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Outline of this Talk

  Electrostatic calibrations for Casimir measurements 

Casimir forces and metamaterials

  What is a metamaterial?

  Proposals for Casimir force manipulation with metamaterials

  Is Casimir repulsion possible?

  Experimental set-up at Yale

  Distance-dependent contact potential + patch effects

  Casimir force between plates with small charge density



Part 1: Patch effects in Casimir



Torsional Pendulum Set-up

The correction voltage is the physical observable, and it is 
proportional to the force between the Casimir plates

An imbalance in capacitance is amplified and sent to a phase 
sensitive detector (PSD), which generates error signals.

SPID(d, Va)
A proportional integro-differential (PID) controller provides a 
feedback correction voltage                    to the compensator 
plates, restoring equilibrium.

Upgrade of Lamoreaux’s 1997 experiment

F ∝ (SPID + 9V )2 ≈ (9V )2 + 2SPID × 9V



Typical Casimir Measurement

SPID(d, Va) = Sdc(d→∞) + Sa(d, Va) + Sr(d)

force-free component of 
signal at large separations

electrostatic signal in 
response to an applied 
external voltage

residual signal due to 
distance-dependent 
forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA (          ), isd! R

Sa(d, Va) = πε0R(Va − Vm)2/βd β force-voltage conversion factor

This signal is minimized (           ) when               , and the electrostatic minimizing 
potential       is then defined to be the contact potential between the plates.

Sa = 0 Va = Vm

Vm

Naive picture (often used in the past): 

Va = VmCounterbias              fixed at large separations, 
and assumed to be distance-independent

electrostatic force 
is supposedly 

nullified



“Parabola” measurements

SPID(d, Va) = S0 + k(Va − Vm)2

A range of plate voltages      is applied, and 
at a given nominal absolute distance the 
response is fitted to a parabola

Va

Calibration routine (Iannuzzi et al, PNAS 04) 

Fitting parameters

This procedure is repeated at decremental distances, from150 um down to 500 nm, 
completing a single experimental run. 

Note: The maximum force gradient for feedback system stability is 5 nm/um, limiting 
the minimum distance to 500 nm.

k = k(d)
Vm = Vm(d)
S0 = S0(d)

voltage-force calibration factor + absolute distance

distance-dependent minimizing potential

force residuals: electrostatic + Casimir + non-Newtonian gravity + ....



Curvature Parameter

d = d0 − drel

β = (1.35± 0.04)× 10−7 N/V

Typical uncertainty in position is 
about 10% at a given distance

k(d) =
πε0R/β

d

 Force-voltage calibration factor

 Sphere-plane absolute distance

χ2 = 1.2

Some further details:

• Average 

• Drift of about 5 um in 3 weeks 

• Single sweep suffers about 
20nm drift (less than 5% at the 
closest approach of 500nm)

From the curvature of the different parabolas one obtains

k(d)

k(d)



Varying Minimizing Potential
The Ge data shows a distance-dependent 
minimizing potential, of the order of 6 mV 
over 100 um.

Vm = Vm(d)

Therefore, a fixed counterbias would be incorrect!

Similar behavior has been observed in a number of experiments with Au plates (both with 
macro and micro spheres), including

Iannuzzi’s groupOnofrio’s group Capasso’s group Chevrier’s group

(See Kim, Brown-Hayes, DD, Brownell, Onofrio, PRA 08, 09)



Force Residuals

Residuals from Coulomb force 
obtained from the value of the 
PID signal at the minima of 
each parabola, 

S0(d)→ Fr(d)

In the experiment, these force residuals are too large to be explained just 
by the Casimir-Lifshitz force between the Ge plates.

In fact, the experimental data shows a         force residual at distances
             , where the Casimir force should be negligible.

1/d
d > 5µm

What is the origin of the additional force residual?

What is the origin of the varying minimizing potential? 



Surface Potentials & 
The surface of a conductor is an equipotential only for a perfectly clean 
surface of a homogeneous system cut along one of its crystalline planes.

It is NOT the case for any real material. • oxide layers in “dirt” films
• local variations in the crystalline structure
• different work functions

V (r,ϕ)
R

d

r

d(r) ≈ d2 + r2/2R
V0

R! dElectrostatic force (in PFA,            ):

Minimized force at a fixed distance determines 
the minimizing potential Vm(d)

 Surface patches DO NOT interfere 
with distance calibration!

and

Vm(d)



& Residual Elec. Force. IVm(d)

A toy model illustrating the mechanism 
for the generation of            and   Vm(d) F el

res(d)

Force on lower plate:

(      is varied,      a fixed property of the plates)V0 Vc

When force is minimized, one gets a varying minimizing potential and a varying 
electrostatic residual force. 

