Kinetics of Aggregation-Annihilation Processes
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We investigate the kinetics of many-species systems with aggregation of similar species clusters
and annihilation of opposite species clusters. We find that the interplay between aggregation and
annihilation leads to rich kinetic behaviors and unusual conservation laws. On the mean-field level,
an exact solution for the cluster-mass distribution is obtained. Asymptotically, this solution exhibits
a novel scaling form if the initial species densities are the same while in the general case of unequal
densities the process approaches single species aggregation. The theoretical predictions are compared
with numerical simulations in 1D, 2D, and 3D. Nontrivial growth exponents characterize the mass

distribution in one dimension.

Irreversible aggregation and annihilation processes oc-
cur in many natural phenomena [1,2]. The kinetics of
each of these processes is well understood both on the
mean-field level which provides an accurate description
when fluctuations in reactant densities can be ignored
[3,1,4] and in the fluctuation-dominated regime which oc-
curs in low-dimensional systems, see [5], and references
therein. It was found in particular that the cluster-mass
distribution in aggregating systems typically approaches
a universal scaling form [2,4].

In this work we investigate the competition between
aggregation and annihilation, which gives rise to a sur-
prisingly rich kinetic behavior. Our model is the simplest
implementation of the two underlying processes, aggre-
gation and annihilation: Similar species clusters combine
to form larger clusters while dissimilar clusters combine
to form an inert substitute. It is worth noting that when
the number of species n diverges, n — oo, our model
is equivalent to single-species annihilation, while in the
other extreme, n = 1, single-species aggregation is re-
covered. Hence, the process is well suited for investigat-
ing the interplay between aggregation and annihilation.
We find that the exponents characterizing the kinetics
are nonuniversal in that they may depend on the reac-
tion rates as well as the initial conditions. Still, there is
a basic scaling form which describes the process in the
long-time limit.

Although our goal in this study was to understand
how the competition between aggregation and annihila-
tion could change the kinetic behavior we want to stress
that our model does mimic some natural processes. For
example, in a two-component system with constituent
monomers A and B, aggregation of similar species can
produce open linear polymers, A--- A and B --- B, while
closed linear polymers can be energetically less favorable
and hence never appear. On the other hand, when dis-
similar polymers meet each other a ring copolymer is
formed. While linear chains continue to participate in
the reaction process, ring copolymers lose their reactive
edge and stop participating in the reaction process.

We shall study our model both in the mean-field
limit and in the diffusion-controlled limit for d = 1,2
and 3. The mean-field approach to the binary reac-

tion process assumes that the reaction proceeds with a
rate proportional to the product of the reactants densi-
ties. Thus the mean-field approximation neglects spatial
correlations and therefore typically holds in dimensions
larger than some critical dimension d.. For n-species
pure annihilation processes, it was suggested [6] that
d. = 4(n —1)/(2n — 3), the result which turns into rig-
orously established values [7] of the critical dimension
for two- and single-species annihilation, d. = 4 and 2,
respectively (the latter case corresponds to n = o).
For pure aggregation processes, the critical dimension
depends on the details of the reaction events and on
the relation between the diffusion coefficient and the
mass of the cluster [8]. Numerically, we investigate the
particle coalescence model (PCM) in which clusters oc-
cupy single lattice sites and perform nearest neighbor
hoping with the diffusion coefficient independent of the
mass. For the PCM, it is known that d. = 2 [9]. Since
the aggregation-annihilation model interpolates between
single-species aggregation and single-species annihilation
processes, both of which belong to the same universality
class, it is natural to expect that the critical dimension
remains the same, d. = 2. We confirm the mean-field
predictions above this critical dimension numerically. In
one dimension, spatial correlations are relevant asymp-
totically. A simple heuristic argument provides the exact
asymptotic behavior of the concentration and a good ap-
proximation for the growth of the typical mass.

Following the above discussion, similar species aggre-
gation is described by the binary reaction scheme

Ai+A; — Ay, B+ Bj — By, (1)

where A; denotes a cluster consisting of ¢ monomers of
species A, and similarly for B;. The two-species case
contains the generic many-species behavior. Therefore,
we shall focus on the two-species situation and cite the
many-species results if appropriate. Annihilation be-
tween dissimilar clusters reads

A; + Bj — inert. (2)

Thus, we assume that dissimilar clusters completely anni-
hilate independent of their masses. In some situations it
may be more reasonable to assume a partial annihilation,



where the monomer difference number ¢ — j is conserved
[10-12].

