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Part I: Casimir force



The Casimir force
Casimir forces originate from changes in quantum 
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik 
Casimir in 1948

Dominant interaction in the micron and sub-micron
lengthscales

Classical Analog: L’Album du Marin (1836)



Relevant applications

 Gravitation / Particle theory:
Some theories of particle physics predict deviations from the 
Newtonian gravitational potentials in the micron and submicron range

The Casimir force is the main background force to measure these 
non-Newtonian corrections to gravity

Yukawa-like potential:



Relevant applications

 Quantum Science and Technology:

Atom-surface interactions

Example: Casimir-Polder interaction between a BEC and a surface

Precision measurements

Cornell et al  (2007)



Relevant applications

 Nanotechnology:

Actuation in NEMS and MEMS 
driven by Casimir forces

Zhao et al (2003) 

Problems with stiction of 
movable parts in MEMS

Capasso et al (2001)

“pull-in” effect



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso et al, Decca et al

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al

 Micro-cantilever

plane-plane, cylinder-plane, d=1-3 um
Onofrio et al



Tailoring the Casimir force

 The magnitude and sign of the Casimir force depend on 
the geometry and composition of surfaces

Engineer geometries and designer materials for various applications:

• Demonstration of strongly modified/repulsive Casimir forces

• Demonstration of vacuum drag via lateral Casimir forces

 Effects of geometry:  proximity force approx and beyond

 Effects of materials:  Lifshitz formula and beyond



Geometry effects: PFA 
  The Proximity Force Approximation (PFA) corresponds to approximating the 

Casimir energy by its expression for the planar case, averaging over local planes 

δ(θ) = d + R (1 − cos θ)d

R

θ

R ! dIt is a good approximation when

  There are a few perturbative methods to go beyond PFA, and also exact results 
for a few geometries with perfectly conducting surfaces (cylinder-plane, eccentric 
cylinders, etc).

E
PFA
SP (d) ≈ 2πR

2

∫ θm

0

dθ sin θ
EPP(δ(θ))
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Geometry effects: lateral force
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Materials effects: Lifshitz eqn. 

d

Reflection matrices (Fresnel formulas for isotropic media):

Kramers-Kronig (causality) relations: 

Dominant frequencies below 
the near-infrared/optical 
region of the EM spectrum 
(gaps d= 200-1000 nm)

The Lifshitz formula: Lifshitz (1956)
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Part I: Casimir-Polder force



The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ) TrG(RA,RA, iξ)

Atomic polarizability:

Scattering Green tensor:

α(ω) = lim
ε→0
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)
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zA ! λA zA ! λANon-retarded (vdW) limit  Retarded (CP) limit

Eg: Ground-state atom near planar surface @ T=0
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Modern CP experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10%

 Classical reflection on atomic mirror Aspect et al (1996)

Udip =
h̄

4

Ω2

∆
e
−2kz

UvdW = −

ε − 1

ε + 1
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48πε0

D2
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Exp-Th agreement @ 30%
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8 cos4(πz/L)

]



Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

 BEC oscillator Cornell et al (2007)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



Part II: Cold atoms and Casimir



CP within scattering theory

UCP = U
(0)
CP(zA) + U

(1)
CP(zA, xA)

 Normal CP force: U
(0)
CP(zA) =
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c2ε0
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Geometry effects: Lateral CP 
  Proximity Force Approximation (PFA)

≈

  Pair-wise Summation (PWS)

ρPWS ≡

g(kc, zA)

gPWS(kc, zA)

  Deviations from PFA and PWS

Example:                                     

atom-surface distance                                    
   

zA = 2µm ! λA

corrugation wavelength                                   λc = 3.5µm

PFA largely overestimates the lateral CP force
PWS underestimates the lateral CP force                                               

ρPWS ≈ 115%

ρPFA =
g(kc, zA)

g(0, zA)

ρPFA ≈ 30%
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Atoms as local probes
In contrast to the case of the lateral Casimir force between corrugated surfaces, an 
atom is a local probe of the lateral Casimir-Polder force. Deviations from the PFA 
can be much larger than for the force between two surfaces!

  Even larger deviations from PFA can be 
obtained for a periodically grooved surface.

  If the atom is located above one plateau, the PFA predicts that the lateral 
Casimir-Polder force should vanish, since the energy is thus unchanged in a 
small lateral displacement. 

  A non-vanishing force appearing when the atom is moved above the plateau 
thus clearly signals a deviation from PFA!



