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League competition is investigated using random processes and scaling techniques. In our model,
a weak team can upset a strong team with a fixed probability. Teams play an equal number of
head-to-head matches and the team with the largest number of wins is declared to be the champion.
The total number of games needed for the best team to win the championship with high certainty,
T , grows as the cube of the number of teams, N , i.e., T ∼ N 3. This number can be substantially
reduced using preliminary rounds where teams play a small number of games and subsequently,
only the top teams advance to the next round. When there are k rounds, the total number of
games needed for the best team to emerge as champion, Tk, scales as follows, Tk ∼ Nγk with
γk = [1 − (2/3)k+1]−1. For example, γk = 9/5, 27/19, 81/65 for k = 1, 2, 3. These results suggest
an algorithm for how to infer the best team using a schedule that is linear in N . We conclude that
league format is an ineffective method of determining the best team, and that sequential elimination
from the bottom up is fair and efficient.
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I. INTRODUCTION

Competition is ubiquitous in physical, biological, so-
ciological, and economical processes. Examples include
ordering kinetics where large domains grow at the ex-
pense of small ones [1, 2], evolution where fitter species
thrive at the expense of weaker species [3], social strat-
ification where humans vie for social status [4–6], and
the business world where companies compete for market
share [7, 8].

The world of sports provides an ideal laboratory for
modeling competition because game data are accurate,
abundant, and accessible. Moreover, since sports compe-
titions are typically head-to-head, sports can be viewed
as an interacting particle system, enabling analogies with
physical systems that evolve via binary interactions [9–
17]. For instance, sports nicely demonstrate that the out-
come of a single competition is not predictable [18, 19].
Over the past century the lower seeded team had an as-
tounding 44% chance of defeating a higher seeded team
in baseball [19]. This inherent randomness has profound
consequences. Even after a long series of competitions,
the best team does not always finish first.

To understand how randomness affects the outcome of
multiple competitions, we study an idealized system. In
our model league, there are N teams ranked from best
to worst, so that in each match there is a well-defined
favorite and underdog. We assume that the weaker team
can defeat the stronger team with a fixed probability. Us-
ing random walk properties and scaling techniques anal-
ogous to those used in polymer physics [20, 21], we study
the rank of the champion as a function of the number of
teams and the number of games. We find that a huge
number games, T ∼ N3, is needed to guarantee that the
best team becomes the champion.

We suggest that a more efficient strategy to decide
champions is to set up preliminary rounds where a small

number of games is played and based on the outcome
of these games, only the top teams advance to the next
round. In the final championship round, M teams play a
sufficient number of M3 games to decide the champion.
Using k carefully constructed preliminary rounds, the re-
quired number of games, Tk, can be reduced significantly

Tk ∼ Nγk with γk =
1

1 − (2/3)k+1
. (1)

Remarkably, it is possible to approach the optimal limit
of linear scaling using a large number of preliminary
rounds.

II. LEAGUE COMPETITION

Our model league consists of N teams that compete in
head-to-head matches. We assume that each team has
an innate strength and that no two teams are equal. The
teams are ranked from 1 (the best team) to N (the worst
team). This ranking is fixed and does not evolve with
time. The teams play a fixed number of head-to-head
games, and each game produces a winner and a loser. In
our model, the stronger (lower seed) team is considered
to be the favorite and the weaker (higher seed) team is
considered to be the underdog. The outcome of each
match is stochastic: the underdog wins with the upset
probability 0 < q < 1/2 and the favorite wins with the
complementary probability p = 1−q. The team with the
largest number of wins is the champion.

We comment that this competition model is based on
extensive empirical studies of actual league competitions
in the major US sports leagues. These investigations
show that the upset frequency is constant throughout the
season and moreover, that the upset frequency has barely
changed in over a century [19]. This competition model
quantitatively predicts key statistical characteristics of
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actual sports data including for example, the distribu-
tion of win percentage in leagues [19] as well as winning
probabilities in tournaments [16, 18].

