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Aggregation processes with an arbitrary number of conserved quantities are investigated. On
the mean-field level, an exact solution for the size distribution is obtained. The asymptotic form of
this solution exhibits nontrivial “double” scaling. While processes with one conserved quantity are
governed by a single scale, processes with multiple conservation laws exhibit an additional diffusion-
like scale. The theory is applied to ballistic aggregation with mass and momentum conserving
collisions and to diffusive aggregation with multiple species.

I. INTRODUCTION

Irreversible aggregation processes underly many natu-
ral phenomena including, e. g., polymerization [1], gela-
tion [2], island growth [3-4] and aerosols [5]. The classical
rate theory of Smoluchowski describes the kinetics of such
processes [6-9]. Recently, scaling [10-16] and exact [17-23]
theoretical studies showed that spatial correlations play a
crucial role in low dimensions. While the above examples
are diffusive driven, there are physical situations such as
formation of large-scale structure of the universe [24] and
clustering in traffic flows [25], where the aggregates move
ballistically. So far, theories of ballistic aggregation [26]
have been restricted to scaling arguments [26-30].

In the ballistic aggregation process both the mass and
the momentum are conserved. In polymerization pro-
cesses involving copolymers, each monomer species mass
is a conserved quantity. Hence, we study aggregation
processes with multiple conservation laws. The simplest
example for such a system is aggregation with k distinct
species. Both the multivariate distribution and the sin-
gle variable distributions are of interest. We present ex-
act solutions to the time dependent and the steady state
mean-field rate equations. Although they are straight-
forward generalizations to the well known solutions they
exhibit interesting behaviors. An asymptotic analysis
shows that fluctuations associated with a single conserved
quantity are Gaussian in nature. As a result, an addi-
tional “diffusive” size scale emerges.

We apply the above theory to ballistic aggregation as
well as diffusive aggregation. In the case of ballistic ag-
gregation, we use an approximate collision rate to obtain
a solution to the Boltzmann equation in arbitrary dimen-
sion. While this approach agrees with the scaling argu-
ments, it suggests that for a given mass, the momentum
distribution is Gaussian. We compare these predictions
with one and two dimensional simulations. Furthermore,
we consider steady state properties of the aggregation
process by introducing input of particles. For homoge-
neous input, a novel time scale describing the density
relaxation is found. In the case of a localized input, clus-
tering occurs only for d ≤ 2. Additionally, we apply the

theory to two-species aggregation with diffusing particles.
Using the density dependent reaction rate, we obtain the
leading scaling behavior of the two relevant mass scales.

This paper is organized as follows. In section II, we
present exact solutions of the rate equation theory. We
investigate time dependent as well as steady state prop-
erties of the process. We then apply the theory to bal-
listic aggregation with momentum conserving collisions
(section III) and to diffusive driven aggregation (section
IV). We conclude with a discussion and suggestions for
further research in section V.

II. THEORY

Following the above discussion, there are aggregation
processes where several physical quantities are conserved.
In such processes, it is natural to label the aggregates by
a “mass” vector m ≡ (m1, · · · ,mk), where every com-
ponent represents a conservation law. Let us denote the
probability distribution function for particles of mass m
at time t by P (m, t). Mean field theory of the binary
reaction process assumes that reaction proceeds with a
rate proportional to the product of the reactants densi-
ties. Thus the mean field approximation neglects spatial
correlations and therefore typically holds in dimensions
larger than some critical dimension dc [10, 14-16]. The
rate equations [6] are written as

dP (m, t)
dt

=
∑
{m′

i
}

P (m′, t)P (m−m′, t)

−2P (m, t)
∑
{m′

i
}

P (m′, t), (1)

where the sum is carried over all k variables m′i, 1 ≤
i ≤ k. The loss term prefactor reflects the fact that
two particles are lost in each collision. One can verify
that the rate equations conserve each mass separately,
i. e.,

∑
miP (m, t) ≡

∑
miP0(m), where P0(m) is the

initial distribution. In writing Eq. (1) we have implic-
itly assumed that the rate K(m,n) at which the reac-
tion (m) + (n)→ (m + n) proceeds does not depend on
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masses of the reactants, K(m,n) = const. This constant
can be set to unity without loss of generality. For an
arbitrary reaction rate kernel K(m,n), Eq. (1) is easily
generalized so that, e. g., the gain term is replaced by∑
K(m′,m−m′)P (m′, t)P (m−m′, t).
To solve Eq. (1) we introduce the generating function,

