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Abstract

We study opinion dynamics models where agents evolve via repeated pairwise
interactions. In the compromise model, agents with sufficiently close real-valued
opinions average their opinions. A steady state is reached with a finite number of
isolated, noninteracting opinion clusters (“parties”). As the initial opinion range
increases, the number of such parties undergoes a periodic bifurcation sequence,
with alternating major and minor parties. In the constrained voter model, there
are leftists, centrists, and rightists. A centrist and an extremist can both become
centrists or extremists in an interaction, while leftists and rightists do not affect
each other. The final state is either consensus or a frozen population of leftists
and rightists. The evolution in one dimension is mapped onto a constrained spin-1
Ising chain with zero-temperature Glauber kinetics. The approach to the final state
exhibits a non-universal long-time tail.
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1 Introduction

Opinions of individuals in a heterogeneous society evolve due to influences
of acquaintances. In principle, opinions could evolve forever, consensus could
emerge, or a population could condense into a finite set of distinct opinion clus-
ters, or “parties”. The modeling of such phenomena, both by social scientists
[1–3] and by statistical physicists [4–8] is a vibrant area. In this contribution
to the Randomness and Complexity conference in honor of Shlomo Havlin’s
60th birthday, we discuss two simple models for this type of opinion evolution.

In the compromise model [9,10], the opinion of each individual is a real-valued
variable on a finite range. In an interaction, two compatible agents average
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their current opinions, while there is no interaction between agents whose opin-
ion difference exceeds a specified threshold. These rules model the competition
between compromise and conviction as a function of the opinion difference of
two individuals. To implement the dynamics, two agents are picked at random
and they interact if compatible. This basic step is repeated ad infinitum.

A simplified stochastic version of this process is the constrained voter model

[11]. Here, each individual has three states — leftist, centrist, and rightist. In
an event, an agent adopts the opinion of a randomly-chosen neighbor, as in
the voter model [12], but with the proviso that leftists and rightists do not
interact. Due to this constraint, the outcome can be either consensus or a
frozen mixture of extremists with no centrists.

2 Compromise Model

In an interaction, agents with opinions x1 and x2 (with |x2− x1| < 1) average
their opinions: (x1, x2)→ 1

2
(x1 + x2, x1 + x2); if |x2 − x1| > 1, no interaction

occurs. Let P (x, t) dx be the fraction of agents with opinions in the range
[x, x+ dx] at time t. This distribution evolves according to [10]

∂

∂t
P (x, t) =

∫∫

dx1dx2P (x1, t)P (x2, t)
[

δ
(

x−x1 + x2

2

)

−δ(x− x1)
]

, (1)

where the integration is over all |x1 − x2| < 1. When all agents can interact,
namely, when ∆ < 1/2, the rate equations are integrable [13,14]. In particular,
the second moment vanishes as M2(t) =M2(0) e

−M0t/2, with M0 = 2∆, where
Mk(t) ≡

∫

dx xk P (x, t) is the kth moment. The distribution itself approaches

consensus as P (x, t) ∝M0/ [w(1 + z2)2] [14], with variance w =M
1/2
2 /M0 and

scaling variable z = x/w.

For larger values of ∆, the opinion distribution does not condense into a single
cluster, but rather the distribution evolves into “parties” that are separated
by distances larger than one. This behavior results from an instability that
propagates from the boundary toward the center (Fig. 1). Once each party
is isolated, it then separately evolves into a delta function so that the final
distribution consists of a series of non-interacting delta-function clusters.

Numerical integration of the rate equations reveals [10] a striking bifurcation
sequence in the cluster (party) locations (Fig. 1). There are three types of
clusters: major (mass M > 1), minor (mass m < 10−2), and a central cluster
located exactly at x = 0. When ∆ < 1, the final state is a single peak located
at the origin. When ∆ > 1, two new clusters are born at the extreme edges,
x ≈ ±∆. As ∆ increases, three basic bifurcations occur:
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(1) Nucleation of a symmetric cluster pair: ∅ → {−x, x} with x ≈ 1.
(2) Annihilation of the central cluster and simultaneous nucleation of a sym-

metric cluster pair: {0} → {−x, x} with x ≈ 0.75.
(3) Nucleation of a central cluster: ∅ → {0}.
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Fig. 1. (Left) Early-time evolution of the opinion distribution P (x, t) for ∆ = 4.3.
(Right) Location of final state clusters versus initial opinion range ∆ (red: clusters
via type-1 bifurcations, blue: type-2, green: type-3). The color coded vertical arrows
indicate the location of the first 3 bifurcations.