Since the better team does not necessarily win a game,
the best team does not necessarily win the championship.
In this study, we address the following questions: How
many games are needed for the best team to finish first?
What is the typical rank of a champion decided by a
relatively small number of games? What is the optimal
way to choose a champion?

We answer these questions using scaling techniques.
Consider the nth ranked team with 1 ≤ n ≤ N . This
team is inferior to a fraction n−1

N−1 of the N − 1 remain-

ing teams and superior to a fraction N−n
N−1 of the teams.

Therefore, the probability Pn that this team wins a game
against a randomly chosen opponent is a linear combina-
tion of the probabilities p and q,

Pn = p
N − n

N − 1
+ q

n− 1

N − 1
. (2)

Using p = 1 − q, the probability Pn can be rewritten as
follows

Pn = p− (2p− 1)
n− 1

N − 1
. (3)

The latter varies linearly with rank: it is largest for the
best team, P1 = p, and smallest for the worst team,
PN = q.

Now, suppose that the nth team plays t games, each
against a randomly chosen opponent. The number of
wins it accumulates, wn(t), is a random quantity that
grows as follows

wn(t+ 1) =

{

wn(t) + 1 with probability Pn

wn(t) with probability 1 − Pn.
(4)

The initial condition is wn(0) = 0. The num-
ber of wins performs a biased random walk and as
a result, when the number of games is large, the
quantity wn(t) is well-characterized by its average
Wn(t) = 〈wn(t)〉 and its standard deviation σn(t), de-
fined via σ2

n(t) = 〈w2
n(t)〉 − 〈wn(t)〉2. Here, the brackets

denote averaging over infinitely many realizations of the
random process. Since the outcome of a game is com-
pletely independent of all other games, the average num-
ber of wins and the variance in the number of wins are
both proportional to the number of games played

Wn(t) = Pn t (5a)

σ2
n(t) = Pn(1 − Pn) t. (5b)

Both of these quantities follow from the behavior af-
ter one game: since wn(1) = 1 with probability
Pn and wn(1) = 0 with probability 1 − Pn, then
〈wn(1)〉 = 〈w2

n(1)〉 = Pn. Moreover, the distribution of
the number of wins is binomial and for large t, it ap-
proaches a Gaussian, fully characterized by the average
and the standard deviation [22].

The quantities Wn and σn can be used to understand
key features of this system. Let us assume that each team
plays t games against randomly selected opponents and
compare the best team with the nth ranked team. Since
P1 > Pn, the best team accumulates wins at a faster rate,
and after playing sufficiently many games, the best team
should be ahead. However, since there is a diffusive-like
uncertainty in the number of wins, σn ∼

√
t, it is possible

that the nth ranked team has more wins when t is small.
The number of wins of the nth team is comparable with
that of the best team as long as W1(t) −Wn(t) ∝ σ1(t),
or

(2p− 1)
n− 1

N − 1
t ∝

√
t. (6)

Since the diffusion coefficient Dn = Pn(1 − Pn) in (5b)
varies only weakly with n, pq ≤ Dn ≤ 1/4, this depen-
dence is tacitly ignored. When these two teams have
a comparable number of wins, they have comparable
chances to finish first. Hence, Eq. (6) yields the char-
acteristic rank of the champion, n∗, as a function of the
number of teams N and the number of games t

n∗ ∼ N√
t
. (7)

Since we are primarily interested in the behavior as a
function of t and N , the dependence on the probability p
is henceforth left implicit. As expected, the champion be-
comes stronger as the number of games increases (recall
that small n represents a stronger team). By substitut-
ing n∗ ∼ 1 into (7), we deduce that the total number of
games, t∗, needed for the best team to win is t∗ ∼ N2.

