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We investigate a network growth model in which the genealogy controls the evolution. In this
model, a new node selects a random target node and links either to this target node, or to its
parent, or to its grandparent, etc; all nodes from the target node to its most ancient ancestor are
equiprobable destinations. The emerging random ancestor tree is very shallow: the fraction gn of
nodes at distance n from the root decreases super-exponentially with n, gn = e−1/(n− 1)!. We find
that a macroscopic hub at the root coexists with highly connected nodes at higher generations. The
maximal degree of a node at the nth generation grows algebraically as N 1/βn where N is the system
size. We obtain the series of nontrivial exponents which are roots of transcendental equations:
β1

∼= 1.351746, β2
∼= 1.682201, etc. As a consequence, the fraction pk of nodes with degree k has

algebraic tail, pk ∼ k−γ , with γ = β1 + 1 = 2.351746.

PACS numbers: 89.75.Hc, 02.10.Ox, 05.40.-a, 02.50.Ey

I. INTRODUCTION

The interplay between dynamics, structure, and func-
tion of complex networks is the subject of intense current
research [1–4]. A wide spectrum of social, technical, and
biological networks have broad degree distributions with
a power-law tail [2, 3]. Further, many real-life networks
also have macroscopic hubs that are connected to a finite
fraction of all nodes and these hubs play important func-
tion in the network [2–4]. In this study, we introduce a
minimal model that captures both of these features.

Common mechanisms of network growth include pref-
erential attachment [5–9], copying, and re-direction [10–
13]. In these processes, a target node is identified and the
attachment is either to the target node itself or to one of
its immediate ancestors. These growth processes result
in heterogeneous networks with broad degree distribu-
tions. However, there are no macroscopic hubs because
the maximal degree in these networks grows sub-linearly
with the network size.

In this study, we consider the complementary situa-
tion where attachment to any ancestor is possible. We
show that the resulting network has a fundamentally dif-
ferent structure: there is coexistence between a hub with
a macroscopic degree and highly connected nodes with
sub-macroscopic degrees. Moreover, there is a series of
exponents that characterize how the maximal degree at
a given distance from the root scales with system size.

To model situations where the genealogy controls the
network growth, we start with a single node, the root,
and add nodes sequentially, so that each new node at-
taches to an existing node through a two-step process
(see Fig. 1):

• The new node selects a target node at random.

• The new node attaches to one node, selected at ran-
dom from the set of nodes that includes the target
node and all its ancestors.

FIG. 1: The random ancestor tree. A new node attaches,
with equal probabilities, to one of three nodes: the target
node (marked by ×), its parent, or its grandparent.

Since each new node adds a single link, the growing net-
work retains a tree structure, and apart from the root,
each node has a single parent node. We term the result-
ing structure the random ancestor tree. An appealing
feature of this model is the absence of control parame-
ters.

Our motivation for this model comes from social, schol-
arly, and reference networks [14]. For example, the pub-
lished literature in science, law, and religion grows by
sequential addition of material. Starting with some refer-
ence, a scholar typically studies an entire line of preceding
reports or rulings, and refers to the most appropriate or
the most important published literature, not necessarily
the most recent one [15–17]. In this sense, the evolution
of such reference networks is coupled to their genealogy.

We find that the random ancestor tree has a single
macroscopic hub, namely the root, that is connected to
a fraction e−1 of all nodes. Furthermore, the degree dis-
tribution is broad as the fraction pk of nodes with degree
k decays algebraically,

pk ∼ k−γ , γ = 2.351746, (1)

when k → ∞. Interestingly, the exponent γ is obtained



2

as a root of a transcendental equation. We also obtain a
series of nontrivial exponents γn, each characterizing the
degree distribution of nodes at the nth generation. As n
increases, the exponents γn increase, so that the nodes
become less and less connected as their distance from the
root increases.

Throughout this paper, we focus on the asymptotic
behavior of large trees. We first analyze the genealogi-
cal structure of the random ancestor tree in section II.
The depth distribution indicates that the root is a macro-
scopic hub, and in section III we show that the root is
the only such hub. We then establish (sec. IV) the de-
gree of the most connected nodes at higher generations
and discuss the implications of these results for the de-
gree distribution (sec. V). Other structural properties
including the number of leaves, and the likelihood that
the tree has star or chain topology are derived in section
VI. Conclusions are given in section VII.

