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Multiscaling in inelastic collisions
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We study relaxation properties of two-body collisions on the mean-field level. We show that this process
exhibits multiscaling asymptotic behavior as the underlying distribution is characterized by an infinite set of
nontrivial exponents. These nonequilibrium relaxation characteristics are found to be closely related to the
steady state properties of the system.

PACS number~s!: 05.40.2a, 05.20.Dd, 02.50.Ey
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Our understanding of the statistical mechanics of n
equilibrium systems remains incomplete, in sharp cont
with their equilibrium counterpart. The rich phenomenolo
associated with dynamics of far from equilibrium interacti
particle systems exposes the lack of a unifying theoret
framework. Simple tractable microscopic models can the
fore help us gain insight and better the description of n
equilibrium dynamics.

In this study, we focus on the nonequilibrium relaxati
of an infinite particle system interacting via two-body col
sions. We find that a hierarchy of scales underlies the re
ation. In particular, we devise an extremely simple syst
that exhibits multiscaling on the mean-field level, while
finite dimensions simple scaling behavior is restored. F
thermore, we show that this behavior extends to a broa
class of collision processes.

In the mean-field framework, the spatial structure is
nored. Therefore, we consider an infinite number of ident
particles that are characterized by a single parameter,
velocity v. Two-body collisions are realized by choosing tw
particles at random and changing their velocities accord
to (u1 ,u2)→(v1 ,v2) with

S v1

v2
D 5S g 12g

12g g D S u1

u2
D . ~1!

In other words, the postcollision velocities are given by
linear combination of the precollision velocities. Both th
total momentum (u11u25v11v2) and the total number o
particles are conserved by this process. In fact, the collis
rule ~1! is the most general linear combination which obe
momentum conservation and Galilean invariance, i.e., inv
ance under velocity translationv→v2v0.

Our motivation for studying this problem is inelastic co
lisions in granular gases@1–3#. Therefore, we restrict ou
attention to dissipative collisions, 0,g,1. While the two
problems involve different collision rates, they share t
same trivial final state where all velocities vanis
P(v,t)→d(v) when t→` ~without loss of generality, the
average velocity was set to zero by invoking the transform
tion v→v2^v&). We chose to describe this work in slight
more general terms, since closely related dynamics w
used in different contexts, including voting systems@4,5#,
asset exchange processes@6#, combinatorial processes@7#,
PRE 611063-651X/2000/61~1!/5~4!/$15.00
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and headway distances in traffic flows@8#. We will show that
multiscaling characterizes fluctuations in these problems
well.

Velocity fluctuations may be obtained via the probabil
distribution functionP(v,t) which obeys the following mas
ter equation

]P~v,t !

]t
5E

2`

` E
2`

`

du1du2P~u1 ,t !P~u2 ,t !

3@d~v2gu12~12g!u2!2d~v2u2!#. ~2!

This Boltzmann equation with a velocity independent co
sion rate is termed the Maxwell model in kinetic theory@9#.
The d functions on the right-hand side reflect the collisio
rule ~1! and guarantee conservation of the number of p
ticles, *dvP(v,t)51, and the total momentum
*dvvP(v,t)50. Equation~2! can be simplified by eliminat-
ing one of the integrations,

]P~v,t !

]t
1P~v,t !5

1

12gE2`

`

duP~u,t !PS v2gu

12g
,t D .

~3!

Further simplification is achieved via the Fourier transfo
P̂(k,t)5*dveikvP(v,t) which obeys

]

]t
P̂~k,t !1 P̂~k,t !5 P̂@gk,t# P̂@~12g!k,t#. ~4!

Although the integration is eliminated, this compact equat
is challenging as the nonlinear term is nonlocal.

Velocity fluctuations can be quantified using the mome
of the velocity distribution,Mn(t)5*dvvnP(v,t). The mo-
ments obey a closed and recursive set of the ordinary dif
ential equations. The corresponding equations can be der
by inserting the expansionP̂(k,t)5(n@( ik)n/n! #Mn(t) into
Eq. ~4! or directly from Eq. ~2!. The first few moments
evolve according toṀ05Ṁ150, and

Ṁ252a2M2 ,

Ṁ352a3M3 , ~5!

Ṁ452a4M41a24M2
2 ,
R5 ©2000 The American Physical Society
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with the coefficients

an[an~g!512~12g!n2gn, ~6!

anda2456g2(12g)2. Integrating these rate equations yiel
M051, M150 and

M2~ t !5M2~0!e2a2t,

M3~ t !5M3~0!e2a3t, ~7!