Since each of the N teams plays t∗ ∼ N2 games, the to-
tal number of games required for the best team to emerge
as the champion with high certainty grows as the cubic
power of the number of teams,

T ∼ N3. (8)

This result has significant implications. In most sports
leagues, two teams face each other a fixed number of
times, usually once or twice. The corresponding total
number of ∼ N2 games, is much smaller than (8). In this
common league format, the typical rank of the champion
scales as n∗ ∼

√
N . Such a season is much too short as

it enables weak teams to win championships. Indeed, it
is not uncommon for the top two teams to trade places
until the very end of the season or for two teams to tie
for first, a clear indication that the season length is too
short.

We may also consider the probability distribution
Qn(t) for the nth ranked team to win after t games. We
expect that the scale n∗ characterizes the entire distribu-
tion function,

Qn ∼ 1

n∗
ψ

(

n

n∗

)

. (9)

Assuming ψ(0) is finite, the probability that the best
team wins scales as follows, Q1 ∼ 1/n∗. This quantity



3

first grows, Q1(t) ∼
√
t/N when t ¿ N2, and then, it

saturates, Q1(t) ≈ 1 when tÀ N2.
The likelihood of major upsets is quantified by the

tail of the scaling function ψ(z). Generally, the
champion wins pt games (we neglect the diffusive
correction). The probability that the weakest team
becomes champion by reaching that many wins is
QN (t) ∼

(

t
pt

)

qptpqt ∼ (q/p)(p−q)t where the asymptotic

behavior follows from the Stirling formula t! ∼ t ln t− t.
We conclude that the probability of the weakest team
winning decays exponentially with the number of games,
QN (t) ∼ exp(− const × t). Yet, from (9) and (7),
QN (t) ∼ ψ

(√
t
)

, and therefore, the tail of the proba-
bility distribution is Gaussian

ψ(z) ∼ exp
(

− const × z2
)

(10)

as z → ∞ thereby implying that upset champions are
extremely improbable. We note that single-elimination
tournaments produce upset champions with a much
higher probability because the corresponding distribu-
tion function has an algebraic tail [16]. We conclude that
leagues have a much narrower range of outcomes and in
this sense, leagues are more fair than tournaments.

III. PRELIMINARY ROUNDS

With such a large number of games, the ordinary
league format is highly inefficient. How can we devise
a schedule that produces the best team as the champion
with the least number of games? The answer involves
preliminary rounds. In a preliminary round, teams play
a small number of games and only the top teams advance
to the next round [23].

Let us consider a two stage format. The first stage
is a preliminary round where teams play t1 games and
then, the teams are ranked according to the outcome of
these games. The top M ¿ N teams advance to the
final round [24], and the rest are eliminated. The final
championship round proceeds via a league format with
plenty of games to guarantee that the best team ends up
at the top .

We assume that the number of teams advancing to the
second round grows sub-linearly

M ∼ Nα1 , (11)

with α1 < 1. Of course, we better not eliminate the
best team. The number of games t1 required for the
top team to finish no worse than Mth place is obtained
by substituting n∗ ∼ M into (7), t1 ∼ N2/M2. Since
each of the N teams plays t1 games, the total num-
ber of games in the preliminary round is of the order
Nt1 ∼ N3/M2 ∼ N3−2α1 . Directly from (8), the num-
ber of games in the final round is M 3 ∼ N3α1 . Adding
these two contributions, the total number of games, T1,
is

T1 ∼ N3−2α1 +N3α1 . (12)

This quantity grows algebraically with the number of
teams, T1 ∼ Nγ1 with γ1 = max(3 − 2α1, 3α1) and this
exponent is minimal, γ1 = 9/5, when

α1 = 3/5. (13)

Consequently, t1 ∼ N4/5.
Thus, it is possible to significantly improve upon the

ordinary league format using a two-stage procedure. The
first stage is a preliminary round in which each of the N
teams plays t1 ∼ N4/5 games and then the topM ∼ N 3/5

teams advance to the final round. The rest of the teams
are eliminated. The first preliminary round requiresN 9/5

games. In the final round the remaining teams play in
a league with each of the possible

(

M
2

)

pairs of teams
playing each other M times. Again the number of games
is N9/5 so that in total,

T1 ∼ N9/5 (14)

games are played. This is a substantial improvement over
ordinary N3 league play.