C ′
a = −ε0A/d2

C ′
b = −ε0A/(d + ∆)2

In reality, measurements can determine            up to an overall constant:Vm(d) Vm(d)→ Vm(d) + V1

∝ 1
d4

for ∆" d



& Residual Elec. Force. IIVm(d)

Minima of parabolas DO NOT nullify all possible 
electrostatic forces between plates!

Sphere-plane case: C ′
a(d) = −2πε0R/d

Dividing the sphere into infinitesimal areas, each with a random potential, and integrating 
over the surface to get the net residual force (as in PFA), we get 

F el
res(d) = πε0R

[Vm(d) + V1]2

d

Important message from this analysis:

Origin of            is the interplay between non-planar 
geometry and local variations of surface potential

Vm(d)



Electrostatic Patch Effects. I
The patch effect is a possible systematic limitation to Casimir force 
measurements (Speake and Trenkel, PRL 03). 

Plane-plane geometry:

d

0

z

∇2V (x, y, z) = 0

V (z = 0) = V1(x, y)

V (z = d) = V2(x, y)
V (x, y, z) = X(x)Y (y)Z(z)

[idem for            ]          V2(x, y)

Electrostatic energy:

Upp(d) =
ε0
2

∫
d3r |∇V |2



Electrostatic Patch Effects. II

〈Upp〉 =
ε0

32π

∫ ∞

0
dk

k2e−kd

sinh(kd)
[C1,k + C2,k]

〈Upp〉 =
ε0V 2

rms

2dFor large patches                :(kd! 1)

For small patches                :(kd! 1) 〈Upp〉 ∝ e−kd

Statistical properties for patch potentials: 

Averaging the interaction energy over different 
realizations of the stochastic patches, we get

〈Upp〉 =
ε

16

∫
d2k

(2π)2
γ sinh(2γd)
sinh2(γd)

[C1,k + C2,k]

In the limit of large distances              , this expression has an asymptotic behavior 
independent of distance (self-energy of each plate). We remove the potential energy at 
infinite separation, to get the electrostatic interaction energy due to patch effects

(kd! 1)



Electrostatic Patch Effects. III

V2(x, y)
To compute the patch effect in the sphere-plane 
configuration we use PFA for the curvature effect                 
               but leave       arbitrary(d! R) kd

Fsp(d) = 2πR〈Upp(d)〉 =
ε0R

16

∫ ∞

0
dk

k2e−kd

sinh(kd)
[C1,k + C2,k]

Different models to describe surface potential fluctuations:

 C1,k = C2,k = V 2
0 for kmin < k < kmax  

In the limit of large patches               : (kd! 1) Fsp(d) = πε0R
V 2

rms

d

Sphere-plane geometry:

V (z = 0) = V1(x, y)

∇2V (x, y, z) = 0



Total Elec. Residual Force
We fit the data for the residual force at the minimizing potential with a 
force of electric origin, for distances               (negligible Casimir)d > 5µm

F0 = (−11± 2)× 10−12 N

V1 = (−34± 3) mV

Vrms = (6± 2) mV

χ2
0 = 1.5

F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

CASIMIR?



Casimir with Ge:  Theory

reflection amplitudesrj = rp
k,j(iξn) ξn = 2πnkBT/! Matsubara frequencies

 Sphere-plane Casimir force is computed via PFA (well satisfied in the experiment)

E

A
= kBT

∑

p

∞′∑

n=0

∫
d2k

(2π)2
ln[1− r1r2e

−2d
√

k2+ξ2
n/c2 ]

 Casimir-Lifshitz free energy in the plane-plane geometry:

Fsp(d) = 2πRUpp(d) = 2πR
E

A

One needs to compute the reflection amplitudes             for a vacuum-Ge 
interphase. Depending on the model used to describe the optical and 
conductivity properties of Ge we get different reflection amplitudes.

rp
k,j(ω)



Material properties of Ge
• intrinsic semiconductor, among the purest materials available
• small density of free carriers (electrons and holes)

• conductivity, thermal, and optical properties are well tabulated

Bare permittivity of intrinsic Ge 
(not including contributions from free carriers)

ε(iξ) = ε∞ + ω2
0

ε0 − ε∞
ξ2 + ω2

0

Sellmeier-type form

Conductivity  properties of intrinsic Ge

n0(T ) =
√

ncnv e−
Eg

2kBTIntrinsic carrier density:

effect. density of states in conduction band
effect. density of states in valence band
energy band gap

nc(T )
nv(T )
Eg(T )