Denote by ag(t) and by (t) the densities of A- and B-
clusters, consisting of k& monomers. Then the mean-
field rate equations for the two-species aggregation-
annihilation process read

ap = Z a;a; —2ag(a+0b),
it+j=k

br= Y bib; —2bx(a+D). (3)
i+j=k

Here a(t) and b(t) denote the total densities of A- and
B-clusters, a = Y, <, ar and b =", -, by, and the over-
dot denotes the time derivative. In writing Eq. (3) we
have assumed that the aggregation rate equals the anni-
hilation rate. For convenience, we set this rate to 2 such
that the prefactor of the gain term equals unity.
Summing up Eq. (3) we obtain

i@ =—a®—2ab, b= —b%>—2ab. (4)
For the symmetric initial conditions, a(0) = b(0), we get
@ = —3a? which is immediately solved to find

a(0)

alt) = 00) = 3

()
For the asymmetric initial conditions, a(0) > b(0), it is
helpful to rewrite Eq. (4) in terms of u = (a 4+ b)/(a — b)
and v = a — b. This gives

1

U= —5’0('[1/2 - 1)a b= —w’. (6)

Expressing v as a function of u yields dv/du = 2uv/(u?—
1), and as a result

[a(0) — b(O)*

V= K(U/Q - 1)’ 4@(0)1)(0)

K = (7)

Inserting Eq. (7) into Eq. (6), we obtain a closed equation
for w = u(t) with the solution

2u 2u(0)
uw?—1  u2(0) —

o u—1 u(0)+1
1 u+1 u(0)—1

] —2Kt. (8)

The densities a(t) and b(t) of the total number of A- and
B-clusters, a = v(u+1)/2 and b = v(u— 1) /2, cannot be
expressed as explicit functions of ¢. However, asymptot-
ically they exhibit simple power-law behaviors

a~t"', b~a(0)b0)[a(0) —b(0)]3t2, (9)
for t — oo. This indicates that the majority and the
minority species evolve very differently. Similarly, in
the many-species case the total density of the majority
species decays as t ! while the minorities densities decay
as t2.

We turn now to the determination of the cluster den-
sities. Introducing the generating functions,

A(z,t) =Y " 2a;(t), B(zt)=Y 2/bi(t), (10)
j=1 j=1

transforms the governing equations into
A=A?—-2A(a+b), B=DB?>-2B(a+b). (11)

These Bernoulli equations are straightforwardly solved to
get

Az t) = — 2P0
1—Ag(2) [, dt'E(t')
Bleyt) = — 20 (12)
1 — By(2) [, dt'E(t')
with the shorthand notations Ag(z) = A(z,t =
0), Bo(z) = B(z,t = 0), and E@) =

exp (72 fot dt'[a(t") + b(t’)]).

Eq. (12) represents the general solution for arbitrary
initial conditions. Consider now the simplest but impor-
tant case of monodisperse, generally asymmetric, initial
conditions

ak(O) = 51@1; bk(O) = )\5k1~ (13)

These initial conditions imply Ag(z) = z, Bo(z) = Az.
Expansion of the resulting generating functions A(z,t) =
EM)[1 — z [ d'E)]"" and B(z,t) = ME@)[1 -
2\ fot dt' E(t)]~1 yields

ax(t) = E(t) Uot dt’E(t’)} o )
k—1

bi(t) = A\ E(1) Uot dt’E(t’)} . (14)

In the symmetric case A = 1, we find E(t) = (1 +
3t)~*/3 and

ar(t) = bp(t) = (1 +3t)~4/3 [1 —(1+ 3t)’1/3r_1 . (15)

Asymptotically, the cluster-mass distribution approaches
the scaling form

ar(t) ~ 73 exp(—z), =~ kt~/3. (16)
The total mass densities, mq(t) = ), kax(t) and
mp(t) = Y > kbi(t), decrease with time, m = m, =
mp ~ t~2/3. However, there exists the quantity I, =
ma~2/3 which is conserved by the dynamics of the
aggregation-annihilation model subject to any symmet-
ric initial conditions (not necessarily the monodisperse
one). The conservation of I is verified by a direct com-
putation which makes use of the evolution equations,