Multiple preliminary rounds further reduce the number
of games. Introducing an additional round, there are now
three stages: the first preliminary round, the second pre-
liminary round, and the championship round. Out of the
first round Nα2 teams proceed to the second round and
then, Nα1α2 teams proceed to the championship round.
The total number of games T2 is a straightforward gen-
eralization of (12)

T2 ∼ N3−2α2 +Nα2(3−2α1) +N3α1α2 . (15)

These three terms account respectively for the first
round, the second round, and the final round. The first
term is analogous to the first term in (12), and the last
two terms are obtained by replacing N with Nα2 in (12).
The total number of games is minimal when all three
terms are of the same magnitude. Comparing the last
two terms gives 3 − 2α1 = 3α1 and therefore, (13) is
recovered. Comparing the first two terms gives

3 − 2α2 = α2(3 − 2α1). (16)

Thus, α2 = 15/19 and since α2 > α1, the first elimination
is less drastic then the second one. The total number of
games, T2 ∼ N27/19, represents a further improvement.

These results indicate that it is possible to systemat-
ically reduce the total number of games via successive
preliminary rounds that lead to the final championship
round. In the most general case, there are k prelimi-
nary rounds in addition to the final round. The number
of teams advancing to the second round, Mk, grows as
follows

Mk ∼ Nαk . (17)

From (16), the exponent αk obeys the recursion relation
3 − 2αk+1 = αk+1(3 − 2αk) or equivalently,

αk+1 =
3

5 − 2αk
. (18)
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k 0 1 2 3 4 5 ∞
αk 0 3

5

15

19

57

65

195

211

633

665
1

βk 1 4

5

8

19

16

65

32

211

64

665
0

γk 3 9

5

27

19

81

65

243

211

729

665
1

TABLE I: The exponents αk, βk, and γk characterizing Mk,
the number of teams advancing from the first round, tk, the
number of games played by a team in the first round, and Tk,
the total number of games, as a function of the number of
preliminary rounds k.

By using α1 = 3/5 we deduce the initial element in
this series, α0 = 0. Introducing the transformation
αk = ak/ak+1 reduces (18) to the Fibonacci-like recur-
sion 3ak+2 = 5ak+1 − 2ak. The general solution of this
equation is ak = Ark

1 +B rk
2 where r1 = 1 and r2 = 2/3

are the two roots of the quadratic equation 3r2 = 5r− 2.
The coefficients follow from the zeroth element: α0 = 0
implies a0 = 0 and consequently, ak = A

[

1 − (2/3)k
]

.
Therefore,

αk =
1 − (2/3)

k

1 − (2/3)
k+1

. (19)

The exponent αk ≈ 1 − 1
3

(

2
3

)k
(for k À 1) decreases

exponentially to one (Table 1). This means that the
number of teams advancing from the first to the second
preliminary round is increasing with the total number of
preliminary rounds played. Nonetheless, the fraction of
teams that are eliminated 1−Nαk−1 converges to one as
N → ∞. Hence, nearly all of the teams are eliminated.

The number of games played by a team in the first
round, tk, follows from (17)

tk ∼ Nβk , βk = 2(1 − γk). (20)

Since βk → 0 as k → ∞, only a small number of games is
played in the opening round. Using Tk ∼ Ntk, we arrive
at our main result (1) where γk = 3 − 2αk. Surprisingly,
the total number of games is roughly linear in the number
of teams

T∞ ∼ N, (21)

when a large number of preliminary rounds is used, i.e.,
k → ∞ [25]. Clearly, this linear scaling is optimal since
every team must play at least once. The asymptotic

behavior γk ≈ 1 +
(

2
3

)k+1
implies that in practice, a

small number of preliminary round suffices. For exam-
ple, γ4 = 243

211 = 1.15165 (Table I).
We emphasize that in a k-round format, the top Nαk

teams proceed to the second round, out of which the
top Nαk−1αk teams proceed to the third round, and so
on. The number of teams proceeding from the kth round
to the championship round is M ∼ Nα1α2···αk . From
(21) and T∞ ∼M3

∞
, the size of the championship round

approaches

M∞ ∼ N1/3 (22)

as k → ∞. This is the optimal size of a playoff that
produces the best champion using the least number of
games.