At T=300K:

Eg = 0.66 eV

nc = 1.04× 10−19 cm−3

nv = 6.0× 10−18 cm−3

Carrier relaxation time: τ ≈ 3.9 ps

Effective mass of conduction electrons: me = 0.12m

Effective mass of conduction holes: mh = 0.21m



Charge-drift model. I

 Maxwell’s eqns.:

 Classical Boltzmann transport eqn.:

carrier current

mean thermal velocity

Mixing both, we get the fundamental equation for the EM field inside the semiconductor:

ωc = 4πen0µ/ε(ω)
µ = eτ/m

D = v2
T τ

mobility of carriers

diffusion constant



Charge-drift model. II

Solving the EM boundary conditions on the vacuum-Ge interphase, we obtain the following 
TE and TM reflection amplitudes

same as in the ideal dielectric+Drude conductivity model.

Some limiting behavior:

• In the quasi-static limit           we recover Pitaevskii’s results (Pitaevskii PRL 2008), namelyξ → 0

rTE
k (0) = 0 (a static TE field is a purely magnetic field, fully penetrates a non-magnetic medium)

rTM
k (ξ = 0) =

ε0q − k

ε0q + k
(interpolates between a good conductor and an ideal dielectric)

• For           in the ideal dielectric limit (small free charge density and small thermal velocity), 
we recover Fresnel coefficients in terms of the bare permittivity  

ξ != 0
ε(ω)



Comparison of models

Fdielectric(d) < Fdrift(d) < FDrude(d)



Casimir force residuals

After subtraction of the electrostatic force residual F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

χ2
0 ≈ 1

d < 5µmFor

for all the 
theoretical models 

Error bars:

3% statistical 
uncertainties

10% fitting 
uncertainties from 
electrostatic analysis

CASIMIR?

Residual force at 
minima of parabolas



Remarks: patches and Casimir

 After subtraction of these two electrostatic residuals, we got very good 
agreement with a Casimir force residual. However, we do not have enough 
accuracy to distinguish between the different theoretical models.

 Found a distance-dependent minimizing potential, due to large-scale variations 
in the contact potential along the surface of the plates.  It results in a relatively 
large residual force of electrostatic origin ∝ [Vm(d) + V1]2/d

 Found another residual force of electrostatic origin, probably due to 
potential patches on the surfaces that, for                    , isd! λ! R ∝ V 2

rms/d

 Further measurements deemed necessary to better understand the origins 
of the observed residual electrostatic force. For example, Kelvin probe 
measurements of the potential patches on the samples.



Kim, Sushkov, DD, Lamoreaux, PRA 81, 022505 (2010)
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Speake and Trenkel, PRL 90, 160403 (2003)
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DD and Lamoreaux, PRL 101, 163203 (2008)

DD and Lamoreaux, J. Phys. 161, 012009 (2009)

  Experiment on patch effects and Casimir forces with Ge plates

Kim, Sushkov, DD, Lamoreaux, PRL 103, 060401 (2009)

Pitaevskii, PRL 101, 163202 (2008)



Part II: Metamaterials and Casimir



Effects of materials 

Reflection matrices (Fresnel formulas for isotropic media):

The Lifshitz formula: Lifshitz (1956)

r
TE,TE

= r
TM,TM ε ↔ µwith

F

A
= 2! Im

∫ ∞

0

dω

2π

∫
d2k‖
(2π)2

K3Tr
R1 · R2e2iK3d

1−R1 · R2e2iK3d

K3 =
√

ω2/c2 − k2
‖

Relevant frequencies:

0 ≤ ω ≤ min{Ωp, c/d}
ε(ω)

ω!Ωp−−−−→ 1 ⇒ rp,p ≈ 0 (Transparent plates)

ω % c/d ⇒ e2iK3d ≈ 0 (Fast oscillations)

}
⇒ F ≈ 0

rTM,TM(ω,k‖) =
ε(ω)K3 −

√
ε(ω)µ(ω)ω2/c2 − k2

‖

ε(ω)K3 +
√

ε(ω)µ(ω)ω2/c2 − k2
‖



Going to imaginary frequencies

F

A
= 2h̄

∫ ∞

0

dξ

2π

∫
d2k‖

(2π)2
K3Tr

R1 · R2e
−2K3d

1 − R1 · R2e−2K3d

Kramers-Kronig (causality) relations: 