F (z, t), defined by

F (z, t) =
∑
{mi}

zmP (m, t). (2)

In the above equation we have used the shorthand nota-
tions z ≡ (z1, · · · , zk) and zm ≡ zm1

1 · · · zmkk . Moments
of the distribution function are readily obtained by eval-
uating the generating function and its derivatives in the
vicinity of the point z = 1 ≡ (1, . . . , 1). For example,
the total cluster density is given by N(t) = F (1, t). The
equation describing the temporal evolution of the gen-
erating function F (z, t) can be evaluated by a proper
summation of the rate equation. This yields

dF

dt
= F 2 − 2FN. (3)

As a preliminary step, we evaluate the time dependence
of the density. The corresponding rate equation is ob-
tained by evaluating Eq. (3) at z = 1,

dN

dt
= −N2. (4)

Without loss of generality we set the initial density to
unity and therefore we have N(t) = 1/(1 + t). We also
note that by subtracting Eq. (4) from Eq. (3), a simple
differential equation for the quantity F − N , emerges,
d(F −N)/dt = (F −N)2. This equation is readily solved
to find

F (z, t) =
F0(z)

(1 + t) (1 + t− tF0(z))
, (5)

where the notation F0(z) ≡ F (z, t = 0) has been used.
Eq. (5) represents the general solution to Eq. (1). Indeed,
it is a simple generalization of the well known solution
[6] for the single mass aggregation process.

We consider the simplest multivariate case,

P0(m) = k−1
k∑
i=1

δ(mi − 1)
∏
j 6=i

δ(mj). (6)

These initial conditions imply F0 ≡ z̄ = (z1 + · · ·+ zk)/k
and from Eq. (5) we have

F (z, t) =
z̄

(1 + t) (1 + t− tz̄)
. (7)

A possible application of these initial conditions is to
aggregation processes involving k distinct species with
equal initial densities. Although this symmetric situation

appears to be too simple at first, it contains the necessary
ingredients for exploring the long time kinetics.

Before we investigate the multivariate distribution, let
us first study properties of the following distribution
function

P (m+, t) =
∑
{mi}

P (m, t)δ (m+ − (m1 + · · ·+mk)) . (8)

This distribution corresponds to the sum variable m+ =
m1 + · · · + mk. It is useful to introduce the generat-
ing function F (z, t) =

∑
zm+P (m+, t). This generating

function can be obtained from F (z, t) by replacing z̄ with
z. Expansion of F (z, t) = z/(1 + t)(1 + t− tz) in powers
of z yields the sum distribution

P (m+, t) =
tm+−1

(1 + t)m++1
. (9)

The variable m+ ignores the “identity” of the different
conserved variables and thus, the problem reduces to or-
dinary aggregation. In the long time limit, m+ ∼ t, and
the corresponding distribution is given by

P (m+, t) ' t−2 exp(−m+/t). (10)

Using the scaling variable, M+ = m+/t, this distribu-
tion can be also written in terms of a scaling function
P (m+, t) ' t−2Ψ(M+), with Ψ(x) = exp(−x).

The multivariate probability distribution function can
be now found by expanding F (z, t) and comparing with
Eq. (2),

P (m, t) = P (m+, t)g(m) with g(m) =
k−m+(m+)!
m1! · · ·mk!

.

(11)

Note that
∑
{mi}g(m) = 1. The above expression is the

explicit solution to the mean field equations. However, its
long time nature is of particular interest and we proceed
with an asymptotic analysis.

To study the asymptotic properties of P (m, t),
we concentrate on the case k = 2 and
then generalize the results to arbitrary k.
The time independent geometric factor reads,
g(m1,m2) = 2−m+(m1 +m2)!/m1!m2! ∼ m−1/2

+ exp
(
− (m1 −m2)2/2m+

)
.

