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Fragmentation underlies many physical systems

Physical phenomena Fragmented quantity

Turbulence Energy, Momentum

Elementary Particles Collisions Energy

Shattering, Grinding Mass

Meteor impact Mass

Surface Adsorption Area

Membrane Wrinkling Area



I. Uniform Fragmentation in one dimension

Fig. 1: The random fragmentation process in one dimension.

P (x, t) — The distribution of fragments of length (mass) x evolves

according to the rate equation

∂P (x, t)

∂t
= −xP (x, t) + 2

∫ ∞
x
dyP (y, t).

The loss rate is proportional to the interval length since the frag-

mentation is uniform, while the gain rate reflects the fact that two

interval are gained in each event. The asymptotic length distribution

P (x, t) ∼ t2e−xt,

is characterized by a single scale 〈x〉 ∼ t−1. The average moments

satisfy 〈xn〉 ∼ 〈x〉n, and the length distribution can be written as

P (x, t) =
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〈x〉2Φ
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Simple scaling distribution



II. Fragmentation in two dimensions

Fig. 2: Points deposited with unit rate on the unit square resulting in four rectangles.

P (x1, x2; t) — the distribution of rectangles of size x1 × x2.

M(n1, n2; t) =
∫ ∫

dx1dx2x
n1−1
1 xn2−1

2 P (x1, x2; t) — its moments.

Both satisfy linear rate equations

∂P (x1, x2; t)

∂t
= −x1x2P (x1, x2; t) + 4

∫ ∞
x1

∫ ∞
x2

dy1dy2P (y1, y2; t)

∂M(n1, n2; t)

∂t
=





4

n1n2
− 1



M(n1 + 1, n2 + 1; t)

Infinitely many conserved integrals

In addition to conservation of the total area (M(2, 2; t) = const.), all

moments M(n1, n2; t) with n1n2 = 4 are time independent. These

integrals imply that no ordinary scaling solution is possible for the

size distribution.



Exact Solution for the moments

〈xn1

1 x
n2

2 〉 =
M(n1 + 1, n2 + 1; t)

M(1, 1; t)
∼ t−α(n1,n2)

α(n1, n2) =
n1 + n2 + 4−

√

(n1 − n2)2 + 16

2

The total number of fragments, N =M(1, 1; t) = 1+3t implies that

the average area of a fragment is 〈A〉 = 〈x1x2〉 ∼ t−1. If scaling was

to hold, the average length 〈xn1〉 ∼ 〈A〉n/2 ∼ t−n/2. However, we

find that 〈x1〉 ∼ t−(5−
√

17)/2 ∼ t−.438, 〈x2
1〉 ∼ t−(3−

√
5) ∼ t−.764, etc.

Multiple scales characterize the patterns

Fig. 2 fragmentation pattern at time t = 1000.



The aspect ratio diverges

〈(x1/x2)
n〉 ∼ t

√
n2+4−1 |n| < 1

Nevertheless, the area distribution scales

P (A, t) — the distribution of rectangles of area A = x1x2 can be

written as a scaling function, P (A, t) ∼ 〈A〉−2Φ(z), with the scaling

variable z = A/〈A〉. Therefore, the moments obey ordinary scal-

ing, 〈An〉 ∼ 〈A〉n ∼ t−n. The scaling distribution exhibits a weak

logarithmic singularity in the limit of small fragments

Φ(z) ∼














ln(1/z) z ¿ 1;

z−2e−z z À 1.



III. Isotropic fragmentation

Fig. 4 A realization of the Isotropic case with 1000 fragments.
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Fig. 4 The average fragment length vs. time (the reference line has −1/2 slope).

When the “cutting” angle is random, numerical simulations suggest

that scaling is restored, 〈ln〉 ∼ 〈l〉n ∼ t−n/2.



Generalizations and Applications

• Higher dimensions: The moment method is applicable in

arbitrary dimension. The behavior is similar to the 2D case

— Volume exhibits scaling. Length, surface area, etc. shows

multiscaling.

• Stochastic fractals: Many fractal structures are actually gen-

erated by fragmentation processes. By cutting the unit interval

into three pieces at random points, one obtains the stochastic

counterparts of the Cantor set. Fragmentations technique can

be used here as well to quantify many statistical properties.
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