ε(iξ) = 1 +
2
π

∫ ∞

0

ωε′′(ω)
ω2 + ξ2

dω µ(iξ) = 1 +
2
π

∫ ∞

0

ωµ′′(ω)
ω2 + ξ2

dω

The important message is that Casimir is a broad-band frequency phenomenon

Dominant frequencies below the near-infrared/optical 
region of the EM spectrum (gaps d= 200-1000 nm)



The sign of the Casimir force

F

A
= 2h̄

∫ ∞

0

dξ

2π

∫
d2k‖

(2π)2
K3Tr

R1 · R2e
−2K3d

1 − R1 · R2e−2K3d

The sign of the force is directly connected to the sign of the product of 
the reflection coefficients on the two plates, evaluated at imaginary 
frequencies.  As a rule of thumb, we have (p=TE, TM)

Rp
1(iξ) · Rp

2(iξ) > 0 (∀ ξ ≤ c/d)⇒ Attraction

Rp
1(iξ) · Rp

2(iξ) < 0 (∀ ξ ≤ c/d)⇒ Repulsion

In terms of permittivities and permeabilities:

εa(iξ)! εb(iξ)

µb(iξ)! µa(iξ)
Repulsion



Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4



   

Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”



Metamaterials
 Artificial structured composites with designer electromagnetic properties

 MMs are strongly anisotropic, dispersive, magneto-dielectric media.

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg nano-pillars

ε, µ < 036µm 200nm



Effective medium approximation
We want to compute the Casimir force between a metallic plate and a MM. 
Let us assume a metallic plate in  is reasonably well described by a Drude 
response

For the MM the optical response is not 
so simple..... 

In the effective medium approximation 
(EMA) one describes the MM with an 
effective electric permittivity and an 
effective magnetic permeability.  This is 
an approximation valid when the MM is 
probed at wavelengths much larger that 
the average distance between the 
constituent “particles” of the MM.



EMA: Electric response

 Close to resonance, the optical response can be modeled by a Drude-
Lorentz permittivity



EMA: Magnetic response
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4

Re ε1(ω)Re ε1(ω)

Im ε1(ω)

ε(i ω)

EMA: Drude-Lorentz responses

Metamaterial

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω =0 .1 ΩM,2/Ω =0 .3

ωE,2/Ω = ωM,2/Ω =0 .1

ΓE,2/Ω =Γ M,2/Ω =0 .01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz

Close to the resonance, both       and         can be modeled 
by Drude-Lorentz formulas  

ε(ω) µ(ω)



Attraction-repulsion crossover 
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Drude background

 In some metallic-based MMs, there is a net 
conductivity due to the metallic structure, 
like the fishnet design on the right. 

ε(ω) = 1 − f
Ω2

D

ω2
− iωγD

− (1 − f)
Ω2

e

ω2
− ω2

e + iγeω

µ(ω) = 1 −

Ω2
m

ω2
− ω2

m
+ iγmω

f : filling factor

A Drude background is detrimental for 
Casimir force reduction or repulsion, 
since it results in an electric response 
much stronger than the magnetic one

ε2(iξ)! µ2(iξ)
 Rosa, DD, Milonni, PRL 2008 



Complementary SRRs + Drude
SRRs structures provide an opportunity to avoid the large Drude 
background, since they can be built in two natural complementary ways



Optical anisotropy
In an anisotropic medium, the constitutive relations between E, D, B, and H 
are more involved:

due to the tensorial nature of the permittivity and permeability

due to the tensorial nature of the permittivity and permeability

Examples of uniaxial 
anisotropy in stacked MMs



Anisotropy: Uniaxial MMs

Anisotropy axis 

Anisotropy produces polarization mixing 
(non-diagonal reflection matrices)

 (Rosa, DD, Milonni,  PRA 2008) Anisotropy does not help repulsion



EMA: correct model for  

The appearance of the      factor in the numerator is very important: ω2

Although close to the resonance this 
behaves in the same way as the Drude-
Lorentz EMA permeability, it has a 
completely different low-frequency 
behavior

µeff(iξ) < 1 < εeff(iξ)

Drude-Lorentz for permeability is wrong.  The correct expression that 
results in EMA from Maxwell’s equations is  

No Casimir repulsion!

µ

(Pendry 1999)



Other Casimir MMs: chirality

The chirality of a MM is defined by the chirality of its unit cell

In a chiral medium, the constitutive relations mix electric and magnetic fields

dispersive chirality: κ(ω) =
ωkω

ω2 − ω2
κR + iγkω



Repulsion and chiral MMs

In chiral MMs the reflection matrix is non-diagonal (mixing of E and H fields). 