The limit of large masses, m1,m2 � 1, is the relevant
one since the masses grow indefinitely. Using the limiting
form of P (m+, t), we arrive at the asymptotic form of
the mass density,

P (m1,m2, t) ∼ t−2m
−1/2
+ exp(−m+/t) exp(−m2

−/2m+),

(12)

with m± = m1 ±m2. Two mass scales govern the mass
distribution, m+ ∼ t and |m−| ∼

√
m+ ∼

√
t. Further-

more, introduction of the scaling variables, M+ = m+/t
and M− = m−/

√
t, enables us to write the solution in a

convenient scaling form
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P (m1,m2, t) ∼ t−5/2Φ(M+,M−). (13)

The scaling function Φ depends on the scaling variables
only,

Φ(x, y) = x−1/2 exp(−x) exp(−y2/2x). (14)

Interestingly, each of the variables, m1 and m2, ex-
hibit simple scaling: m1,m2 ∼ t. Additionally, the
moments Mn(t) of the distribution function, Mn(t) =∑
{mi}m

nP (m, t), are described asymptotically by lin-
ear exponents. By taking derivatives of the generat-
ing function, one can show that Mn(t) ∼ tα(n) with
α(n) = n+ − 1 . This behavior agrees with ordinary
scaling and therefore one could naively expect single-size
scaling to hold. However, from the complete form of the
mass distribution we learn that it is impossible to write
the scaling solution in terms of a simple scaling function,
P (m1,m2) ∼ t−2Φ(m1/t,m2/t). Such a scaling solution
would imply that the process has only one intrinsic size
scale. Instead, this problem exhibits “double-scaling”, as
the process is governed by two distinct size scales. The
second scale |m−| ∼

√
t is hidden, e. g., it does not clearly

appear in the moments of the distribution function. The
mass difference is reminiscent of a diffusive scale for the
following reason. The mass difference, m− = m1 −m2,
is also a conserved variable, since each of its components
is conserved. Hence, for an aggregate of total mass m+,
the mass difference is a sum of m+ random variables.
According to the central limit theorem this variable is
Gaussian and thus, m− ∼

√
m+.

The above results can be generalized to arbitrary
k. The generalized mass difference variable is m2

− =
k−1

∑
i,j(mi − mj)2 and the mass distribution follows

the scaling form

P (m, t) ∼ t−(k+3)/2Φ(M+,M−), (15)

with the scaling function

Φ(x, y) = x−(k−1)/2 exp(−x) exp(−y2/2x). (16)

The above results can be also generalized to situa-
tions with asymmetric initial conditions, i. e., the ini-
tial conditions are not invariant with respect to a per-
mutation of the mass variables, {mi}. Denoting by
Mi =

∑
{mi}miP0(m) the ith conserved mass, one can

easily show that with the transformation mi → mi/Mi

and P (m)→M1 · · ·MkP (m), the system reduces to the
symmetric case. For this transformation to be valid, the
process must be truly multivariate, Mi 6= 0. In this case,
the prefactor g(m) equals probabilities associated with a
biased random walk in a k-dimensional “mass” space.

Previous results have been established for a constant
rate kernel, K(m,n) = const. Although the most general
situation is hardly tractable, in the case of sum-variable
dependent reaction rate, K(m,n) ≡ K(m+, n+), the
sum-variable distribution function P (m+, t) satisfies a
simpler single-variable Smoluchowski equation. In this

case, the complete multivariate distribution function
P (m, t) is related to P (m+, t) by Eq. (11). There-
fore solvable variants of the single-variable Smoluchowski
equation provide exact solutions for multivariate Smolu-
chowski equation with the corresponding reaction rates.
For the usual Smoluchowski equation, exact solutions
have been found for three types of reaction rates:
K(m,n) = const, K(m,n) = m + n, K(m,n) = mn,
and for their linear combinations [6,5,31]. In particular,
for the sum-kernel K(m,n) = 1

2 (m+ + n+), subject to
the monodisperse initial conditions of Eq. (6), we again
arrive at the exact solution of Eq. (11) with

P (m+, t) = exp
[
−t−m+(1− e−t)

] [m+(1− e−t)
]m+−1

(m+)!
.

(17)

Similarly, one can find an exact solution for the product
kernel.

We now investigate the steady state properties of the
aggregation process by introducing input of particles into
the system. For simplicity, we consider homogeneous in-
put with rate h and restrict ourselves to the constant rate
kernel. The governing equations are modified by adding
an input term,

dP (m, t)
dt

=
∑
{m′

i
}

P (m′, t)P (m−m′, t)

− 2P (m, t)
∑
{m′

i
}

P (m′, t) + hR(m). (18)

The input function, R(m), satisfies the normaliza-
tion condition

∑
{mi}R(m) = 1 since the total input

h
∑
{mi}R(m) is equal to h.