IV. NUMERICAL SIMULATIONS

Our scaling analysis is heuristic: we assumed that N is
very large and we ignored numerical constants. To verify
the applicability of our asymptotic results to moderately
sized leagues, we performed numerical simulations with
N teams that play an equal number of t games against
randomly selected opponents. The outcome of each game
is stochastic: with probability p the favorite wins and
with probability q = 1−p, the underdog wins. We present
simulation results for q = 1/4.
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FIG. 1: (Color Online) The average rank of the champion,
〈n∗〉, of a league with N teams after t games. The simulation
results represent and average over 103 independent realiza-
tions with N = 102, 103, and 104. A straight line of slope
−1/2, predicted by Eq. (7), is plotted as a reference.

The most important theoretical prediction is the rela-
tion (7) between the rank of the winner, the number of
games, and the size of the league. To test this prediction,
we measured the average rank of the winner as a func-
tion of the number of games t, for leagues of various sizes.
In the simulations, it is convenient to shift the rank by
one: the teams are ranked from n = 0 (the best team) to
n = N−1 (the worst team). With this definition, the av-
erage rank decreases indefinitely with t. The simulations
show that n∗/N

1/2 ∼ (t/N)−1/2, thereby confirming the
theoretical prediction (figure 1).

To validate (8), we simulated leagues with a large
enough number of games, so that the best team wins
with certainty. For every realization there is a number
of games T after which the champion takes the lead for
good. The average of this random variable, 〈T 〉, mea-
sured from the simulations, is in excellent agreement with
the theoretical prediction (figure 2).

The simulations also confirm that the scale n∗ char-
acterizes the entire distribution as in (9). Numerically,
we find that the tail of the scaling function is super-
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FIG. 2: (Color Online) The average number of games 〈T 〉
needed for the best team to emerge as the champion of a
league with N teams. The simulation results, representing an
average over 103 independent realizations, are compared with
the theoretical prediction (8).

exponential, ψ(z) ∼ exp(−zµ) with µ > 1. The observed
tail behavior is consistent with µ = 2, although the nu-
merical evidence is not conclusive.
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FIG. 3: (Color Online) The rank distribution of the league
winner for ordinary league format (t = N). Shown is the

scaled distribution
√

N Qn(t = N) versus the scaling variable

n/
√

N . The simulation data were obtained using 106 inde-
pendent Monte Carlo runs.

To verify our prediction that multiple elimination
rounds, following the format suggested above, reduce
the number of games, we simulated a single elimination
round (k = 1). In the first stage, a total of N 9/5 games
are played. All teams are then ranked according to the
number of wins and the top M = N 3/5 teams proceed to
the championship round. This final round has an ordi-
nary league format with a total of M 3 games. We simu-
lated three leagues of respective sizes N = 101, N = 102,
and N = 103, and observed that the best team wins
with a frequency of 70%. The champion is among the
top three teams in 98% of the cases (these percentages
are independent of N). As a reference, in an ordinary
league with a total of N3 games, the best team also wins

with a likelihood of 70%. Remarkably, even for as little as
N = 10 teams, the one preliminary round format reduces
the number of games by a factor > 10. We conclude that
the scaling results are useful at moderate league size N .