M4~ t !5@M4~0!13M2
2~0!#e2a4t23M2

2~ t !.

The asymptotic behavior of the first few moments sugge
that knowledge of the rms fluctuationv* [M2

1/2 is not suffi-
cient to characterize higher order moments sin
M3

1/3/v* ,M4
1/4/v* →` as t→`.

This observation extends to higher order moments
well. In general, the moments evolve according to

Ṁn1anMn5 (
m52

n22 S n

mD gm~12g!n2mMmMn2m . ~8!

Note that for 0,g,1, the coefficients an satisfy
an,am1an2m when 1,m,n21. This inequality can be
shown by introducing G(g)5am(g)1an2m(g)2an(g),
which satisfiesG(0)50 and G(g)5G(12g). Therefore,
one needs to show thatG8(g)5m@bm2bn#1(n2m)
3@bn2m2bn#.0 for 0,g,1/2 with bn[bn(g)5(1
2g)n212gn21. One can verify that thebn’s decrease mono
tonically with increasingn, bn>bn11 for n>2, therefore
proving the desired inequality. Since moments decay ex
nentially, this inequality shows that the right-hand side in
above equation is negligible asymptotically. Thus, the le
ing asymptotic behavior for alln.0 is Mn;exp(2ant).
Since thean’s increase monotonically,an,an11, the mo-
ments decrease monotonically in the long time limit,Mn
.Mn11. Furthermore, in terms of the second moment o
has

Mn}M2
an , an5

12~12g!n2gn

12~12g!22g2 . ~9!

While the prefactors depend on the details of the initial d
tribution, the scaling exponents are universal. Therefore,
velocity distribution does not follow a naive scaling for
P(v,t);(1/v* )P(v/v* ). Such a distribution would imply
the linear exponentsan5an* 5n/2. Instead, the actual behav
ior is given by Eq.~9! with the exponentsan reflecting a
multiscaling asymptotic behavior with a nontrivial~nonlin-
ear! dependence on the indexn. For instance, the high orde
exponents saturate,an→a2

21 for n→`, instead of diverging.
One may quantify the deviation from ordinary scaling via
properly normalized set of indicesbn5an /an* defined from
Mn

1/n;(v* )bn. By evaluating theg51/2 case where multi-
scaling is most pronounced, a bound can be obtained
these indices: 7/8,31/48<bn<1 for n54,6 respectively.
Furthermore,bn→12@(2n23)/2#g wheng→0, indicating
that the deviation from ordinary scaling vanishes for wea
inelastic collisions. Thus, the multiscaling behavior can
quite subtle@10#.
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The above shows that a hierarchy of scales underlies fl
tuations in the velocity. In parallel, a hierarchy of divergin
time scales characterizes velocity fluctuations,

Mn
1/n;exp~2t/tn!, tn5

n

an
. ~10!

These time scales diverge for largen according totn.n.
Large moments reflect the large velocity tail of a distrib
tion. Indeed, the distribution of extremely large velocities
dominated by persistent particles which experienced no
lisions up to timet. The probability for such events decay
exponentially with timeP(v,t);P(v,0)exp(2t) for v@1
@alternatively, this behavior emerges from Eq.~3! since the
gain term is negligible for the tail and hence,Ṗ1P50#.
This decay is consistent with the large order moment de
Mn;exp(2t) whenn→`.

Although the leading asymptotic behavior of the mome
was established, understanding the entire distributionP(v,t)
remains a challenge. Simulations of theg51/2 process re-
veal an interesting structure for compact distributions. St
ing from a uniform velocity distribution,P0(v)51/2 for
21,v,1, the distribution loses analyticity atv561/2 ~see
Fig. 1!. Our analysis of Eq.~4! shows that such a singularit
should indeed develop atv561/2 and it additionally im-
plies the appearance of~progressively weaker and weake!
singularities atv561/4, etc. In general, for an arbitrar
compactinitial distribution and an arbitraryg, the distribu-
tion P(v,t) loses analyticity fort.0 and develops an infi-
nite ~countable! set of singularities whose locations depe
on the arithmetic nature ofg ~e.g., it is very different for
rational and irrationalg ’s!. On the other hand, unbounde
distributions do not develop such singularities, and therefo
the loss of analyticity is not necessarily responsible for
multiscaling behavior.