The solution to the above equation parallels the so-
lution to the time dependent problem. We denote the
steady state distribution by P (m) and the steady state
generating function by F (z). This generating function is
obtained by eliminating the time derivative of Eq. (18),
F 2−2FN +hR = 0, where R ≡ R(z) =

∑
{mi}z

mR(m).
The normalization condition R(1) = 1 is satisfied by the
input function, and consequently the solution to the gen-
erating function reads

F (z) =
√
h
(

1−
√

1−R(z)
)
. (19)

The total monomer density is given by N = F (1) and
thus,

N(h) =
√
h. (20)

In analogy with the initial conditions of Eq. (6), we
consider the input R(m) = P0(m), which in turn im-
plies R(z) = z̄. In this case, the steady state generating
function is simply F (z) =

√
h
(
1−
√

1− z̄
)
. Expanding

in powers of the variables zi, and comparing with the
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definition of the generating function, one finds the steady
state distribution

P (m) = P (m+)g(m), P (m+) =
(2m+)!

(2m+ − 1)(2m+m+!)2
.

(21)

There is a strong similarity with the time dependent
counterpart, P (m, t). The distribution among aggregates
with the same total mass, m+, is given by the same com-
binatorial factor g(m) which has already appeared in so-
lution to the time dependent problem. For large masses,
the distribution describing the sum variable, m+, is an
algebraic one, N−1P (m+) ∼ m

−3/2
+ . We can write now

the asymptotic form of the complete steady state distri-
bution,

P (m) ≡ P (m+,m−) ∼
√
h m

−(k+2)/2
+ exp(−m2

−/2m+).

(22)

For the time dependent problem, an additional size scale
emerges for the mass difference variable, m− ∼

√
m+.

In the steady state, on the other hand, the total mass
diverges and thus, the central limit theorem does not ap-
ply. However, the similarity between the two cases is still
strong as for a fixed m+, the mass difference distribution
function is Gaussian.

For completeness, we briefly discuss the relaxation
properties of the density towards the steady state. It
is possible to obtain these properties by incorporating
the time dependent density, N ∼ t−α, and the steady
state solution, N ∼ hγ , into a single expression. Let us
assume the scaling form [17]

N(h, t) ∼ t−αψ(t/τ), (23)

with the relaxation time τ ∼ h−β . In the limit of a van-
ishing input rate the time dependent solution must be
recovered and thus, ψ(x)→ 1 as x→ 0. In the long time
limit steady state is approached and thus, ψ(x) ∼ xα for
x � 1. Comparing with the definition of the relaxation
time the exponent relation

γ = αβ (24)

is found. The exponent β = 1/2, is obtained from
the decay exponent, α = 1, and the steady state ex-
ponent, γ = 1/2. Hence, the relaxation time diverges in
the limit of a vanishing input rate, τ ∼ h−1/2. This
result can be obtained directly by solving the equa-
tion dN/dt = −N2 + h which is readily performed
to find N(h, t) =

√
h tanh

(
(t+ t0)

√
h
)
. The time shift

t0 is determined by the initial density, N(t = 0) =√
h tanh(

√
ht0). We prefer the above scaling argument

since it is applicable to a wide class of problems.

III. BALLISTIC AGGREGATION

Ballistic aggregation is a natural and important exam-
ple of a process with multiple conservation laws. Both
the mass and the momentum are conserved quantities
and thus, there are d + 1 conservation laws in d dimen-
sion [26]. A collision between two particles results in an
aggregate whose mass as well as momentum are given by
a sum over its components. One can view this system as
a gas of sticky particles, i. e., an inelastic gas with a van-
ishing restitution coefficient. Heuristic arguments predict
certain scaling properties of the system. However, other
aspects of this problem, such as the mass-momentum dis-
tribution function remain unsolved. Our theory is well
suited for this problem and yields an approximate form
for the particle distribution function.

We start by discussing the one dimensional case and
then generalize to higher dimensions. We denote the
probability distribution function for particles of mass m
and momentum p at time t by P (m, p) (we suppress the
time variable). The stosszahlansatz Boltzmann equation,
which describes the temporal evolution of this density,
must conserve mass and momentum. Additionally, the
collision rate between two particles is given by their veloc-
ity difference and hence, the Boltzmann equation reads

dP (m, p)
dt

=
∑
m′,p′

|v′ − v′′|P (m′, p′)P (m−m′, p− p′)

−2P (m, p)
∑
m′,p′

|v − v′|P (m′, p′), (25)

where v′ − v′′ = p′/m′ − (p− p′)/(m−m′) and v − v′ =
p/m−p′/m′. This approximation ignores possible spatial
correlations and is generally uncontrolled. By replacing
the kernel terms |v − v′| and |v′ − v′′| with their average
value 〈v〉, an approximate Boltzmann equation is written,

dP (m, p)
dt

= 〈v〉 (26)(∑
P (m′, p′)P (m−m′, p− p′)− 2P (m, p)

∑
P (m′, p′)

)
.