II. GENEALOGICAL STRUCTURE

We treat the random ancestor tree as a genealogical
tree and group nodes according to generation (figure 1).
The first generation consists of nodes at distance one
from the root, the second generation includes nodes at
distance two from the root, etc. In principle, the number
of nodes in each generation fluctuates from one realiza-
tion to another, yet in the thermodynamic limit such
fluctuations are negligible, and we therefore study the
average number of nodes in each generation.

Let N be the total number of nodes in the tree and let
Gn(N) be the average number of nodes at distance n from
the root. Only the root belongs to the zeroth generation
and therefore, G0(N) = 1. The average number of nodes
in the first generation, G1(N), grows according to the
rate equation

dG1

dN
=

G0

N
+

G1

2N
+

G2

3N
+ · · · . (2)

Hereinafter we treat the size of the network N as a con-
tinuous variable; our results are asymptotically exact in
the limit N → ∞. Equation (2) reflects that new nodes
are added to the first generation only when a new node
links to the root. The first term on the right-hand side
corresponds to the situation when the root is chosen as
the target node; the second term accounts for situations
when a node in the first generation is chosen — then the
probability that the actual link will be to the root is 1/2;
the following terms describe situations where the target
nodes are in higher generations.

The generalization of (2) to arbitrary generation n is
straightforward,

dGn

dN
=

∑

i≥n

Gi−1

iN
. (3)

We now introduce gn, the fraction of nodes that belong

to the nth generation,

Gn(N) = gnN. (4)

The coefficients gn are normalized,
∑

n≥1 gn = 1. Fur-
ther, since G0 = 1 we have g0 = 0 in the limit N → ∞.
Equation (3) shows that the fractions gn satisfy

gn =
∑

i≥n

i−1gi−1 . (5)

It is convenient to re-write Eq. (5) as the explicit recur-
sion

gn = n−1gn−1 + gn+1 . (6)

By evaluating the first few terms, g2 = g1, g3 = g1/2!,
g4 = g1/3!, and by induction, gn = g1/(n− 1)!. The nor-
malization condition

∑

n≥1 gn = 1 sets g1 = e−1. Thus,

gn =
e−1

(n − 1)!
, (7)

indicating that the number of nodes decays super-
exponentially with increasing generation or alternatively,
depth. Hence, the random ancestor tree is exception-
ally shallow. For instance, the average depth is finite:
〈n〉 =

∑

n≥1 ngn = 2.
The genealogical structure of the random ancestor tree

drastically differs from the genealogical structure of other
growing networks [11]. In particular, random recursive
trees [18, 19], which grow by attachment of new nodes
to random target nodes, have the depth distribution
Gn(N) = (ln N)n/n!. Thus, there is a sharp peak at
npeak ∼ ln N , and furthermore, the maximal depth, de-
fined as the deepest non-empty generation nmax, also
scales logarithmically with system size, nmax ∼ ln N [11].
This behavior is very robust and occurs in most growing
trees [20–22], but there are exceptions where the maximal
depth grows algebraically with system size [23].

For the random ancestor tree, the generation profile
(7) is a sharply decreasing function of depth, and from
the criterion Gnmax

∼ 1 we estimate the maximal depth

nmax ≈
ln N

ln(ln N)
. (8)

This depth behavior reflects that the tree is shallow [24].

III. MACROSCOPIC HUB

The random ancestor tree has a macroscopic hub: the
root is connected to a finite fraction, e−1 = 0.367879,
of all nodes as follows from (7). Such macroscopic hubs
are found in social networks [14], and have an impor-
tant function in as transportation networks [4, 25–28].
Yet, with a few exceptions including super-linear prefer-
ential attachment [8, 11, 29] and models with fitness [30],
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most models of network growth have no such hubs and
instead, the most central nodes have degrees that grow
sub-linearly with network size.