Asymptotically, our system reaches a trivial steady st
P(v,t5`)5d(v). To examine the relation between dynam
ics and statics, a nontrivial steady state can be generate
considering the driven version of the collision process@11–
13#. External forcing balances dissipation due to collisio

FIG. 1. Development of a singularity for a compact initial di
tribution. Shown is the probability distribution obtained by simula
ing the collision process of Eq.~1! with g51/2. The data represent
an average over 200 independent realizations in a system with7

particles, starting from a uniform distribution in the range@21:1#.
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and therefore results in a nontrivial nonequilibrium stea
state. Specifically, we assume that in addition to changes
to collisions, velocities may also change due to an exte
forcing: dv j /dtuheat5j j . We assume standard uncorrelat
white noise^j i(t)j j (t8)&52Dd i j d(t2t8) with a zero aver-
age ^j j&50. The left-hand side of the master equation~3!
should therefore be modified by the diffusion term

]P~v,t !

]t
→]P~v,t !

]t
2D

]2P~v,t !

]v2 . ~11!

Of course, the addition of the diffusive term does not al
conservation of the total particle number and the total m
mentum, and one can safely work in a reference frame m
ing with the center of mass velocity.

We restrict our attention to the steady state. The Fou
transformP̂`(k)[ P̂(k,t5`) satisfies

~11Dk2!P̂`~k!5 P̂`@gk# P̂`@~12g!k#. ~12!

The solution to this functional equation which obeys the c
servation lawsP̂`(0)51 and ^v&5 P̂8̀ (0)50 is found re-
cursively,

P̂`~k!5)
i 50

`

)
j 50

i

@11g2 j~12g!2(i 2 j )Dk2#2 S i
j D. ~13!

To simplify this double product we take the logarithm a
transform it as follows:

ln P̂`~k!52(
i 50

`

(
j 50

i S i

j D ln@11g2 j~12g!2(i 2 j )Dk2#

5(
i 50

`

(
j 50

i S i

j D (n51

`
~2Dk2!ng2 jn~12g!2(i 2 j )n

n

5 (
n51

`
~2Dk2!n

n (
i 50

`

(
j 50

i S i

j D g2n j~12g!2n( i 2 j )

5 (
n51

`
~2Dk2!n

n (
i 50

`

@g2n1~12g!2n# i .

~14!

The second identity follows from the series expans
ln(11q)52(n>1n

21(2q)n, and the forth from the binomia
identity ( j 50

i ( j
i)pjqi 2 j5(p1q) i . Finally, using the geomet

ric series (12x)215(n>0xn, the Fourier transform at the
steady state is found,

P̂`~k!5expH (
n51

`
~2Dk2!n

na2n~g! J , ~15!

with an(g) given by Eq.~6!. Thenth cumulant of the steady
state distributionkn can be readily found from lnP̂`(k)
5(m@(ik)m/m!#km. Therefore, the odd cumulants vanis
while the even cumulants are simply proportional to the ti
scales characterizing the exponential relaxation of the co
sponding moments,
y
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e
e-

k2n5
~2n21!!

n
Dnt2n . ~16!

Of course, the moments can be constructed from these
mulants. Interestingly, a direct correspondence between
steady state characteristics and the nonequilibrium relaxa
time scales is established via the cumulants of the probab
distribution.

None of the~even! cumulants vanish, thereby reflectin
significant deviations from a Gaussian distribution. Nev
theless, for sufficiently large velocities, one may concentr
on the small wave number behavior. Using the inverse F
rier transform of Eq.~15! one finds the tail of the distribution

P`~v !.
1

A2pv0
2

expS 2
v2

2v0
2D , v@v0 , ~17!

with v0
252D/a2. This in particular implies the large momen

behaviorM2n→(2n21)!!v0
2n asn→`. The Gaussian tail is

different than the exp(2const3v3/2) behavior obtained when
the collision rate is proportional to the velocity differenc
@13#. In contrast, large velocities in one-dimensional inelas
gases are suppressed according to exp(2const3v3) @14#.

Finally, we briefly discuss a few generalizations and e
tensions of the basic model. Note that Eq.~9! extends to
energy-generating collisions as well (g,0 or g.1), despite
the fact that the limiting distribution is no longer ad func-
tion. Next, relaxing Galilean invariance, the most gene
momentum conserving collision rule is

S v1

v2
D 5S g1 12g2

12g1 g2
D S u1

u2
D . ~18!