Although this approximation is generally unjustified, it
enables a solution for the mass-momentum distribution.
The time-dependent factor 〈v〉 can be absorbed into a
novel time variable, T , defined by dT/dt = 〈v〉. The
resulting Boltzmann equation is equivalent to Eq. (1).

For simplicity we consider an initial system of identical
particles with zero average momentum. Without loss of
generality we assume that typical initial quantities such
as the mass and the momentum equal unity. Hence, the
initial distribution function, P0(m, p), is given by

P0(m, p) = δ(m− 1)
(
δ(p− 1) + δ(p+ 1)

)
/2. (27)

In principle, the general solution of Eq. (26) can be
obtained using the generating function method. How-
ever, with these specific initial conditions, the process
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reduces to the two-mass process discussed in the pre-
ceding section. Indeed, by identifying m with the total
mass m+ = m1 + m2 and p with the mass difference
m− = m1−m2, the initial conditions Eq. (6) and Eq. (27)
are the same. Moreover, identical rate equations describe
the time evolution of both P (m1,m2) and P (m, p). From
the solution of Eq. (11), the mass-momentum distribu-
tion function is found in terms of the time variable T ,

P (p,m) =
Tm−1

(1 + T )m+1

2−mm!
((m+ p)/2)! ((m− p)/2)!

. (28)

Using the asymptotic scaling properties of the solution
m ∼ T and p ∼

√
T , we can rewrite the solution in terms

of the observable time t. Since dT/dt ∼ v ∼ p/m ∼
T−1/2, one has T ∼ t2/3. Hence, the well known the
scaling laws

m ∼ t2/3 and p ∼ t1/3, (29)

are recovered. Asymptotically, the mass-momentum dis-
tribution is given by the following form

P (p,m) ∼ 〈m〉−2
m−1/2 exp

(
− m

〈m〉
− p2

2m

)
, (30)

with the average mass 〈m〉 ∼ t2/3. As discussed in the
previous section, the momentum p is a sum of m in-
dependent variables. As a result, for a fixed mass m
the momentum distribution is Gaussian and p ∼

√
m.

From Eq. (10), the mass distribution is [27] P (m) =
〈m〉−2 exp

(
− m/〈m〉

)
. Direct integration of Eq. (30)

shows that the momentum distribution is also purely ex-
ponential, P (p) =

(
〈m〉〈|p|〉

)−1 exp(−|p|/〈|p|〉), with the
typical momentum, 〈|p|〉 =

√
〈m〉/2. On the other hand,

the velocity distribution is algebraic for large velocities
p(v) ∼ |v|−3.

It is interesting to compare these predictions with nu-
merical simulations. Carnevale et al. [26] established a
scaling behavior of Eq. (29) heuristically and confirmed
it numerically. They also reported a distribution that is
reminiscent of Eq. (30). Their numeric form resembles
Eq. (30) in that the mass distribution is exponential and
in that for a fixed mass the velocity distribution is Gaus-
sian. However, there is a significant difference between
the two forms as the simulation data suggests that the
velocity distribution is independent of mass. This obser-
vation is an intriguing one, since for a fixed mass m the
typical velocity is mass dependent v(m) ∼ m−1/2. Jiang
and Leyvraz [28] also studied the mass distribution and
found that it is singular near the origin, P (m) ∼ m−1/2

for m� 〈m〉, in contradiction with our approximate the-
ory. Curiously, the mass-momentum distribution con-
tains an identical singularity. However, this singularity
disappears when the momentum is integrated over. We
conclude that further numeric investigation of quantities
such as velocity correlations between neighboring aggre-
gates and moments of the mass-velocity distribution are

needed to better the understanding of one-dimensional
ballistic aggregation.