To find out whether, in addition to the root, there are
other hubs, let’s consider the most connected node at the
first generation. We denote the number of descendants of
this node in the second generation by H2(N), the number
of its descendants in the third generation by H3(N), etc.
The equation governing Hj(N) is identical to (3),

dHj

dN
=

∑

i≥j

Hi−1

iN
, (9)

with H1 = 1. By definition, the node degree is 1+H2(N).
Suppose that the most connected node at the first

generation has macroscopic degree, H2 ∼ N . Since
dH3/dN > H2/(3N) then H3 ∼ N as well. In general,

Hj(N) = ujN (10)

for all j ≥ 2. By substituting (10) into (9), we find that
the coefficients uj satisfy a recursion relation identical to
(6),

uj = j−1uj−1 + uj+1. (11)

Any solution to (11) is a linear combination of the two
independent solutions: the fast-decaying solution above
uj = 1/(j − 1)! and the slow-decaying one, uj ∼ j−1

when j À 1. For the first few coefficients we have u1 = 0
and u2 = u3. The boundary condition u1 = 0 implies
that we can not express the solution solely in terms of
the rapidly decaying solution uj = 1/(j − 1)!. Yet, the
slowly decaying solution is unphysical because the sum
∑

j uj diverges. Therefore, the only possible solution is
the trivial one, uj = 0 for all j ≥ 1, and we conclude that
there are no macroscopic hubs in the first generation.

Similarly, there are no macroscopic hubs in higher gen-
erations. If there is a hub in the nth generation, the
recurrence (11) holds for j > n with the boundary condi-
tion un = 0, or equivalently un+1 = un+2. By repeating
the steps above, we conclude that all coefficients uj van-
ish.

IV. HIGHLY CONNECTED NODES

In the previous section we have shown that the degree
of the most connected node in the first generation cannot
be macroscopic. It is then natural to assume that the
degree scales as N1/β with β > 1, or equivalently [31]

Hj = H2 hj , with H2 ' C N1/β , (12)

for all j ≥ 2. The fractions hj satisfy

hj = β
∑

i≥j

i−1hi−1 , (13)

obtained by substituting (12) into (9). Therefore, the
recursion relation (6) becomes

hj = β j−1hj−1 + hj+1. (14)

The boundary conditions is

h1 = 0, h2 = 1. (15)

Certain features can be determined without solving
Eqs. (14)–(15). For instance, to obtain the total num-
ber of descendants htot =

∑

i≥2 hi we multiply (14) by j
and sum over all j. This yields

htot =
1

β − 1
. (16)

Since htot > 1, we have the bound β < 2.
Similarly, by multiplying (14) by j2 and summing over

all j we determine the average generation number

〈 j 〉 =

∑

j≥2 jhj
∑

j≥2 hj
=

2

2 − β
.

The second order linear difference equation (14) has
two independent solutions. We obtain the asymptotic
behavior of these solutions by converting the difference
equation (14) into a differential equation. If hj de-
cays sufficiently slow, we may approximate Eq. (14) by
the differential equation dh/dj ' −β h/j with solution
hj ∼ j−β at large j. Otherwise, if hj decays very quickly,
we have hj ' β hj−1/j in the leading order and therefore
hj ∼ βj/j!. Using this solution as an integrating factor,
that is, substituting hj = qj βj/j! into Eq. (14), we have
the recurrence qj−qj−1 = βqj+1/(j+1). This recurrence
reduces to the differential equation dq/dj ' β q/j, with
power-law solution qj ∼ jβ . Therefore the asymptotic
behavior of the second solution to Eq. (14) is

hj ∼
jβ βj

j!
. (17)

Equations (14)–(15) admit a solution for arbitrary

value of β. In general, such a solution is a linear
combination of the two solutions above. However, the
slowly decaying solution is unphysical. If Hj ∼ j−βN1/β

for j À 1, then the depth of the subtree emanating
from the most connected node in the first generation,

jmax ∼ N1/β2

, as follows from the criterion Hjmax
∼ 1,

would exceed the maximal depth (8). Therefore, we must
find the special value of β for which solution to (14)–(15)
is the rapidly decaying solution with the asymptotic be-
havior (17). Therefore, β is analogous to an eigenvalue.

To determine the proper eigenvalue β we use the gen-
erating function technique. We write

H(z) =
∑

j≥2

hjz
j (18)
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and convert the difference equation (14) into an integral
equation

H(z) = β

∫ z

0

dxH(x) +
H(z) − z2

z
. (19)

Note that H(z) = z2+z3+· · · for small z and in addition,
Eq. (16) sets H(1) = htot = (β − 1)−1.

