows
that the first-passage process becomes extremely slow at
high dimensions.

VIII. FIRST-PASSAGE TIME

We now briefly discuss the first-passage time. Let
T (r, θ) be the average duration of the first-passage pro-
cess, namely, the average time it takes a particle released

at (r, θ) to reach the cone surface for the first time (Fig-
ure 1). This quantity obeys the Poisson equation [5]

D∇2T (r, θ) = −1, (40)

and the boundary condition T (r, α) = T (0, θ) = 0.
As in (6), we use dimensional analysis and write
T (r, θ) = (r2/D)U(θ) where U(θ) is a dimensionless
function of the angle. From Eq. (40), we get

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 dU

dθ

]

+ 2dU = −1, (41)

while the boundary condition becomes U(α) = 0.
The linear equation (41) has the particular solution

Ũ = −1/2d, and thus, we seek a solution in the form
U(θ) = u(θ) − 1/2d. The function u ≡ u(θ) obeys the
homogeneous linear differential equation

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 du

dθ

]

+ 2du = 0,

subject to the boundary condition u(α) = 1/2d. This
equation is a special case of (7), and using (18), we im-
mediately find u(θ) = C(d cos2 θ − 1) where C is set by
the boundary condition. Finally, we find that the first-
passage time has the compact form

T (r, θ) =
r2

2D

cos2 θ − cos2 α

d cos2 α− 1
. (42)

This first-passage time is finite if and only if β > 1.

IX. DISCUSSION

In summary, we studied first-passage kinetics for a par-
ticle diffusing in a cone. In all dimensions, the probabil-
ity that the particle does not reach the cone boundary
decays algebraically with time. We found the exponent
underlying this power-law behavior as a root of a tran-
scendental equation involving associated Legendre func-
tions. We also obtained scaling and extremal properties
of the exponent.

Our results generalize the known properties of first pas-
sage in two- and three-dimensional cones [5] to arbitrary
dimensions. Moreover, the statistical physics perspec-
tive, where scaling plays a central role, extends rigorous
studies of diffusion in cones in probability theory [25–
28] and potential theory [29]. Scaling implies that the
behavior in a narrow window becomes universal: cones
with different combinations of α and d, have the same ex-
ponent β, as long as the scaling variable y = (cosα)

√
d

is the same. The exponent is exponentially small when
y → −∞, and it grows algebraically when y → ∞.

As the dimension increases, the first-passage process
speeds up if the opening angle is acute but slows down if
the opening angle is obtuse. This behavior is reflected by
the asymptotic behavior for fixed θ in the large-d limit.
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We merely quote the results of the corresponding asymp-
totic analysis,

βd(α) ≃
{

d
4

(

1
sin α − 1

)

α < π/2,

C(sinα)d α > π/2.
(43)

The exponent is proportional to the dimension at acute
angles, and it decays exponentially with dimension at
obtuse angles. The asymptotic behavior (43) is consistent
with the limiting behavior of the scaling function (29) as
well as the asymptotic results (32) and (37).

Kinetics of first-passage in a cone provide useful in-
formation about first-passage problems involving mul-
tiple random walks. For example, let us consider the
random-walk problem mentioned in the introduction.
The probability that the trajectories of N ordinary ran-
dom walks do not meet up to time t is equivalent to
the probability that a compound random walk in N di-
mensions remains inside the region x1 < x2 < · · · < xN .
Since there are N ! permutations of the positions, the
total solid angle inside this “allowed region” accounts
for a fraction 1/N ! of space. We replace the allowed
region with an N -dimensional cone that has the same
solid angle, αN−1 ∼ 1/N !. Using the Stirling formula,

N ! ∼
√

2πN(N/e)N , the opening angle is α ≃ e/N . The
survival probability decays algebraically, S(t) ∼ t−βN ,
and using (32)–(33), the exponent is βN ≃ N2/4e. This
cone approximation correctly gives the asymptotic N -

dependence as the exact exponent is N(N−1)/4 [13–15].

First passage in the exterior of this narrow cone gives
an approximation for the probability that the order of
N random walks does not turn into the mirror image
of the initial state. If the initial ordering of the ran-
dom walks is {1, 2, · · · , N − 1, N}, then S(t) is the prob-
ability that the particles do not reach the configuration
{N,N − 1, . . . , 2, 1} up to time t. Since the angle of the
cone is now π − α ≃ e/N , the asymptotic behavior (37)
gives S(t) ∼ t−βN with the tiny exponent

βN ≃
√

N/8π (e/N)N−3.

In a follow-up study, we use cones to understand other
random walk problems [23].

With a few exceptions such as paraboloids [44, 45], the
study of first passage in elementary geometries is still in
its infancy. We considered first passage in basic circular
cones. A natural extension is to generalized cones [46],
defined as domains with the property that all rays ema-
nating from the apex do not intersect the cone boundary.
Understanding first-passage properties in such general-
ized cones ultimately requires a solution to the Laplace-
Dirichlet boundary value problem.

We thank Sidney Redner for useful discussions. This
research has been supported by DOE grant DE-AC52-
06NA25396 and NSF grant CCF-0829541.
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