A similar line of reasoning applies in d dimensions. We
assume that the density of an aggregate is constant, and
thus, as the aggregation process evolves, the size of an
aggregate grows indefinitely. Initially, only monomers
with unit momentum occupy the system. Since the col-
lision rate is also proportional to the surface area of an
aggregate, the typical collision rate is vad−1, with the
radius a ∼ m1/d. The density satisfies the approximate
Boltzmann equation

dP (m,p)
dt

= 〈vad−1〉 (31)(∑
P (m′,p′)P (m−m′,p− p′)− 2P (m,p)

∑
P (m′,p′)

)
,

where p is the d-dimensional momentum. Repeating the
above analysis yield the leading scaling behavior for the
mass and the momentum,

m ∼ t2d/(d+2) and |p| ∼ td/(d+2). (32)

The distribution function is a simple generalization of
Eq. (31),

P (m,p) ∼ 〈m〉−2
m−d/2 exp

(
− m

〈m〉
− d|p|2

2m

)
, (33)

with the average mass 〈m〉 ∼ t2d/(d+2). Eq. (32) sug-
gests that ballistic aggregation has no upper critical di-
mension. Hence, it is not clear whether our approxima-
tion holds in sufficiently large dimension, as is the case
for diffusive aggregation. In a recent study of the two-
dimensional gas of sticky particles [30], some deviations
from the mean-field predictions have been observed. The
simulations [30] revealed that the growth exponent varies
up to 10% as the initial density was varried. The growth
exponent of Eq. (32) was recovered for sufficiently high
initial densities. In this limit, multiple coalescence events
dominate and mean-field thoery is appropriate. In gen-
eral, an exponential mass distribution and a Boltzmann
energy distribution were found, in agreement with mean-
field theory. We conclude that despite the crude nature
of the approximation, it provides good estimates for the
leading asymptotic behavior as well as the various distri-
bution functions.

Steady state can be achieved by adding particles to
the system with rate h. We consider homogeneous and
isotropic input of particles with unit mass and unit mo-
mentum. From Eq. (21), the distribution function reads,

P (m, p) =
√
h m−(d+3)/2 exp

(
−d|p|

2

2m

)
. (34)

Furthermore, the mass distribution is given by
N−1P (m) ∼ m−3/2, with the density N ∼

√
h. Note

that the velocity kernel 〈v〉 is not important in the steady
state since 〈v〉 ∝

∑
P (m)v(m) ∼

∫
m−3/2m−1/2 is finite.
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One can also study the relaxation properties of the sys-
tem. The relaxation towards the steady state becomes
slower and slower as the input rate vanishes. Following
the analysis of Eq. (23), the corresponding relaxation ex-
ponent is obtained,

τ(h) ∼ h−β , with β =
d+ 2

4d
. (35)

However, only in the low input rate limit, h� 1, steady
state is achieved. Indeed, the previous description is
valid in the low coverage limit, i. e., when t � tc with
tc ∼ h−1, while for t > tc the space is covered by a single
“superparticle”. Since the relaxation exponent β is less
than one, the time scales τ and tc are well separated in
the low input rate limit. Thus, the steady state distri-
bution of Eq. (34) provides an intermediate asymptotics
valid for τ � t� tc.

In contrast, the nature of steady state caused by a
spatially localized particle input is a truly asymptotic
one. The spatial dependence of the density distribu-
tion is of particular interest in this problem. We con-
sider a spherically symmetric point-like source of ballis-
tic particles with unit mass and unit momentum. Let
P (m,p, r) = P (m,p, r, t =∞) be the steady-state radial
mass-momentum density. For d > 2 the reaction is in fact
irrelevant away from the source [20]. The density satis-
fies the convection equation, d

(
rd−1P (m,p, r)

)
/dr = 0,

and thus, the concentration decays as r−(d−1). So in the
inhomogeneous ballistic problem, d = 2 is a critical di-
mension above which the reaction merely leads to the
renormalization of the strength of the source.

For d ≤ 2, away from the source, particles have typi-
cally collided many times and they move with a velocity
close to unity in the radial direction. Thus, collisions
occur with rate proportional to the rms velocity v. The
steady-state radial distribution P (m,p, r) satisfies

r1−d d

dr

(
rd−1P (m,p)

)
= 〈vad−1〉 (36)(∑

P (m′,p′)P (m−m′,p− p′)− 2P (m,p)
∑

P (m′,p′)
)
.

