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Multiscaling in inelastic collisions
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We study relaxation properties of two-body collisions on the mean-field level. We show that this process
exhibits multiscaling asymptotic behavior as the underlying distribution is characterized by an infinite set of
nontrivial exponents. These nonequilibrium relaxation characteristics are found to be closely related to the
steady state properties of the system.

PACS numbegps): 05.40—a, 05.20.Dd, 02.50.Ey

Our understanding of the statistical mechanics of nonand headway distances in traffic floj@. We will show that
equilibrium systems remains incomplete, in sharp contrastnultiscaling characterizes fluctuations in these problems as
with their equilibrium counterpart. The rich phenomenologywell.
associated with dynamics of far from equilibrium interacting  Velocity fluctuations may be obtained via the probability
particle systems exposes the lack of a unifying theoreticadlistribution functionP(v,t) which obeys the following mas-
framework. Simple tractable microscopic models can thereter equation
fore help us gain insight and better the description of non-

equilibrium dynamics. IP(v,0) _ f“ jw
In this study, we focus on the nonequilibrium relaxation ot . wdulduzP(ul,t)P(uz,t)
of an infinite particle system interacting via two-body colli-
sions. We find that a hierarchy of scales underlies the relax- X[8(v=yus—=(1=y)up) —d(v—-uy)]. (2)

ation. In particular, we devise an extremely simple system_ . . . i .
P y Pie Sy m|'h|s Boltzmann equation with a velocity independent colli-

that exhibits multiscaling on the mean-field level, while in _. ) e
finite dimensions simple scaling behavior is restored. FurSion rate is _termed the Maxwell model in kinetic the@@j. .
thermore, we show that this behavior extends to a broadel€ ¢ functions on the right-hand side reflect the collision
class of collision processes. ryle (1) and guarantee conservation of the number of par-
In the mean-field framework, the spatial structure is ig-Uces:  JdvP(v,t)=1, ~and the total ~momentum
nored. Therefore, we consider an infinite number of identicaf 4V P(v.t) =0. Equation(2) can be simplified by eliminat-
particles that are characterized by a single parameter, theffd One of the integrations,
velocity v. Two-body collisions are realized by choosing two IP(V,1) 1
particles at random and changing their velocities according 4 P(V,t) = —f
to (Uy,Up)— (Vy,V,) with 1=y

©

duP(u,p| 2 ¢
ocu(u,) i,

ot

)
Vil [ Y 1=y\lug Further simplification is achieved via the Fourier transform
vyl 1=y v J\uy) @ P(k,t)=[dve*P(v,t) which obeys
Jd . . . .
In other words, the postcollision velocities are given by a —P(k,t) + P(k,t) =P[ vk, t1P[ (1 — y)k,t]. 4

linear combination of the precollision velocities. Both the o

total momentum ¢; +u,=Vv;+V») and the total number of = Athough the integration is eliminated, this compact equation
particles are conserved by this process. In fact, the collisior, challenging as the nonlinear term is nonlocal.

rule (1) is the most general linear combination which obeys  y/g|ocity fluctuations can be quantified using the moments
momentum conservation and Galilean invariance, i.e., invarigs the velocity distributionM ,(t) = fdvv"P(v,t). The mo-
ance under velocity translation—v—vo. _ ments obey a closed and recursive set of the ordinary differ-
i Our motlvatloln for Stuglylr;]g t?'hs pr]?blem IS mels;t;c col- ential equations. The corresponding equations can be derived
isions in granular gasegl—3]. Therefore, we restrict our . . - _ N .
attention to dissipative collisions,<0y<<1. While the two téy |n(i§>rgrr1g d:?:(:tel)(pfigzog(k’(tz)) ?’R[e(”;iZs{nf. e]vl\\//l ?Sgr::-:‘tr?ts
problems involve different collision rates, they share the 9 y q.1).

same trivial final state where all velocities vanish, €volve according tdo=M;=0, and
P(v,t)— &(v) whent—oo (without loss of generality, the

average velocity was set to zero by invoking the transforma- M2=—a,M,

tion v—v—(v)). We chose to describe this work in slightly :

more general terms, since closely related dynamics were Ms=—azMs, ®
used in different contexts, including voting systefds5], i

asset exchange procesg&3, combinatorial processdd], M= —asM +aM3,
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with the coefficients 10°
ap=an(y)=1—(1—y)"=9", (6)

anda,,=67%(1— v)?. Integrating these rate equations yields
My=1, M;=0 and

Ma(t)=My(0)e 2,

P(v,t=10)

M3(t)=M3(0)e %!, ()

M4(t)=[M4(0) +3M5(0)]e” %'~ 3M5(t).