Given the form of Eq. (19), we focus on the integral of
the generating function, F(z) =

∫ z

0
dxH(x), and convert

the integral equation (19) into the differential equation

dF

dz
+ β z (1 − z)−1

F = z2(1 − z)−1. (20)

The boundary condition is F(0) = 0. We use the inte-
grating factor I(z) = e−β z(1 − z)−β to simplify (20) to
d(FI)/dz = z2(1 − z)−1I. Hence, the solution of (20) is

F(z) = eβ(z−1)(1 − z)β

∫ z

0

dx eβ(1−x) x2

(1 − x)1+β
. (21)

The behavior of the generating function in the limit
z → 1 reflects the behavior of the coefficients hj in the
limit j → ∞. Therefore, we evaluate the integral in (21)
in the limit z → 1,

∫ z

0

dx eβ(1−x) x2 (1 − x)−1−β

=

∫ z

0

dx eβ(1−x)
[

1 − 2(1 − x) + (1 − x)2
]

(1 − x)−1−β

=

∫ 1

1−z

dy eβy[y−1−β − 2y−β + y1−β ]

=

∞
∑

k=0

βk

k!

∫ 1

1−z

dy
[

yk−1−β − 2yk−β + yk+1−β
]

' f(β) + (1 − z)−β

[

1

β
−

2 − β

β − 1
(1 − z)

]

.

The function f(β) is given by the infinite sum

f(β) =

∞
∑

k=0

βk

k!

(

1

k − β
−

2

k + 1 − β
+

1

k + 2 − β

)

.

We can also express this function in terms of the incom-
plete Gamma function γ(a, x) =

∫ x

0
dt ta−1 e−t,

f(β) =
(−β)β−1γ(2 − β,−β) + eβ

β(β − 1)
. (22)

Using H = dF/dz and the leading z → 1 asymptotics
of the integral in (21) we find

H(z) '
1

β − 1
− βf(β)(1 − z)β−1 as z → 1. (23)

Generally, the generating function has a regular compo-
nent and a singular one, H(z) = Hreg(z)+Hsing(z), with

Hreg(z) '
1

β − 1
+ const × (1 − z),

Hsing(z) ' −β f(β)(1 − z)β−1.

Since
∑

j zjj−β ∼ (1−z)β−1 when z → 1, we identify the
singular component with the unphysical solution. Hence,
the singular term must vanish, and the exponent β is root
of the transcendental equation

f(β) = 0. (24)

By solving this equation numerically, using the bisection
method [32] for example, we find the eigenvalue to essen-
tially arbitrary precision

β = 1.351746470331 . . . .

The above behavior extends to higher generations. In
general, the degree of the most connected node at the nth
generation grows algebraically with the total number of
nodes, Hn+1 ∼ N1/βn , and the exponent βn is function
of the generation index n. Let Hj be the number of
descendants of the most connected node at generation
j > n. The coefficients hj , defined by Hj = Hn+1hj ,
again satisfy the recursion (13) with the boundary con-
dition hn = 0 and hn+1 = 1. Thus, the coefficients hj

decay super-exponentially as in (17).
The exponents βn are obtained by repeating the steps

above, and we merely quote the final results. First, the
integral of the generating function is

F(z) = eβnz(1 − z)βn

∫ z

0

dx e−βnx xn+1

(1 − x)1+βn

. (25)

Second, the function f(β) is now

f(βn) =

∞
∑

k=0

βk
n

k!

n
∑

m=0

(

n

m

)

(−1)m

k + m − βn
. (26)

The values of the exponents βn for n ≤ 8 are listed in
table I. The exponents increase with n and therefore, the
degree of the most connected nodes declines sharply as
distance from the root increases.

n βn htot 〈∆j〉

0 1 2.7182 2

1 1.351746 2.8429 2.0852

2 1.682201 2.9316 2.1466

3 2 3 2.1945

4 2.309250 3.0551 2.2336

5 2.612266 3.1012 2.2665

6 2.910493 3.1405 2.2949

7 3.204901 3.1747 2.3197

8 3.496180 3.2048 2.3418

TABLE I: The exponent βn, the ratio htot between the to-
tal number of descendants and the degree, and the average
distance of a descendant 〈∆j〉 versus generation n. The ex-
ponents βn are roots of the transcendental equation f(βn) = 0
with f(βn) given by (26). The quantities htot and 〈∆j〉 are
given in equations (28) and (29), respectively.

