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Abstract

This paper considers the frequency-size statistics of wars. Using several alternative measures
of the intensity of a war in terms of battle deaths, we find a fractal (power-law) dependence of
number on intensity. We show that the frequency-size dependence of forest fires is essentially
identical to that of wars. The forest-fire model provides a basis for understanding the distribu-
tion of forest fires in terms of self-organized criticality. We extend the analogy to wars in terms
of the initial ignition (outbreak of war) and its spread to a group of metastable countries.

1. INTRODUCTION

Since the fractal concept was introduced by
Mandlebrot! it has found a broad range of applica-
tions. In this paper we consider its applicability to
the statistical distribution of the intensities of wars.
We will show, using several measures of the inten-
sities of wars, that the power-law (fractal) distribu-
tion appears to be applicable. This builds upon the
original statistical study of the intensities of wars
carried out by Richardson.? We will also provide
a rationale for the applicability of fractal statistics
in terms of the forest-fire model and actual forest
fires. We suggest that wars are an example of self-
organized criticality.

One measure of fractality is a power-law depen-
dence of the cumulative number of events with a
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linear dimension greater than r, Ng, on r

Ng ~r7P

(1)
where D is the fractal dimension. Examples include
the number of earthquakes, the number of frag-
ments and the number of lakes with a size greater
than a prescribed value.?

2. INTENSITY OF WARS

An obvious measure of the intensity of a war [
is the number of battle deaths. The frequency-
size distribution of war intensities is then simply
the dependence of the number of wars N on the
number of battle deaths. Richardson? was the first
to carry out this type of study using logarithmic
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binning. He considered 82 wars between 1820 and
1929 and found that N = 1 war had log I = 740.5
(i.e. between 3010 000 and 30 100 000 battle deaths;
N = 3 wars with log I = 6 + 0.5. (i.e. between
301000 and 3010000 battle deaths); N = 16 wars
with log I = 5+ 0.5. (i.e. between 30100 and
301000000 battle deaths); and N = 62 wars with
log I =440.5. (i.e. between 3010 and 30 100 battle
deaths). Richardson? pointed out that his statisti-
cal data correlated well with the relation

N=cI1 7P (2)

taking D = 1. Richardson? extended and updated
his studies in his book “The Statistics of Deadly
Quarrels.” This study considered 105 wars be-
tween 1820 and 1949 and found that N = 2 with
log I = 7+0.5, N = 7 with log I = 6 + 0.5,
N = 26 with log I = 5+ 0.5, and N = 70 with
log I = 4+ 0.5. Again there is a good correlation
with Eq. (2) taking D = 1.

One of the major criticisms of the use of the num-
ber of battle deaths as a measure of a war’s intensity
is the substantial change in the global population
over the period of time considered. A more logical
measure would be the ratio of battle deaths to the
world’s population prior to the war. However, for
the earlier wars, estimates of the world’s population
are unreliable. For this reason Levy® defines the in-
tensity of a war I as the ratio of battle deaths to
the population of Europe in millions at the time of
the war.

Levy® has tabulated the intensities of 119 wars,
beginning with the war of the League of Venice in
1495-1497 and ending with the Vietnam War in
1965-1973. The largest wars were the Second World
War with I = 93665 and the First World War with
I = 57616. When considering data of this type, one
approach is to consider cumulative distributions.
The number of wars with intensities greater than
I, N¢, is plotted against I. However, when consid-
ering distributions that may exhibit self-organized
criticality it is preferable to consider noncumula-
tive data. One approach is to use “binned” data as
described above. An alternative, but equivalent ap-
proach, is to take the derivative of the cumulative
distribution with respect to intensity dN¢/dI. The
derivative is obtained by taking the mean slope of a
specified number of adjacent data points, in our case
five. The dependence of dN¢/dI on I for the Levy®
distribution of war intensities is given in Fig. 1. If
a fractal (power-law) distribution is applicable we
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Fig. 1 Noncumulative frequency-intensity distribution of
wars based on the Levy (1983) tabulation of war intensities.
The noncumulative number of wars, —dN¢ / dl, is given as a
function of I. The larger wars correlate well with the fractal
relation [Eq. (3)] taking D = 1.27.

would expect a good correlation with the relation

dN¢ _D

Fi CcI (3)
This correlation is illustrated in Fig. 1 taking D =
1.27. This is the best fit result for wars with inten-
sities greater than 100. The fit is seen to be quite
good for war intensities greater than about I = 30
and extends over about three orders of magnitude
of data. The deviation for small wars may be real
or may be due to the incompleteness of the data
set.