The asymptotic behavior of the first few moments suggests .
that knowledge of the rms fluctuatiart =M 3? is not suffi- 107 05 0 05 ’
cient to characterize higher order moments since v
M%B/V*,M}JA/V*—»OO ast—oo,

This observation extends to higher order moments asiy
well. In general, the moments evolve according to

FIG. 1. Development of a singularity for a compact initial dis-
ution. Shown is the probability distribution obtained by simulat-
ing the collision process of Eql) with y=1/2. The data represents
n—2 an average over 200 independent realizations in a system with 10

M, +a,M,= E (m> Y(1— )" M M, . (8) particles, starting from a uniform distribution in the rarjgel:1].

The above shows that a hierarchy of scales underlies fluc-
Note that for G<y<1, the coefficients a, satisfy t_uations in the velocity. In paral!el, a hiera_rchy of diverging
a,<a,+a, . when l<m<n—1. This inequality can be time scales characterizes velocity fluctuations,
shown by introducing G(y)=an(7y)+a,_m(y)—an(7y), n
which satisfiesG(0)=0 and G(y)=G(1—y). Therefore, M~ exp(—t/7,), =g (10
one needs to show thaG’(y)=m[b,—b,]+(n—m) n
X[by_m—b,]>0 for 0<y<1/2 with b,=b,(y)=(1 These time scales diverge for largeaccording tor,=n.
—y)""1— 4"~ One can verify that thb,’s decrease mono- Large moments reflect the large velocity tail of a distribu-
tonically with increasingn, b,=b,.,; for n=2, therefore tion. Indeed, the distribution of extremely large velocities is
proving the desired inequality. Since moments decay expodominated by persistent particles which experienced no col-
nentially, this inequality shows that the right-hand side in thelisions up to timet. The probability for such events decays
above equation is negligible asymptotically. Thus, the leadexponentially with timeP(v,t)~P(v,0)exp(t) for v>1
ing asymptotic behavior for alh>0 is M,~exp(—agt). [alternatively, this behavior emerges from E§) since the
Since thea,’s increase monotonicallya,<ay.1, the mo-  gain term is negligible for the tail and hence;+P=0].
ments decrease monotonically in the long time linkt,  This decay is consistent with the large order moment decay
>My 1. Furthermore, in terms of the second moment ongy| — exp(~t) whenn—c.
has Although the leading asymptotic behavior of the moments
n o on was established, understanding the entire distribuBipn,t)
:M (9) remains a challenge. Simulations of tle=1/2 process re-
1-(1=y)*=»* veal an interesting structure for compact distributions. Start-

. . o _ing from a uniform velocity distributionPq(v)=1/2 for
While the prefactors depend on the details of the initial dis-_ -\, 1 the distribution loses analyticity at= + 1/2 (see

tribution, the scaling exponents are univer_sal. The_refore, thpig_ 1). Our analysis of Eq(4) shows that such a singularity
velocity distribution does not follow a naive scaling form ¢5,1d indeed develop at=*1/2 and it additionally im-

P(v,)~ (IN*)P(v/v¥). §UCh a distribution would imply  pjies the appearance @progressively weaker and weaker
the linear exponents, = «;, =n/2. Instead, the actual behav- gjngylarities atv=+1/4, etc. In general, for an arbitrary

ior is given by Eq.(9) with the exponentsy, reflecting a  compactinitial distribution and an arbitrary, the distribu-
multiscaling asymptotic pehavior \_Nith a nontrlv@onlln— tion P(v,t) loses analyticity fort>>0 and develops an infi-
eaj) dependence on the index For instance, the high order pjte (countable set of singularities whose locations depend
exponents saturate,—a, * for n—, instead of diverging.  on the arithmetic nature of (e.g., it is very different for
One may quantify the deviation from ordinary scaling via arational and irrationaly’s). On the other hand, unbounded
properly normalized set of indice®, = a,/«ay, defined from  distributions do not develop such singularities, and therefore,
M2~ (v*)Fn. By evaluating they=1/2 case where multi- the loss of analyticity is not necessarily responsible for the
scaling is most pronounced, a bound can be obtained famultiscaling behavior.