@ = —3a? and 1 = —2am. For pure aggregation pro-
cesses, the total mass is conserved. Thus the quantity Iy
plays the role of a “mass” in the aggregation-annihilation
model. Furthermore, the rate equations (3) actually ad-
mit an infinite set of conservation laws which include
higher moments, My(t) = >~ kPap(t), of the distri-
bution function ay(t). (The first two moments are the
number and mass densities, My = a and My = m). These
conservation laws are found consequently and read I =
(My—2m?/a)a=2/3, Iy = (M3—6Mam/a+6m?/a?)a=2/3,
etc. We have constructed these integrals I; recursively.
Unfortunately, we understand neither the physical mean-
ing nor the algebraic structure of these integrals.

In the asymmetric case we shall set A < 1 thus forcing
B-species to be a minority. Making use of Eq. (3) one

can express E(t) = exp (—2 f(f dt'[a(t') + b(t’)]) as an ex-

plicit function of @ and b, E = (a(0)~! —b(0)~1)/(a"t —
b=1). In the long-time limit we use the asymptotic
values, a ~ t~! and b ~ A1 — A\)73¢t72, to compute
E(t) 2 A1 = A)b =~ (1 — \)~2¢t=2. Therefore,

ap(t) ~ (1= X) "%t % exp(—y),

belt) = Moaw(®). v =1 i

T (17)

Thus, for arbitrary initial conditions the majority species
cluster-mass distribution can be written in the scaling
form

ap(t) ~ 7 O[k/S(B)],  S(t) ~ 17, (18)

where S(t) is the characteristic mass. The scaling func-
tion is exponential, ®(z) = exp(—z), both for symmet-
ric and asymmetric initial conditions. In the symmetric
case, the governing exponents are w = 4/3 and z = 1/3.
The asymmetric case is equivalent to single-species ag-
gregation, and the exponents are w = 2 and z = 1. The
minority, on the other hand, does not scale according
to the usual definition although it can be expressed in
the modified scaling form, by (t) ~ A\¥¢t=%®[k/S(t)]. The
modified scaling form also indicates that two different
mass scales are associated with the minority species. A
growing scale S(t) ~ ¢, which is forced by the majority
species, and a time independent scale Sy = 1/(1 — )
which dominates in the long-time limit. The latter scale
diverges, Sy = 1/(1 — X), in the limit A — 1. It is also
instructive to compute the total mass densities. By sum-
ming Eq. (17) we find that as t — oo,

mal(t) — (1= N2, mp(t) — A1 —N)"4%"2  (19)

Thus the final mass difference Amo, = mg(o0) —
mp(00) = my(c0) may be expressed through the initial
mass difference Amg = my(0) — mp(0) = 1 — A via a
surprisingly simple relation, Ams, = (Amg)?. In com-
parison, for the pure annihilation process, the final mass
density is significantly larger, Ams, = Amg. More gen-
erally, the concentration difference, c_ = a — b, is a con-
served variable in the pure annihilation process as it is

obvious physically and can also be seen from the evo-
lution equations @ = b = —2ab. In the aggregation-
annihilation process a related “hidden” conservation law
exists. From the rate equations, one can verify that the
quantity J; = (a —b)(ab)~'/3 is conserved. This unusual
conservation law is trivially satisfied in the case of equal
initial densities. There exists another hidden conserva-
tion law, mgmy(ab)~2/ = const. In the case of sym-
metric initial conditions this conservation law is trans-
formed into the aforementioned aggregation-like conser-
vation law I; = mga~2/3 = const. Additionally, there
is an infinite set of other integrals which generalize the
integrals Is, I3, etc. found for symmetric initial condi-
tions, to arbitrary initial conditions. We conclude that
the aggregation-annihilation process exhibits nontrivial
conservation laws which are generalization to the usual
conservation laws that underly annihilation and aggre-
gation separately. Although the existence of an infinite
amount of hidden conservation laws is not customary for
irreversible processes, it has been recently found in sev-
eral such processes [13].