An alternative approach to the analysis of this
data is in terms of return periods T. In order to
analyze this data set we order the wars from the
largest (largest value of I) to the smallest (smallest
value of I). The largest war is assigned a return
period equal to the length of the record Ty, the sec-
ond largest war has a return period Tp/2, the third
largest has a return period 7y/3, and so forth. For
our data set Ty = 1973-1495 = 478 yrs. The de-
pendence of the war intensity I on return period T’
is given in Fig. 2. One formulation of a fractal re-
lation is to relate the war intensity I to the return
period T' by the relation

I =0 THe (4)

where H, is the Hausdorf exponent. The straight-
line correlation in Fig. 2 is with H, = 1.54. The
correlation with this fractal (power-law) relation is
quite good for return periods between 8 and 500
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Fig. 2 Dependence of the war intensity I, as defined by
Levy (1983), on the return period T. The larger wars
correlate well with the fractal relation [Eq. (4)] taking
H, = 1.54.

years. Accepting the validity of the fractal relation,
it is seen that the 1000-year war has an intensity
of 420000; the 100-year war an intensity of 12 000;
and the ten-year war an intensity of 350.

It should be noted that the correlation given in
Fig. 2 using Eq. (4) is based on cumulative statistics
whereas the correlation given in Fig. 1 using Eq. (3)
is based on noncumulative statistics.

An alternative definition of the intensity of a war
was introduced by Small and Singer.% Their defini-
tion Iy is the ratio of battle deaths to the population
of the warring states in units of 10 000 people at the
time of the war. These authors considered 118 wars
during the period 1816-1980. Using this measure
the intensity of the First World War was I = 141.5
and the Second World War was I, = 106.3. How-
ever, the greatest value of this intensity measure
was the Chaco War between Paraguay and Bolivia
during 1932-1935, with Iy = 382.4. It is clear that
the measures of a war’s intensity used by Levy® and
by Small and Singer® are quite different.

We again obtain the noncumulative dependence
of dN./dIy on I, and the result is given in Fig. 3.
Using data with Iz > 0.7, the best fit to the frac-
tal relation [Eq. (3)] is found by taking D = 1.40.
Again, good agreement is obtained for the larger
wars. We also apply the alternative analysis of this
data set using return periods. The result is given in
Fig. 4. The straight-line correlation with the data
is obtained from Eq. (4), taking H, = 1.39. The
results for the two definitions of war intensity are
quite similar and are also reasonably close to the
original result of Richardson.?
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Fig. 3 Noncumulative frequency-intensity distribution of
wars based on the Small and Singer (1982) tabulation of war
intensities. The noncumulative number of wars, dN¢ /dIs, is
given as a function of I. The larger wars correlate well with
the fractal relation [Eq. (3)] taking D = 1.40.
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Fig. 4 Dependence of the war intensity Iz, defined by
Small and Singer (1982), on the return period 7. The larger
wars correlate well with the fractal relation [Eq. (4)] taking
H, =1.39.

Although it is certainly of interest that war in-
tensities obey power-law (fractal) statistics, a more
fundamental question is why? To address this ques-
tion we consider self-organized critical behavior in
general, and forest fires in particular.

3. SELF-ORGANIZED CRITICALITY

In the past ten years a variety of numerical mod-
els have been found to exhibit a universal behavior
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that has been called self-organized criticality.” In
self-organized criticality the “input” to a complex
system is steady; whereas the output is a series
of events or “avalanches” that follow a power-law
(fractal) frequency-size distribution. The concept
of self-organized criticality has been primarily dis-
cussed in terms of three models; the “forest-fire”
model, the “sandpile” model, and the “slider-block”
model. There is evolving evidence that many nat-
ural phenomena, including such hazards as earth-
quakes, forest fires, and landslides, may also be ex-
amples of self-organized criticality.