The integrand of the Casimir-Lifshitz force between two identical chiral MMs  
has the form: 

One might achieve repulsive Casimir 
forces with strong chirality (i.e., large 
values of       ) rsp

 Soukoulis et al,  PRL 2009 

Same-chirality (SC) materials: repulsion

Opposite-chirality (OC) materials: repulsion



Beyond the EMA
Everything discussed so far is based on the assumption that the effective 
medium approximation (EMA) holds. We recall that this amounts to treating 
the MM in the “long-wavelength approximation”, i.e., field wavelengths much 
larger than the typical size of the unit cell of the MM.

How to calculate Casimir forces when EMA does not hold?
Can one trust predictions of Casimir repulsion with MMs based on EMA?

Homogeneous 
medium

Non-homogeneous 
medium

EMA beyond EMA



Constraints on stable equilibria

 Rahi, Kardar, Emig (arXiv:0911.5364)

Theorem: there are no stable equilibria with fluctuation-
induced forces when all interacting objects have 
microscopic                  and ε(r, iξ) > 1 µ(r, iξ) ≈ 1

Corollary: Casimir repulsion is impossible for any metallic/dielectric based MM 
in front a translationally invariant non-magnetic plate. 

d

E

d

∇2E < 0



k 

k’ 

Scattering theory

The Casimir force still may be described in terms of reflections (scattering 
theory)

Symbolically, we may write the Casimir energy as

where



Finding the reflection matrix

The reflection matrix can be obtained with standard methods of numerical 
electromagnetism. One solves Maxwell equations for the transverse fields

Assuming a two-dimensional periodic structure, we have

where 

Et(x, y) = eik·r
∑

m,n

Em,n exp
[
i
2πn

Lx
x + i

2πm

Ly
y

]

Ht(x, y) = eik·r
∑

m,n

Hm,n exp
[
i
2πn

Lx
x + i

2πm

Ly
y

]

ε(x, y) =
∑

m,n

εm,n exp
[
i
2πn

Lx
x + i

2πm

Ly
y

]

µ(x, y) =
∑

m,n

µm,n exp
[
i
2πn

Lx
x + i

2πm

Ly
y

]



Exact reflection matrix

One can then write the equations for the transverse fields as

Here H is a complicated matrix, that encapsulated the coupling of modes in 
the periodic structure.

By numerically solving this equation and imposing the proper boundary 
conditions of the field on the vacuum-metamaterial interphase (RCWA or 
S-matrix techniques), one can find the reflection matrix of the MM.



Exact MIT numerics for MMs. I

Real and imaginary-frequency 
reflection coefficient 
(at normal incidence)

While the resonance strongly affects the real-frequency response, the 
imaginary-frequency response is not greatly changed. 

 S. Johnson’s group (unpublished)

 Magnetic metamaterials



Exact MIT numerics for MMs. II

 S. Johnson’s group (unpublished)



Exact MIT numerics for MMs. III
 Chiral atoms

Casimir force is 
not repulsive

Effect of anisotropy 
overwhelms any 
possible chiral effect

 S. Johnson’s group (unpublished)



Exact MIT numerics for MMs. IV

 S. Johnson’s group (unpublished)

103 times smaller!

Inhomogeneity

Sign of force ratio 
is shift-dependent

Configurations

Aligned Shifted

 (SC)

(OC)

Attractive, FOC > FSC in metamaterial limit

Unit Cell

Results

Chirality

Plot (FOC - FSC) / FOC:

No difference in 
metamaterial approx.

Force F in SC 
and OC configs.

z



Exact MIT numerics for MMs. V

Unit cell

Mesh used in
computations

Effect of inhomogeneity across displacements x

Conclusion

Opposite Chirality

Same Chirality

Chirality
well-defined

Total force relative to
parallel metal plates
“repulsive” effect (force reduction) of
chirality is one ten-thousandth of this!

In the regime where the
chiral metamaterial limit
is valid, the effect is too
small to be observable.

Chiral
Particle

Metamaterial
limit is valid

Metamaterial

z

x

 S. Johnson’s group (unpublished)



Remarks: MMs and Casimir

 Several proposals for MM-based Casimir force use effective medium 
approximation. Their predictions have to be carefully checked since EMA 
breaks down for electromagnetic fluctuations with wavelengths comparable 
to metamaterial feature sizes. 

 Metamaterials offer an interesting possibility for Casimir force 
manipulation: engineered optical response, (maybe) broadband, dynamic 
control. 

 Casimir repulsion in vacuum-separated metallic/dielectric metamaterial 
structures seems hard to achieve. It is certainly impossible in geometries that 
are effectively one-dimensional (Casimir stability considerations).
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