The expression (26) holds for all n as long as βn is
noninteger. There are, however, two exceptions. We
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FIG. 2: The degree distribution pk versus degree k. The sim-
ulation results (bullets) are from 102 independent realizations
with N = 108. Also shown is a straight line that corresponds
to the theoretical result (1).

have already seen that for the zeroth generation β0 = 1
and the coefficients hj can be determined analytically,
hj = 1/(j − 1)!. For the third generation, β3 = 2 and
again, the coefficients hj have simple form

hj = 3 · 2j−3 j − 3

(j − 1)!
. (27)

This can be verified by direct substitution into (14). Of
course, the solution (27) agrees with the general asymp-
totic behavior (17).

Using βn, we calculate several other useful properties.
First, the ratio htot between the total number of descen-
dants and the degree equals

htot =
n

βn − 1
(28)

for n 6= 1, while htot = e when n = 1. This quantity
mildly increases with generation and eventually saturates
(table 1). Also, we mention the average distance of a de-
scendant 〈∆j〉 = 〈j〉 −n with 〈j〉 =

∑

j≥n jhj/
∑

j≥n hj .
This quantity is given by

〈∆j〉 =
n − βn − 1

βn − 2
. (29)

When n = 3, 〈∆j〉 = (e2 − 3)/2. Like htot, the aver-
age distance slowly grows with generation but ultimately
approaches a constant. Hence, statistical properties of
average quantities such as the total number of descen-
dants and the distance to a descendant weakly depend
on depth, but statistical properties of extreme quantities
such as the degree of the most connected node strongly
depend on depth.

0 5 10 15 20
n

0

2

4

6

8

10

γ
n

FIG. 3: The exponent γn = 1 + βn versus n.

V. THE DEGREE DISTRIBUTION

The degree distribution is an important quantity that
characterizes local properties of networks. For many
growing networks, the degree distribution satisfies closed
recurrence equations and consequently, this quantity can
be determined analytically. It appears impossible to find
a closed set of equations that govern the degree distri-
bution for the random ancestor tree. Remarkably, the
closed set of equations (9) allows us to obtain the tail of
the degree distribution analytically.

The power-law degree of the most connected node (12)
already shows that the degree distribution has power-law
tail. Let pk be the fraction of all nodes with degree k. As
announced in (1), this distribution decays algebraically,

pk ∼ k−γ with γ = β + 1, (30)

for k À 1. Indeed, if we substitute kmax ∼ N1/β

with β ≡ β1 into the extreme statistics criterion,
N

∑

k>kmax
pk ∼ 1, we obtain (30). Here, we take β = β1

because the exponents βn increase monotonically.
Our numerical simulations results are in excellent

agreement with the theoretical prediction (1). The simu-
lations are straightforward to implement: with each new
node, a target node is selected at random, and then, the
attachment node is selected at random from the target
node and all of its ancestors. Since the average depth
remains finite, the computational cost is proportional to
the network size and we can simulate networks as large as
N = 108. We comment that many real-world networks
have power-law degree distributions [2] as in (30) with
exponent γ in the range 2 < γ < 3.

Remarkably, the random ancestor tree has a family
of degree distributions, each characterized by a distinct
nontrivial exponent. The fraction pn,k of nth generation
nodes with degree k decays algebraically

pn,k ∼ k−γn with γn = βn + 1. (31)

As in the preferential attachment network, the exponent
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that characterizes the degree distribution increases with
generation [33].

From the roots of the transcendental equation
f(βn) = 0 with f(βn) given by (26), we find that the
exponent γn grows linearly with n, that is (figure 3)

γn ∼ n. (32)

Since pk =
∑

n≥1 gnpn,k and since gn increases with n,
the dominant contribution to the distribution pk comes
from first generation nodes. Hence, γ ≡ γ1. This be-
havior is in contrast with the preferential attachment
network where the behavior at the average generation
dominates the degree distribution [33].

For completeness, we mention that the in-component
distribution mimics the degree distribution. The degree
of the in-component of a node is defined as the total num-
ber of its descendants. The quantity htot above is always
finite and hence, the total number of descendants of the
most connected nodes is proportional to the degree. As
consequence, the fraction Is of nodes with in-component
degree s decays algebraically, Is ∼ s−γ .

VI. LEAVES, STARS, AND CHAINS

It is also possible to calculate a few other structural
properties of the network including the average number
of leaves as well as the probabilities that the network has
an extreme structure such as a star or a chain.