Although the forest-fire model® was not the first
model to be associated with self-organized critical
behavior, it is probably the most illustrative. The
forest-fire model we consider consists of a square
grid of sites. At each time step, a model tree is

dropped on a randomly chosen site; if the site is un-
occupied, the tree is planted, or a match is dropped
on a site. The sparking frequency, fs, is the inverse
number of attempted tree drops on the square grid
before a model match is dropped. If f, = 1/100,
there have been 99 attempts to plant trees (some
successful, some unsuccessful) before a match is
dropped at the 100th time step. If the match is
dropped on an empty site, nothing happens. If it
is dropped on a tree, the tree ignites and a model
fire consumes that tree and the adjacent trees.
Having specified the size of the square grid, N,
and the sparking frequency, fs, a simulation is run
for Ng time steps and the number of fires N with
area Ap is determined. The area, Ap, is the num-
ber of trees that burn in a fire. Examples of four
typical model fires are given in Fig. 5. In these

Fig. 5 Four examples of typical model forest fires are given. This run was carried out on a 128 x 128 grid with fs = 1/2000.

The heavily shaded regions are the forest fires. The lightly shaded regions are unburned forest.

The white regions are

unoccupied sites. The areas Ap of the four forest fires are (a) 5, (b) 51, (c) 505 and (d) 5327 trees. The largest forest fire is

seen to span the entire grid.



examples, the grid size is 128 x 128 (N, = 16 384),
1/f, = 2000, and fires with Ap = 551 506, and 5327
trees are illustrated. Figure 5(d) is an example of a
special class of forest fires which span the grid.

Noncumulative frequency-size statistics for the
model forest fires are given in Fig. 6. The num-
ber of fires per time step with area Ap, Np/Ng, is
given as a function of Ap. Results are given for a
grid size 128 x 128 and three sparking frequencies,
1/fs = 125500, and 2000. In all cases the smaller
fires correlate well with the power-law (fractal)
relation N

F -«
NS ~ AF (5)
with o = 1. Since Ap ~ 12, where r is the linear di-
mension, a comparison with Egs. (1) and (3) yields
a=D/2.

These results clearly indicate the finite-size ef-
fect of the grid. If f, is large, the frequency-size
distribution begins to deviate significantly from a
straight-line, such that there is an upper termina-
tion to the power-law distribution. In Fig. 6, the
deviation begins for 1/f, = 125 at Ap ~ 1000. It is
seen that large forest fires become dominant when
the sparking frequency is very small. This is eas-
ily explained on physical grounds. With a large
sparking frequency (for example 1/f; = 125), trees
burn before large clusters can form. If the sparking
frequency is very small (for example 1/f; = 2000),
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Fig. 6 Frequency-size distributions of model forest fires.
The number of fires per time step with size Ap, Nr/Ng, are
given as a function of Ar where Ar is the number of trees
burnt in each fire. Results are given for a grid size 128 x 128
and three sparking frequencies, fs = 1/125, 1/500, 1/2000.
The small fires correlate well with the power-law relation
[Eq. (4)] taking o« = 1.02 to 1.16. The finite grid-size effect
can be seen at the smallest firing frequency, fs = 1/2000.

clusters form that span the entire grid before ig-
nition occurs. For very small sparking frequencies
there will be very few small fires. The grid will be-
come very full before a match sparks a fire. The
fires will involve a large number of trees, and in
most cases the fires will span the grid.
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Fig. 7 Noncumulative frequency-area statistics for actual forest fires and wildfires in the United States and Australia. Four
examples are given: (a) 4284 fires on US Fish and Wildlife Service Lands during 1986-1995 (National Interagency Fire Center,
1996). (b) 120 of the largest fire areas in the western United States during 1155-1960, obtained from tree ring data (Heyerdahl
and Agee, 1994). (c) 164 fires in Alaskan Boreal Forests during 1990-1991 (Kasischke and French, 1995). (d) 298 fires in the
Australian Capital Territory during 1926-1991 (Australian Capital Territory Bush Fire Council, 1996). The noncumulative
number of fires, —dN¢cr/dAr, is given as a function of Ap. In each case, a reasonably good correlation is obtained with the

power-law relation [Eq. (4)] taking a = 1.3-1.5.
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We now turn our attention to the frequency-size
distribution of actual forest fires and wildfires. Four
forest fire and wildfire data sets from the United
States and Australia are given in Fig. 7. In each
case the noncumulative number of fires per year,
dNcrp/dAp, is given as a function of Ap. We use
a dot over the N to indicate that the frequency
data has been divided by the length of the record
to give a frequency “per year.” The first data set
includes 4284 fires on US Fish and Wildlife Lands
during the period 1986-1995.7 The second data set
includes 120 forest fires as interpreted from tree
rings for the western United States for the period
1155-1960.10 The third data set includes 164 fires
in Alaskan Boreal Forests during 1990 and 1991.1!
The fourth data set includes 298 fires in the Aus-
tralian Capital Territory during 1926-1991.12 The
data sets come from a variety of geographic regions
with different vegetation types and climates. The
results given in Fig. 7 are in quite good agree-
ment with the power-law relation [Eq. (5)] with
o = 1.3-1.5.