We turn now to the general m-species model. De-
note by a’ (m’) the concentration (mass) of the ith
species. Omne can verify that the quantities JY =
N(a'—a’)/a'a?, with N = ([],<p<, *)> "~V are con-
served for every i # j independent of the initial condi-
tions. These integrals are reminiscent of the integrals
L = ([T epen, @)YV (a’ — a’)/a’a? which are the
conservation laws for the pure annihilation process [6].
In both cases, there are n — 1 independent conservation
laws. The aggregation-type conservation laws can also
be generalized to the n-specie case. The quantity M/N
is conserved, with M = ([],<,<,, m*) =D, In the case
of the symmetric initial conditions, one recovers the pre-
viously established integral I; = m?(a’)~(3n=2)/(n-1)
Similarly to the first conserved quantity, one can gener-
alize the I; integrals and it appears that there is again
an infinite set of conservation laws.

For asymmetric initial conditions the majority species
scales as in single-species aggregation, while the minori-
ties scale only in a modified sense. For the symmetric ini-
tial conditions, the cluster-mass distribution approaches
the scaling form of Eq. (18) with

2n q 1
= — an Zn = .
on—1’ 2n—1

Wn

(20)

Thus the exponents depend on the number of species
n. When n = 1, single-species aggregation is recovered,
w1 = 2 and z; = 1, while the limit n — oo corresponds
to single-species annihilation, w = 1 and z = 0.
Generally, we expect that the exponents characteriz-
ing the scaling behavior are universal, 7. e., they depend
only on important aspects of the kinetics. The fact that
the exponents do depend on the number of species does
not contradict universality. However, the exponents in
the aggregation-annihilation system may depend also on



the reaction rates. To demonstrate that we consider the
general case where the aggregation rate and the annihi-
lation rate are different. We set the aggregation rate to
unity as previously and denote the annihilation rate by
J. In the n-species case with symmetric monodisperse
initial conditions we have

i+j=Fk

with a(t = 0) = dx1. By employing the above technique
we solve Eq. (21) and find

ap(t) = (1+ vt) "1~ [1 Caw T @)

where the notation v = 1 + 2(n — 1)J has been used.
The cluster mass distribution obeys the scaling form of
Eq. (18) with the exponents

1+ (n-1)J 1

n — T a9\ 7'7424' 2
U =2 m ) T Tremeng

Interestingly, both exponents dependent continuously on
the (relative) magnitude of the annihilation rate, J. This
nonuniversality contrasts the bulk of previously inves-
tigated aggregation models [4] (see, however, [14,10]).
Varying the rate ratio represents another way of inter-
polating between aggregation and annihilation. Indeed,
independent of n, when J = 0, single-species aggrega-
tion is recovered, while the limit J — oo corresponds to
single-species annihilation.

We now consider aggregation-annihilation in the
diffusion-controlled limit in low dimensions. We shall
study the particle coalescence model (PCM) in which
clusters occupy single lattice sites, hop to nearest neigh-
bor cites with a rate independent of the mass, and aggre-
gate or annihilate instantaneously whenever they meet.
The PCM allows one to focus on the kinetic aspects of
the process and is well suited for numerical implementa-
tion. Additionally, in the mean-field approximation the
PCM is governed by the same Eq. (3) which has been
examined previously.

Let us ignore the mass and the identity of the clusters
and denote an arbitrary cluster by C. Then the reduced
reaction process can be described by the reaction scheme
C+C — Cand C+ C — 0 for aggregation and annihi-
lation, respectively. For both processes, the total density
¢ =Y.~ Ck is inversely proportional to N(t), the num-
ber of distinct sites visited by a single random walk in d
dimensions [5]. N(t) is well known in probability theory
[15] and thus the density ¢, ¢ ~ N~! behaves as

t=1/2 d=1;
c(t) ~ {t1 log(t) d=2; (24)
t=1 d>2.

In other words, the time variable t is replaced with a mod-
ified time variable N (¢). We further assume that the rate
equation theory describes the process in low dimensions,

with the time variable N(t). Although this approach
is a heuristic one, it provides a good approximation for
the subcritical behavior. For the symmetric initial condi-

tions, the characteristic mass for the case n = 2 is given
by

t1/6 d=1;
S(t) ~ 9 /3 (log(t))* d=2; (25)
t1/3 d>2.