It is not difficult to verify that with the transformation
rd−1P (m,p) → P (m,p) and R =

∫ r
r′(1−d)dr′ → t,

the steady-state equation reduces to the time-dependent
equation (31). Therefore when d < 2, the variable
R ∼ r2−d plays the role of time and from Eq. (32),
m(r) ∼ R2d/(2+d) ∼ r2d(2−d)/(2+d). As d → 2, the ex-
ponent describing the mass growth vanishes, indicating
that d = 2 is indeed the critical dimension, above which
the typical mass far from the source is constant. At
the critical dimension d = 2, logarithmic behavior oc-
curs, R ∼ log(r), and consequently, m(r) ∼ R ∼ log(r).
Hence, for d ≤ 2 clustering is significant and the typi-
cal mass is a growing function of the distance from the
source.

To determine the mass-momentum distribution, we
tacitly impose boundary conditions similar to the

initial conditions of the time dependent problem,
rd−1
0 P (m,p, r0) = δ(m − 1)δ(|p| − 1). The steady-state

density far from the source reads

P (m,p, r) ∼ r−(d−1)〈m(r)〉−2
m−d/2

exp
(
− m

〈m(r)〉
− d(|p| −m)2

2m

)
d ≤ 2, (37)

with 〈m(r)〉 ∼ r2d(2−d)/(2+d) for d < 2 and 〈m(r)〉 ∼
log(r) for d = 2. For a fixed mass, the momentum distri-
bution is Gaussian and as a result, the rms momentum
is characterized by

√
m(r). By integration of the mass-

momentum density, one finds the concentration, N(r) ∼
1/(r(d−1)〈m(r)〉). As a result, N(r) ∼ r(2−5d+d2)/(2+d)

for d < 2, and N(r) ∼ 1/
(
r log(r)

)
for d = 2.

Returning to the time dependent problem, the steady
state solution holds for r < t only, while for a larger the
space is essentially empty. It is useful to estimate the
total number of clusters N (t) ∼

∫ t
0
rd−1N(r). For d < 2

one finds N (t) ∼ t(2d2−3d+2)/(d+2), and for d = 2 one has
N (t) ∼ t/ log(t). In the ballistic regime, d > 2, collisions
do not cause a significant reduction in the number of
clusters, and the total number of clusters grows linearly
in time.

To summarize, we write the leading asymptotic behav-
iors of the mass

m(r) ∼

 r2d(2−d)/(2+d) d < 2;
log(r) d = 2;
1 d > 2,

(38)

the density

N(r) ∼

 r−(5d−d2−2)/(2+d) d < 2;
r−1[log(r)]−1 d = 2;
r−(d−1) d > 2,

(39)

and the total number of clusters

N (t) ∼

{
t(2d

2−3d+2)/(2+d) d < 2;
t/ log(t) d = 2;
t d > 2.

(40)

The typical rms momentum behaves as
√
m(r). Numer-

ical simulations agree with the above in d = 1 [26]. It
will be interesting to test these predictions in higher di-
mensions.

IV. DIFFUSIVE AGGREGATION

In this section, we consider the diffusive driven aggre-
gation processes involving k distinct species. Each of the
species masses is conserved and thus there are k conser-
vation laws. We apply the rate theory described in Sec. II
and also investigate low dimensional systems where the
rate equation description is expected to fail [15]. In all
dimensions we find that in addition to the typical mass
scale, there exists an additional mass scale.
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In spatial dimensions larger than the critical dimen-
sion, dc = 2, Smoluchowski rate theory is exact. In di-
mensions lower than the critical dimension, spatial cor-
relations are significant asymptotically. Particles are re-
pelling each other, and the effective reaction rate, κ, de-
pends on the density [20]

κ ∼

{
N2/d−1 d < 2;
1/| log(N)| d = 2;
1 d > 2.

(41)

This reaction rate can be absorbed into a suitably defined
time variable T ,

dT

dt
= κ. (42)

With this novel time, Smoluchowski rate equation re-
duces to Eq. (1).

For d ≤ dc, this approximation yields erroneous results
for the mass distribution. Nevertheless, it produces cor-
rect asymptotic scaling behavior for quantities such as
the typical mass. Thus for the general case d ≤ dc we
just quote the leading asymptotic behaviors while in one
dimension we provide exact results. Let us consider the
case where there are two species, say A and B. A cluster
is characterized by the respective masses of its compo-
nents, mA and mB . The typical total mass is given by
mA +mB ∼ T , or equivalently,

mA +mB ∼

{
td/2 d < 2;
t/ log(t) d = 2;
t d > 2.