The agreement with power-law (fractal) statis-
tics is quite good, but the slopes are somewhat
higher than the model results given above. Consid-
ering the many complexities concerning the initia-
tion and propagation of forest fires and wildfires it
is remarkable that the frequency-magnitude distri-
butions are so similar under such a wide variety of
environments. The proximity of combustible ma-
terial varies widely. The behavior of a particular
fire depends strongly on meteorological conditions.
Fire-fighting efforts extinguish many fires. Despite
these complexities, the application of the statistics
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associated with the forest-fire model appears to be
robust. We conclude that naturally-occurring forest
fires are examples of self-organized critical behavior.

4. DISCUSSION

It appears reasonable to associate the number of
battle deaths in a war with the number of trees
that burn (the area) in a forest fire. If this is
done, the frequency-intensity distributions for wars
given in Figs. 1 and 3 are remarkably similar to the
frequency-size distributions for forest fires given in
Fig. 7. For the two definitions of war intensity we
have a = 1.27 and 1.40. For the four data sets for
forest fires given in Fig. 7 we have o = 1.3, 1.3, 1.4,
1.5. We can explain this behavior for forest fires in
terms of the forest-fire model, but a key question is
whether this explanation is also valid for wars.
The behavior of the forest-fire model can be ex-
plained in terms of a cascade model. If trees are
randomly planted on a grid the distribution of clus-
ter sizes is exponential (Poisonian) not power-law
(fractal). The distribution of cluster sizes in the
forest-fire model is power law (fractal). This is be-
cause clusters of trees continuously grow and com-
bine to form larger clusters. Small fires sample this
population of clusters but the loss of trees in fires
is dominated by the largest fires. There is a self-
similar cascade of trees from small to large clusters.
In terms of the forest-fire model a spark ignites a
tree and the model fire consumes the entire clus-
ter to which this tree belongs. This is also the
case for real forest fires. Ignition of the forest must



take place for a fire to take place, and the fire
will then spread through the contiguous flammable
material.

A war must begin in a manner similar to the
ignition of a forest. One country may invade an-
other country, or a prominent politician may be
assassinated. The war will then spread over the
contiguous region of metastable countries. Such re-
gions of metastability could be the countries of the
Middle East (Iran, Iraq, Syria, Israel, Egypt, etc.)
or of the former Yugoslavia (Serbia, Bosnia, Croa-
tia, etc.). These are then the metastable clusters.
In some cases the metastable clusters could com-
bine. Albania and Greece bridge the gap between
the metastable clusters of the Middle East and the
former Yugoslavia.

We now consider briefly the implications of the
results given above. Saperstein'® has discussed the
relation of wars to complexity theory in a general
way. One can qualitatively discuss the breakdown
of order in the world in a similar manner to the “for-
est fires” in the forest-fire model. In the forest-fire
model, sometimes a match starts a fire and some-
times it does not. Some fires are large and some are
small. But the frequency-size statistics are power-
law. In terms of world order there are small conflicts
that may or may not grow into major wars. The sta-
bilizing and destabilizing influences are clearly very
complex. The results we have shown indicate that
world order behaves as a self-organized critical sys-
tem independent of the efforts made to control and
stabilize interactions between people and countries.

It is easy to argue that the results given here
cannot be significant. The introduction of weapons
of mass destruction, particularly the atom bomb,
must change global interactions and the associated
wars. However, as we have shown, the frequency-
area statistics of real forest fires are well approxi-
mated by power-law distributions with slopes near
1.3. Again it can be argued that attempts to extin-
guish fires, changing land-use practices, and other
human interventions should have affected the re-
sulting distribution of fires. But a variety of cor-
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relations show that the power-law, frequency-size
distributions of these complex phenomena remain
valid. We argue that this is also the case for wars.
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