Using the asymptotic forms of the concentration and the
typical mass, a scaling form similar to the one of Eq. (18)
can be written. The same analysis can be repeated for
the general multi-species case, and we quote the scaling
exponents in one dimension only,

n 1

n — 3 d n = .
YT o1 MY T o )

(26)
In the extreme cases of n = 1 and n — oo, these expo-
nents agree with the solutions to single-species aggrega-
tion and single-species annihilation, respectively [16]. In
the case of asymmetric initial conditions, the majority
species concentration decays according to single-species
aggregation, or equivalently, according to Eq. (24). The
minority species, on the other hand, decays much faster.
Since the total concentration of the minority species de-
cays as the monomer density of the majority species,
b ~ a1, and the latter is known in one and two dimensions
(see [16,7]), we find that the minority species concentra-
tion decays as t~%/2 in 1D, and as t~2log?(t) in 2D.

It is interesting to compare the above theoretical pre-
dictions with numerical simulations. We have performed
simulations for d = 1,2, and 3. The numerical imple-
mentation of the process is simple. Initially all L¢ sites
on the cubic lattice are occupied with monomers. An
elemental simulation step consists of picking a cluster at
random and moving it to a randomly chosen neighboring
site. If the site is occupied, an aggregation or an annihi-
lation event takes place, depending on the identity of the
two clusters. Time is updated by the inverse of the total
number of particles in the system after each step. The
linear dimension of the lattice used in the simulation was
L =3x107, 4 x 103 2 x 102 in 1D, 2D, and 3D.

We discuss first results for the symmetric initial con-
ditions involving two species. To verify that the process
belongs to the PCM universality class we measured the
density of particles as a function of time. Indeed, Eq. (24)
appears to hold asymptotically (see Figure 1). We also
measured the average cluster size (k(t)) = > keg/ > ck.
We expect that the average cluster size is proportional
to the characteristic size S(t), asymptotically. For d = 3,
the mean-field prediction, (k(t)) ~ t'/3 is verified (see
Figure 2). Note that the simulation results are reliable up
to time o< L? due to finite size effects. At the critical di-
mension, d. = 2, the average mass grows slightly slower,
consistent with the logarithmic correction of Eq. (25).
In 1D, the growth exponent z as determined by a least



square fit is z = 0.190 + 0.002. However, the correspond-
ing value from the approximate theory is lower z = 1/6.
The simulation was carried over a relatively large tempo-
ral range, suggesting that the growth exponent is indeed
different than suggested by the heuristic theory. A sim-
ilar trend is observed when more than two species are
involved. We find that the numerically determined ex-
ponents z3 = 0.12 and z4 = 0.09 are slightly higher than
their theoretical counterparts z3 = 1/10 and z4 = 1/14.
We have made some additional consistency checks. For
example, we verified that the cluster mass distribution
follows the scaling form of Eq. (18). Above the critical
dimension the scaling function is indeed a simple expo-
nential, in agreement with the rate equation predictions.
Also, we verified numerically that both the aggregation-
type and the annihilation-type conservation laws are sat-
isfied by the PCM above the critical dimensions d. = 2.
This suggests that existense of hidden conserved quanti-
ties is an intrinsic property of the model.

10 T
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« theory

t (MCS)

FIG. 1. The total density versus time in 1D (top), 2D (mid-
dle) and 3D (bottom). Shown are the simulation data (bul-
lets) and the theoretical prediction of Eq. (24) (solid line).
Time is given in terms of Monte-Carlo Steps (MCS).

In summary, we introduced an aggregation-
annihilation model and presented the solution to the
governing rate equations. The mass distribution follows
a general scaling form with nontrivial growth exponents,
and the process is characterized by unusual conservation
laws. The kinetic behavior depends both on the number
of species and on the specific rates of the annihilation
and the aggregation processes. Numerical simulations
confirm the rate equation predictions above the criti-
cal dimension. Below the critical dimension, a heuristic
argument provides a good estimate for the mass distri-
bution. Nontrivial exponents describe the process in one
dimension and it would be interesting to study this sys-
tem rigorously. It is plausible that further investigation
of the underlying conservation laws below the critical
dimension will pave the way for understanding the long
time kinetics.

10 T
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FIG. 2. The average cluster size (k(t)) versus ¢ in 1D (bot-
tom), 2D (middle), and 3D (top). Shown are simulation data
(bullets) and lines of slope 0.19 (solid line) and 1/3 (dashed
line) for reference.
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