these indices: 7/8,31/48B8,<1 for n=4,6 respectively. Asymptotically, our system reaches a trivial steady state
Furthermore 8,—1—[(2n—3)/2]y when y—0, indicating  P(v,t=«)=4§(v). To examine the relation between dynam-
that the deviation from ordinary scaling vanishes for weaklyics and statics, a nontrivial steady state can be generated by
inelastic collisions. Thus, the multiscaling behavior can beconsidering the driven version of the collision procgss—
quite subtlg/10]. 13]. External forcing balances dissipation due to collisions

I\/InOCI\/Ig”, a,
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and therefore results in a nontrivial nonequilibrium steady (2n—1)!
state. Specifically, we assume that in addition to changes due Kon=——"—D"75,. (16)

ot o n
to collisions, velocities may also change due to an external

forcing: dv; 1dt|ear= ;. We assume standard uncorrelated
white noise(&(t)&(t'))=2D 8, 8(t—t') with a zero aver- Of course, the moments can be constructed from these cu-

age(¢)=0. The left-hand side of the master equati@ mulants. Interestingly,_a_direct Corresponde_nce_ between _the
should therefore be modified by the diffusion term steady state characteristics and the nonequilibrium relaxation
time scales is established via the cumulants of the probability
IP(v,t)  dP(v,t) PP(v,t) distribution. . .
T A -D 2 (11 ~None of the(even cumulants vanish, thereby reflecting
significant deviations from a Gaussian distribution. Never-
Of course, the addition of the diffusive term does not alteftheless, for sufficiently large velocities, one may concentrate
conservation of the total particle number and the total mo©n the small wave number behavior. Using the inverse Fou-

mentum, and one can safely work in a reference frame moVi€" transform of Eq(15) one finds the tail of the distribution
ing with the center of mass velocity.

We restrict our attention to the steady state. The Fourier 1 F{ v2 ) 17
£ —F _ i P.(v)= exp ——=|, V>Vg, 1
transformP..(k)=P(k,t=) satisfies JV2mvE 2vq °

1+Dk?)P..(k)=P.[ yk]P..[(1— y)k]. 12
( )P=(k) [7kIPL(1=y)k] 12 with v0 2D/a,. Thisin part|cular implies the large moment
The solution to this functional equation which obeys the conbehaviorM 5,— (2n—1)!!v5" asn—ce. The Gaussian tail is

servation lawsP.,.(0)=1 and(v)= P’(0)=0 is found re- different than the exp{const><v3’2) behavior obtained when
cursively the collision rate is proportional to the velocity difference

[13]. In contrast, large velocities in one-dimensional inelastic
o 0 gases are suppressed according to expfst< v3) [14].
=TI TI 11+ 21— y»2i-Ppk21- il (13 Finally, we briefly discuss a few generalizations and ex-
i=0j=0 tensions of the basic model. Note that Ef) extends to
energy-generating collisions as welf<0 or y>1), despite
the fact that the limiting distribution is no longer&func-
tion. Next, relaxing Galilean invariance, the most general
momentum conserving collision rule is

To simplify this double product we take the logarithm and
transform it as follows:

i _ o
In[1+92(1— )20 DDK?]

(Vl)_( Y1 1_?’2)<U1) (18
— DK2)1yAn(1— )20 Vo 1=y y2 J\up)’

n=1 n

=3

o

8

—

=~

=

Il

I

M s
—_—
—

Following the same steps that led to E§). shows that when
" pn e v1,Y2# 0,1 and wherM ;=0 this process also exhibits mul-
-y (—=Dk9) >SS ! 20j(1— )200-D) tiscaling with the exponenta,=a,/a,, wherea,(y;,v>)
= i Y Y =3[ay(v1) +an(y,)]. When y;=1—1y,=y one recovers

the model introduced by Melzald], and wheny;= y,=y
* one recovers inelastic collisions. Sineg(y)=ay(1—7),
Z [y2"+(1— )27 both models have identical multiscaling exponents. Further-
i=0 more, a multiscaling behavior with the very same exponents

(14) ay(y) is also found for the processi{,u,)— (u;— yu;,v

The second identity follows from the series expansionjL yuy) investigated in the context of asset distributig$

- 1 n and headway distributions in traffic floy8].
:3(61;;8/)2 E(”>)1: q'( ,S)(pinq(;lths nfglrl';h Lr;?g ttf;]ee zggrrnn:l One can also consider stochastic rather than deterministic
i=0 ,

collision processes by assuming that the colligib® occurs
gfezis”i?a'gel_é)fou;dzpox the Fourier transform at the with probability densityo(7y1,7v2). Our findings extend to
y ’ this model: the multiscaling exponents are given
] by the general expression a,=a,/a, with