The cluster masses vary periodically in ∆ and organize in an alternating major-
minor pattern. The major clusters contain nearly the entire system mass, while
the minor clusters are much smaller (Fig. 2). Near a type-3 bifurcation, a
central cluster nucleates with infinitesimal mass, initially grows slowly, then
explosively until its mass becomes of order one. Finally, its mass grows linearly
with ∆. At the next type-2 bifurcation threshold, the central cluster then splits
into two major clusters (Fig. 2). This birth-and-death pattern repeats.

The minor clusters exhibit two subtle features. First, the mass of the most
extreme cluster saturates to a mass m′ that is approximately one order of
magnitude greater than all other minor clusters. Second, the mass of the minor
clusters varies non-monotonically with ∆, and there is a small range of ∆,
where the mass of a newly-born minor cluster suddenly drops (Fig. 2) before
the mass saturates.

At type-1 and type-3 bifurcations, the mass of the nascent clusters varies as
m ∼ (∆ − ∆n)

αn as ∆ → ∆n. The exponent depends only on the type n of
the bifurcation point; numerically we find α1 ≈ 3 and α3 ≈ 4. To understand
the behavior near a type-1 bifurcation, consider the first one at ∆1 = 1. Let
∆ = 1 + ε with ε → 0. It is convenient to divide the opinion range (−∆,∆)
into a central subinterval (−1, 1) and two boundary subintervals: ±(1, 1 + ε).
Let m(t) be the mass in a boundary subinterval. This mass decays due to the
interaction with agents in the central subinterval. As a result, ṁ = −m, which
together with the initial condition m(0) = ε, gives m(t) = ε e−t.
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Fig. 2. Cluster mass versus opinion range (same color scheme as Fig. 1). The central
clusters (green) and the major clusters (blue) are shown on a linear scale (top), while
the minor clusters (red) are shown on a logarithmic scale (bottom).

On the other hand, the mass of the central subinterval is concentrated in a re-
gion about the origin whose width w(t) decreases with time. At some moment
tf the separation between the masses in the central and boundary subintervals
exceeds unity. If we assume that the mass in the boundary subinterval is at
its center, x = 1+ ε/2, the separation criterion is w(tf ) ∼ ε/2. For tÀ tf , the
interaction between the two subintervals stops and the mass of the emerging
minor cluster freezes at mf ∼ ε e−tf .

We estimate the width w(t) by noting that, to zeroth order in ε, (i) the cen-
tral subinterval is not affected by boundary subintervals, and (ii) all agents are
eventually within the interaction range. Therefore the asymptotic time depen-
dence of w(t) is the same as in the case ∆ < 1/2. Thus w(t) ∼ M

1/2
2 ∼ e−t/2,

since ∆ = 1 + ε ∼= 1. Using the stopping criterion, w(tf ) ∼ e−tf/2 ∼ ε, the
final minor cluster mass is mf ∼ ε e−tf ∼ ε3, leading to α1 = 3. For a type-3
bifurcation, a similar argument yields α3 = 4 [10].

3 Constrained Voter Model

The constrained voter model is a simple discrete-state version of the previous
compromise model in which each agent can have one of the three opinions of
leftist, centrist, and rightist. Similar to the compromise model, agents with
nearby opinions can interact, while agents with distant opinions cannot. Thus
in an interaction, a centrist and an extremist (either on the left or the right)
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can both become centrists or both become extremists of the same persuasion
as the initial extremist. Notice that this interaction is not compromise, but
rather one agent convinces the other, as in the classic voter model. The three-
state model is the simplest discrete system that embodies the constraint of
the compromise model.

The constrained voter model is also equivalent to a constrained spin-1 Ising
system with T = 0 Glauber kinetics [15]. Leftist, centrist, and rightist opinions
are equivalent to the respective spin states −, 0, and +. By the incompatibility
of leftists and rightists, neighboring + and − spins do not interact. Thus an
arbitrary initial state could evolve to a static final state that contains only +
and − spins (Fig. 3).