(43)

On the other hand, since the mass difference is a Gaus-
sian variable, for a fixed total mass, one has |mA−mB | ∼√
mA +mB . This additional mass scale can be also ex-

pressed in terms of time,

|mA −mB | ∼

{
td/4 d < 2;
t1/2[log(t)]−1/2 d = 2;
t1/2 d > 2.

(44)

Note also that the present two-mass aggregation pro-
cess can be mapped onto a two-species aggregation-
annihilation process with two conservation laws [23]. In-
deed, the above results agree with analytical and numer-
ical findings of Refs. [23,32].

In one dimension, it is possible to derive a complete
analytical solution. We consider a linear lattice on which
point clusters hop randomly from site to nearest neighbor
sites. We assume that the diffusion coefficient D does not
depend on cluster’s mass. We also assume that initially
each site is occupied by some monomer, A or B with
equal probability. The multivariate distribution function
can be expressed in the form of Eq. (11), with the sum
variable given by the Spouge’s solution [19] of the or-
dinary one dimensional diffusion-controlled aggregation
problem,

P (m+, t) = e−4Dt
[
Im+−1(4Dt)− Im++1(4Dt)

]
, (45)

where In denotes a modified Bessel function. Introduc-
ing now the scaling variables, M+ = m+/

√
8Dt and

M− = m−/(8Dt)1/4, one can rewrite the solution in a
convenient scaling form

P (m1,m2, t) ∼ t−5/4Φ(M+,M−), (46)

with the scaling function Φ

Φ(x, y) =
√
x exp

(
−x2 − y2

2x

)
. (47)

Finally, we consider diffusive aggregation in a system
with a steady spatially localized monomer input. We as-
sume that monomers of all types are added at random
with an equal rate. Making use of exact and scaling re-
sults for the corresponding ordinary aggregation [20], we
solve for our case. This inhomogeneous system is char-
acterized by two critical dimensions, the usual “homo-
geneous” critical dimension dc = 2 and an additional
critical dimension dc = 4 which demarcates the pure dif-
fusion regime d > 4 (particles do not affect each other far
away from the source) and the diffusion-reaction regime
d ≤ 4. The system approaches steady state as t → ∞.
In the diffusion-reaction regime, the density distribution
function approaches a power-law in r, where r is the dis-
tance from the source. The borderline cases d = dc = 2
and d = dc = 4 should be treated more carefully since
logarithmic factors appear. We write the final results for
the typical total mass

mA +mB ∼


r2 d < 2;
r2/ log(r) d = 2;
r4−d 2 < d < 4;
log(r) d = 4;
1 d > 4.

(48)

For a fixed total mass mA + mB , the mass differ-
ence is again Gaussian and consequently, |mA −mB | ∼√
mA +mB .

V. CONCLUSIONS

In summary, we have investigated irreversible aggre-
gation with many conservation laws. The solution to
this process is characterized by the Gaussian statistics
of the fluctuations in a given conserved quantity. The
process is governed asymptotically by two size scales. A
typical aggregation-induced scale characterizes the total
mass, while a novel diffusive scale characterizes individ-
ual masses. The latter scale is hidden, i. e., it is not
present in the moments of the multivariate distribution.
Application to a “sticky gas” suggests a Boltzmann veloc-
ity distribution for a fixed mass. In addition, the mass
distribution is exponential. By comparing our predic-
tions with available numerical results we have found that
the present approximate theory gives a good description
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of the sticky gas. We have also investigated steady-state
properties by introducing a localized source. We have
observed two different behaviors, the ballistic-reaction
regime for d ≤ 2, and the pure ballistic regime for d > 2.
Application to diffusive aggregation with more than one
species also exhibit a novel “diffusive” size scale.

This study suggests different avenues for further in-
vestigation. The theory might be applicable to prob-
lems such as catalysis and chemical reactions with many
species. It will be also interesting to analyze the rate
equations with more realistic reaction rates. An impor-
tant question to be addressed is how robust is the Gaus-
sian nature of the fluctuations statistics. It is plausible
that spatial correlations introduce nontrivial internal ar-
rangement of the clusters, leading to more complicated
statistics. It is also plausible that even on the rate equa-
tion level but with the reaction rate not expressible as
a function of the sum-variables only, different asymp-
totic behavior emerges. This could explain why for a
dual fragmentation process the multivariate generaliza-
tion produces an infinite set of scales [33-35] compared
to the two scales in the models of multivariate aggrega-
tion we have examined in this study.
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