(15) ap=[dy fdy,o(y1,v2)an(y1,v2). In particular, for com-

. - (—Dk?»)"
P.(=exp X, —— -1, 71,72)8n(71,72). I

n=1 Nazy(y) pletely random inelastic collisions, i.eq=1 and y;=7,
=y, one finds a,=(n—1)/(n+1) and hence

with a,() given by Eq.(6). Thenth cumulant of the steady ,_ =3(n—1)/(n+1).

state distributionk, can be readily found from IR..(k) So far, we discussed only two-body interactions. We
=>.[(ik)"m!]«,. Therefore, the odd cumulants vanish therefore consideN-body interactions where a collision is
while the even cumulants are simply proportional to the timesymbolized by ¢4, ... uy)—(vq, . .. vy). We consider a
scales characterizing the exponential relaxation of the corregeneralization of the/= 3 two-body case where the postcol-
sponding moments, lision velocities are all equal. Momentum conservation im-
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pliesv;=u=N"1Zu;. The master equation is a straightfor- holds for several generalizations of the basic model includ-
ward generalization of the two-body case, and we merelyng stochastic collision models and even processes which do
guote the moment equations, not obey Galilean invariance. In this latter case, however,
multiscaling is restricted to situations with zero total momen-
n tum. This perhaps explains why multiscaling asymptotic be-
n...Ny Mﬂl' ' 'M”N’ (19) havior was overlooked in previous studids6]. Another ex-
planation is that this behavior may be difficult to detect from
with a,=1—N'"". Using a generalization of the aforemen- numerical simulations. Indeed, in other problems such as
tioned inequalityay, ...+ m >am,+ - +am when allm;  multidimensional fragmentatidii0], and in fluid turbulence,
>1, we find that the right-hand side of the above equatiodow order moments deviate only slightly from the normal
remains asymptotically negligible. Therefor®&),~e™ant scaling expectation.

M,+a,M,=N""> (
ﬂi:#l

and Interestingly, although similarity solutions can be found
. for the master equation, multiscaling implies that they are
M~M™ o :1_N " (20) unphysical. For example, E¢4) admits an exact Bobylev-
A Krook-Wu [9] scaling solutionP(k,t)=(1+K)e K, where

K=Ake Y@=t with an arbitrary constar. In the present
Thus, thisN-body “averaging” process exhibits multiscaling case, however, this BKW solution corresponds to the patho-
asymptotic behavior as well. _ logical initial conditionPo(v) = 8(v—iA)+iAd' (v—iA).
. Thus fgr, we mves’qgateq a mean_ﬂeld model. When par- “tpare are a number of extensions of this work which are
ticles reside on al-dimensional lattice and only nearest worth pursuing. We have started with a kinetic theory of a

nglghpors interact, the above dynamics |s'eqU|vaIent. to 1D granular gas with a velocity independent collision rate.
diffusion proces$15]. As a result, the underlying correlation Within such a framework, it is sensible to approximate the

length is diffusive L (t)~t2 Within this correlation length . : . : :
the velocities are “well mixed” and momentum conserva- ;:rt])llls:onbrat_e V&”th theiT_Sz\isloi?;y quc.tuatlcE)n.l'El'hwéIeadds o
tion therefore implies that~L ~¥2~t 94, Indeed, the infi- ¢ algebraic decay,~t “*» with a;, given by q.(9) an

I|[n particular, Haff's cooling lawT=M,~t" < is recovered

nite dimension limit is consistent with the above exponentia 1.0 ical studies indicate that wh locity d
decay. Furthermore, an exact solution for moments of arbi+ ™" ur numerical studies indicate that when velocity depen-

trary order is possiblé15]. We do not detail it here and dent collision rates are implemented, ordinary scaling behav-

simply quote that ordinary scaling is restomdg~t ", i.e. ior i_s reStOFed- Or_le ma_y_also_use_ this model as an approxi-
— o*=n/2. Thus. spatial correlations counter thé me’cha_matlon for inelastic collisions in higher dimensions as well,
@n= ®n " » Shatial col following the Maxwell approximation in kinetic theory
nism responsible for multiscaling. [9,16]
In summary, we have investigated inelastic collision pro--—""
cesses on the mean-field level. We have shown that such This research was supported by the DQ@Eontract No.
systems are characterized by multiscaling, or equivalently byW-7405-ENG-36, NSF (Grant No. DMR9632059 and
an infinite hierarchy of diverging time scales. Multiscaling ARO (Grant No. DAAH04-96-1-0114
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