If we temporarily disregard the difference between leftists and rightists, the
resulting binary system of centrists and extremists reduces to the voter model,
for which one of two absorbing states — either all centrists or all extremists
— is eventually reached. In the context of the three-opinion system, the latter
is either consensus of extremists or a frozen state of leftists and rightists.
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Fig. 3. (Left) Typical frozen final state of + and − on a 100 × 100 square for
ρ0 = 0.1. Notice the nested enclaves of opposite opinions. (Right) Probability for
the occurrence of a given final state as a function of ρ0 for ρ+ = ρ−.

Because of the underlying voter dynamics, the average density of each species
is globally conserved in any spatial dimension [12]. Thus 〈ρi(t)〉 = ρi(t = 0),
where i refers to one of the states (+, 0,−) and the angle brackets denote an
average over all dynamical trajectories and all initial states with the specified
densities. By the conservation of the magnetization, the final state consists of
all centrists with probability P0 = ρ0, where ρ0 is the initial density of 0-spins,
and with probability 1−ρ0 there are no centrists in the final state. In the latter
case, there can be either a consensus of + (with probability P+(ρ0)), consen-
sus of − (probability P−(ρ0)), or a frozen mixed state (probability P+−(ρ0)).
Figure 3 shows the dependence of these final state probabilities on ρ0 in the
mean-field limit in the symmetric case ρ+ = ρ− = (1− ρ0)/2; nearly identical
results occur in one and two dimensions.
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A good way to visualize the dynamics in one dimension is in terms of domain
walls (Fig. 4). There are three types of walls: diffusing walls between +0 and
between −0, respectively denoted by M+ and M−, and stationary domain
walls S between +−. The mobile walls evolve by

M± +M± → ∅, M± +M∓ → S. (2)

When a mobile wall hits a stationary wall, the former changes its sign while
the latter is eliminated via the reaction

M± + S →M∓. (3)

Any initial opinion state forces two important topological constraints in the
domain wall arrangement: (i) an even number of mobile walls between each
pair of stationary wall, and (ii) prohibition of domain wall sequences of the
form . . .M+M−M+ . . .. These constraints play a crucial role in the kinetics;
related kinetic constraints arise in models of glassy dynamics [16].
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Fig. 4. Space-time representation of the domain wall dynamics. Time runs vertically
downward. The spin state of the domains and the identity of each domain wall are
indicated.

Simulations show that the stationary domain wall density decays extremely
slowly: S(t) ∼ t−ψ with ψ(ρ0) → 0 as ρ0 → 0 [11]. To understand this slow
decay, consider the rate equation for the stationary domain wall density

Ṡ = −kM S . (4)

While such a rate equation is generally inapplicable in low spatial dimension,
we can adapt it to one dimension by employing an effective time-dependent

reaction rate: k '
√

2/πt [11,17]. This is the time-dependent flux to an ab-
sorbing point due to a uniform initial density of diffusing particles; such a rate
phenomenologically accounts for spatial fluctuations in one dimension.

6



As ρ0 → 0, the system initially consists of long strings of stationary walls that
are interspersed by pairs of more closely-spaced mobile walls. Their survival
probability is proportional to their initial separation, so that the asymptotic
density of mobile walls is M ' 2ρ0/

√
πt [11]. Substituting this expression

for M(t) and the above reaction rate into this rate equation, the density of
stationary walls decays as t−ψ with ψ(ρ0) =

√
8 ρ0/π as ρ0 → 0. A more

compelling approach in terms of the persistence in the q-state Potts model
[18,19] gives ψ(ρ0) → 2ρ0/π as ρ0 → 0, in excellent agreement with our
numerics [10].

4 Outlook

Minimalist opinion dynamics models exhibit a variety of intriguing proper-
ties. The competition between interaction among compatible individuals and
rigidity among incompatible individuals leads to rich dynamics and to complex
final states. The preliminary results reported here suggest many avenues for
future research. For example, what types of bifurcation patterns emerge with
different initial conditions in the compromise model? What happens when the
opinion space is multidimensional? What is the overall approach rate to the
final state? In the constrained voter model, even simpler questions are still
not well understood. Most notably, what is the probability of reaching a given
final state as a function of the initial condition? More quantitatively, what are
the dependences of P+(ρ0) and P+−(ρ0) on the initial density of 0-spins ρ0?
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