V. IMPERFECT CHAMPIONS

Let us relax the condition that the best team must
win and implement a less rigorous championship round.
Given a total of T ∼ M c games with 1 ≤ c ≤ 3, each
team plays t ∼ M c−1 games. From (7), the typical rank
of the winner scales as

n∗ ∼M
3−c

2 . (23)

Suppose that there are infinitely many preliminary
rounds. The analysis in Section III reveals that the to-
tal number of games scales linearly, T ∼ M c ∼ N , and
consequently, M ∼ N1/c. Therefore, there is a scaling
relation between the rank of the winner and the number
of teams n∗ ∼ N

3−c

2c . Indeed, the value c = 3 produces
the best champion. The common league format (c = 2)
leads to n∗ ∼ N1/4, an improvement over the ordinary
N1/2 behavior.

If there is one preliminary round, Eq. (12) becomes
T1 ∼ N3−2α1 +N cα1 and therefore, α1 = 3/(2+ c). Gen-
erally for k preliminary rounds, the exponent αk satis-
fies the recursion relation (18), and the scaling relations
γk = 3−2αk and βk = 2(1−αk) remain valid. We quote
the value

γk =
1

1 − c−1
c

(

2
3

)k
(24)

that characterizes the total number of games, T ∼ N γk .
From T ∼ M c ∼ Nγk , we conclude M ∼ Nγk/c. Substi-
tuting this relation into (23) yields

n∗ ∼ Nνk , νk =
γk(3 − c)

2c
. (25)

Using ordinary league play (c = 2) and one preliminary
round, N3/2 games are sufficient produce an imperfect
champion of typical rank n∗ ∼ N3/8. Finally, we note
that if each team plays a finite number of games (c = 1),
all of the teams have a comparable chance of winning
because νk = γk ≡ 1.

VI. CONCLUSIONS

In summary, we studied dynamics of league competi-
tion with fixed team strength and a finite upset proba-
bility. We demonstrated that ordinary league play where
all teams play an equal number of games requires a very
large number of games for the best team to win with
certainty. We also showed that a series of preliminary
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rounds with a small but sufficient number games to suc-
cessively eliminate the weakest teams is a fair and effi-
cient way to identify the champion. We obtained scaling
laws for the number of advancing teams and the num-
ber of games in each preliminary round. Interestingly, it
is possible to determine the best team by having teams
play, on average, only a finite number of games (inde-
pendent of league size). The optimal size of the final
championship round scales as the one-third power of the
number of teams.

Empirical validation of these results with real data may
be possible using sports leagues, for example. The chal-
lenge is that the inherent strength of each team is not
known. In professional sports, a team’s budget can serve
as a proxy for its strength. With this definition, the aver-
age rank of the American baseball world series champion,
over the past 30 years, equals 6. There are however huge
fluctuations: while the top team won 7 times, a team
ranked as low as 26 (2003 Florida Marlins) also won.

The results in this paper can be generalized in a num-
ber of ways. For example, one can use competitions to
sort all teams by strength, not merely find the best one.
We find that Tsort, the time needed to sort all teams
through ordinary league play grows as Tsort ∼ N3 lnN
[26]. One may also introduce upset frequencies that de-
pend on the difference in strengths between two teams.
Empirical studies show that a single effective upset fre-
quency is adequate to capture key characteristics of

sports leagues such as the standard deviation in win-
percentage. Of course, strength-dependent and empir-
ically based upset frequencies can be used as a more
realistic model. An interesting question to answer is
under what conditions, i.e., general pairwise (underdog-
favorite) assignments, can the teams be sorted by league
play? Finally, one can investigate the effects of evolv-
ing team strengths. Clearly, the cubic growth law (8)
provides a lower bound on the number games needed to
choose the champion.

With wide ranging applications, including for exam-
ple evolution [27, 28], leadership statistics is a challeng-
ing extreme statistics problem because the record of one
team constrains the records of all other teams. Our scal-
ing approach, based on the record a fixed team, ignores
such correlations. While these correlations do not affect
the scaling laws, they do affect the distribution of out-
comes such as the distribution of the rank of the winner,
and the distribution of the number of games needed for
the best team to take the lead for good. Other inter-
esting questions include the expected number of distinct
leaders, and the number of lead changes as a function of
league size [29, 30].
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