Nodes with no incoming links, or equivalently, nodes
with degree one are termed leaves. To calculate the to-
tal number of leaves, we must first find a more detailed
quantity: Ln(N), the total number of leaves at the jth
generation. This quantity evolves as follows

dLn

dN
=

∑

i≥n

Gi−1

iN
−

Ln

(n + 1)N
. (33)

Each new node is necessarily a leaf and hence, the gain
term is as in (3). The loss term reflects the fact that any
new link into a leaf decreases the number of leaves by
one.

We assume that the number of leaves in each genera-
tion is macroscopic,

Ln(N) = `nN. (34)

By substituting this form into the rate equation (33), we
find that leaves constitute a finite fraction of all nodes in
each generation, `n = n+1

n+2 gn, or equivalently,

`n = e−1 n(n + 1)2

(n + 2)!
. (35)

The fraction of leaves grows with depth: 2/3 of all nodes
in the first generation are leaves; 3/4 of all nodes in the
second generation are leaves; etc. The total number of

leaves, Ltot, is the sum Ltot =
∑

n≥1 Ln and from (35),
we obtain

Ltot = 2e−1N. (36)

As is often the case in complex networks, a large fraction
of all nodes have no incoming links.

It is also possible to calculate the likelihood that the
tree has one of two extreme topologies: (i) a star where all
nodes link to the root, and (ii) a linear chain of length N .
Let SN be the probability that the tree is a star graph.
This probability satisfies the recursion

SN+1 = SN

(

1

N
+

N − 1

2N

)

. (37)

The network is a star graph only if it was previously a
star. Furthermore, the factor 1/N is the probability that
the root is the target node and the factor (N − 1)/(2N)
is the probability that the target node is any one of the
N−1 leaves, but the actual link is made to the root. With
the boundary condition S1 = S2 = 1, the probability SN

decays exponentially the network size,

SN = N 2−(N−1). (38)

The likelihood that the tree has a chain topology, CN ,
obeys the recursion equation CN+1 = CN/N2. This re-
cursion reflects that the newest node must always be se-
lected both as the target node and as the attachment
node. The probability for this event is 1/N 2. Using the
boundary condition C2 = C3 = 1, the likelihood of grow-
ing a chain decays extremely rapidly,

CN =
1

[(N − 1)!]2
. (39)

Therefore, it is far more likely that the random ancestor
tree is a star than it is a chain. This is another conse-
quence of the shallow nature of the tree.

VII. CONCLUSIONS

We introduced a random structure where the geneal-
ogy governs the evolution. The random ancestor tree has
a remarkably rich structure. The network is very tight
with a sharply-decaying distribution of depth. There is a
single macroscopic hub that is connected to a finite frac-
tion of all nodes along with multiple highly connected
nodes.

The network is strongly stratified because the ge-
nealogical structure controls the growth. The most con-
nected node at distance n from the hub has a sub-
macroscopic degree that scales as N 1/βn with system size
N . Interestingly, the exponents βn are generally tran-
scendental numbers. Moreover, the exponents βn grow
monotonically with n, and thus, the connectivity sharply
declines with increasing depth. As a consequence, the
degree distribution has power-law tail, pk ∼ k−γ with
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γ = β1+1 and furthermore, the degree distribution varies
strongly with depth.

We obtained all of these features analytically using the
total number of descendants of a highly connected node
as a function of generation. This quantity obeys a closed
set of equations and it allows us to determine many scal-
ing properties including in particular, the exponent that
governs the tail of the degree distribution. This theoret-
ical technique has promise in other growing trees prob-
lems when the degree distribution does not satisfy closed
equations [24, 34], especially in situations where the dis-
tribution of depth becomes independent of system size
asymptotically.

The random ancestor tree includes no control param-
eters but can be easily generalized by various modifica-
tions of the attachment process. More generally, the tar-
get node can be selected at a rate that is proportional
to the degree and similarly, the attachment node can be
determined according to either the generation number or

the degree. We envision that such generalizations can be
useful for controlling the degree distribution or the num-
ber of macroscopic hubs. The most challenging general-
ization is the theoretical understanding of ancestor net-
works with cycles. We expect that when new nodes link
to multiple exiting nodes, by following the same random
ancestor mechanism, some qualitative features including
in particular the finite average depth, should still hold.
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