Following the same steps that led to Eq.~9! shows that when
g1 ,g2Þ0,1 and whenM150 this process also exhibits mu
tiscaling with the exponentsan5an /a2, wherean(g1 ,g2)
5 1

2 @an(g1)1an(g2)#. When g1512g25g one recovers
the model introduced by Melzak@4#, and wheng15g25g
one recovers inelastic collisions. Sincean(g)5an(12g),
both models have identical multiscaling exponents. Furth
more, a multiscaling behavior with the very same expone
an(g) is also found for the process (u1 ,u2)→(u12gu1 ,v1
1gu1) investigated in the context of asset distributions@6#
and headway distributions in traffic flows@8#.

One can also consider stochastic rather than determin
collision processes by assuming that the collision~18! occurs
with probability densitys1(g1 ,g2). Our findings extend to
this model: the multiscaling exponents are giv
by the general expression an5an /a2 with
an5*dg1*dg2s(g1 ,g2)an(g1 ,g2). In particular, for com-
pletely random inelastic collisions, i.e.,s[1 and g15g2
5g, one finds an5(n21)/(n11) and hence
an53(n21)/(n11).

So far, we discussed only two-body interactions. W
therefore considerN-body interactions where a collision i
symbolized by (u1 , . . . ,uN)→(v1 , . . . ,vN). We consider a
generalization of theg5 1

2 two-body case where the postco
lision velocities are all equal. Momentum conservation i
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plies v i5ū5N21(ui . The master equation is a straightfo
ward generalization of the two-body case, and we mer
quote the moment equations,

Ṁn1anMn5N2n (
niÞ1

S n

n1 . . . nN
D Mn1

•••MnN
, ~19!

with an512N12n. Using a generalization of the aforeme
tioned inequalityam11•••1mk

.am1
1•••1amk

when all mj

.1, we find that the right-hand side of the above equat
remains asymptotically negligible. Therefore,Mn;e2ant

and

Mn;M2
an , an5

12N12n

12N21
. ~20!

Thus, thisN-body ‘‘averaging’’ process exhibits multiscalin
asymptotic behavior as well.

Thus far, we investigated a mean field model. When p
ticles reside on ad-dimensional lattice and only neare
neighbors interact, the above dynamics is equivalent t
diffusion process@15#. As a result, the underlying correlatio
length is diffusive,L(t);t1/2. Within this correlation length
the velocities are ‘‘well mixed’’ and momentum conserv
tion therefore implies thatv;L2d/2;t2d/4. Indeed, the infi-
nite dimension limit is consistent with the above exponen
decay. Furthermore, an exact solution for moments of a
trary order is possible@15#. We do not detail it here and
simply quote that ordinary scaling is restoredMn;t2n/4, i.e.,
an5an* 5n/2. Thus, spatial correlations counter the mec
nism responsible for multiscaling.

In summary, we have investigated inelastic collision p
cesses on the mean-field level. We have shown that s
systems are characterized by multiscaling, or equivalently
an infinite hierarchy of diverging time scales. Multiscalin
s,
ly
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holds for several generalizations of the basic model incl
ing stochastic collision models and even processes which
not obey Galilean invariance. In this latter case, howev
multiscaling is restricted to situations with zero total mome
tum. This perhaps explains why multiscaling asymptotic b
havior was overlooked in previous studies@4,6#. Another ex-
planation is that this behavior may be difficult to detect fro
numerical simulations. Indeed, in other problems such
multidimensional fragmentation@10#, and in fluid turbulence,
low order moments deviate only slightly from the norm
scaling expectation.

Interestingly, although similarity solutions can be foun
for the master equation, multiscaling implies that they a
unphysical. For example, Eq.~4! admits an exact Bobylev

Krook-Wu @9# scaling solution,P̂(k,t)5(11K)e2K, where
K5Ake2g(12g)t with an arbitrary constantA. In the present
case, however, this BKW solution corresponds to the pat
logical initial conditionP0(v)5d(v2 iA)1 iAd8(v2 iA).

There are a number of extensions of this work which
worth pursuing. We have started with a kinetic theory o
1D granular gas with a velocity independent collision ra
Within such a framework, it is sensible to approximate t
collision rate with the rms velocity fluctuation. This leads
the algebraic decayMn;t22an with an given by Eq.~9! and
in particular, Haff’s cooling lawT5M2;t22 is recovered
@1#. Our numerical studies indicate that when velocity dep
dent collision rates are implemented, ordinary scaling beh
ior is restored. One may also use this model as an appr
mation for inelastic collisions in higher dimensions as we
following the Maxwell approximation in kinetic theory
@9,16#.
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