BEC as a field sensor

 BEC oscillator

Antezza et al (2004) Cornell et al (2005, 2007)

  The normal component of Casimir-Polder force 
shifts the normal dipolar oscillation frequency of a BEC 
trapped above a surface 

U
(0)
CP(z)

CM

V (r) = Vho(r) + UCP(r)

Vho(r) =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2) ωy ! ωx = ωz

  In order to measure the lateral component              , a cigar-shaped BEC could 
be trapped parallel to the corrugation lines, and the lateral dipolar oscillation  
measured as a function of time

ω2
x,CM = ω2

x
+

1

m

∫
dxdz n0(x, z)

∂2

∂x2
U

(1)
CP(x, z)

U
(1)
CP(x, z)

Lateral frequency shift: 



BEC as a field sensor (cont’d)
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the potential 
is related to the 1D density profile as

Measurement of the magnetic field 
variations along a current-carrying wire

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)

  To measure the lateral CP force, the elongated 
BEC should be aligned along the x-direction, and a 
density modulation along this direction above the 
plateau would be a signature of a nontrivial 
(beyond-PFA) geometry effect.

   
∆U

(1)
CP ! 10

−14
eV

For the lateral CP force, perfect conductor, 
sinusoidal corrugation (                  ), distance       
               , PFA limit 

a = 100nm

zA = 2µm (kczA ! 1)

CM
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 Single-atom / BEC comparison

Rb Rbωx/2π = 229 Hz

s = λc/2

a = 250nm

zCM = 2µm

λc = 4µm

   

Given the reported sensitivity                        for relative frequency shifts from E. 
Cornell’s experiment, we expect that beyond-PFA lateral CP forces on a BEC 
above a plateau of a periodically grooved silicon surface should be detectable for 
distances                , groove period              , groove amplitude               , and a 
BEC radius of, say, 

γ = 10
−5

− 10
−4

zCM < 3µm λc = 4µm a = 250nm

R ≈ 1µm

γ0 ≡

ωx,CM − ωx

ωx

 Single-atom lateral freq. shift 



Towards the experiment

 Surfaces are being fabricated at Sandia Labs (Matt Blain)

 CP force measurements with BEC will be done at LANL (Malcolm Boshier)

SiO2

Si3N4

Si

SiO2

Number of periods, 100/set
•Length of “grooves”, 2 mm
•see next slide

Si

Process sequence
1. Deposit/pattern SiN oxidation mask
2. Grow SiO2 in exposed Si to thicknesses of t = 100, 200, 500 and 2000 nm

t
a = 0.44t

c~ 5 µm sinitial = c/2 = 2.5 µm

3. Strip SiN and SiO2

Si

a = 44, 88, 220, 
and 888 nm

4. Deposit SiO2 or Au to a thickness of w = 1 µm

SiO2 or Au

Corners will be rounded by the oxidation process in step 2

sfinal ≈ c/2 – w ≈ 2.0 µm
 ≈ 0.5, step coverage factor

sfinal may be adjusted by changing sinitial

c = 15 µm, 100
periods/set, 2 sets2 

m
m

8.
3 

m
m

7.1 mm

c = 15 µm, 100
periods/set, 2
sets

c = 2 µm, 300
periods/set, 5 sets

c = 2 µm, 300
periods/set, 5 sets

c = 5 µm, 200
periods/set, 3
sets

c = 5 µm, 200
periods/set, 3 sets

c = 10 µm, 100
periods/set, 3 sets

c = 10 µm, 100
periods/set, 3 sets

100 µm gaps between sets
of same c

Sub-modules: ~3.5 mm x ~2 mm



Summary part II

  Novel cold atoms techniques open a promising way of 
investigating nontrivial geometrical effects on quantum vacuum

  Important feature of atoms: they can be used as local 
probes of quantum vacuum fluctuations

  Non-trivial, beyond-PFA effects should be measurable using 
a BEC as a vacuum field sensor with available technology

For more details see: 

Dalvit, Maia Neto, Lambrecht, and Reynaud,  
Phys. Rev. Lett. 100, 040405 (2008)

J. Phys. A 41, 164028 (2008)



Part III: MMs and Casimir 



Metamaterials and Casimir

Artificial materials for engineering the Casimir force

Smith et al (2007) 



Casimir attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4



Metamaterials
 Artificial structured composites with designer electromagnetic properties

 MMs are strongly anisotropic, dispersive, magneto-dielectric media.

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg nano-pillars

ε, µ < 036µm 200nm



   

Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”



Quantum levitation with MMs?
Leonhardt et al (2007) 

ε(ω) = −1

µ(ω) = −1

x

x
′

b0

Transformation media

Perfect lens: EM field in -b<x<0 is mapped into 
x’. There are two images, one inside the device 
and one in b<x<2b.

a

a
′

a
′
= |a − 2b|

f = −

∂U

∂a′

∂a′

∂a
= +

h̄cπ2

240a′4

When a< 2b (plates within the imaging range of 
the perfect lens)

Casimir cavity:

Repulsion

For real materials, however .....

• According to causality, no passive medium (               ) can sustain                  
over a wide range of frequencies. In fact,  

• Another proposal is to use an active MM (                ) in order to get 
repulsion. But then the whole approach breaks down, as real photons would 
be emitted into the quantum vacuum. 

ε”(ω) > 0 ε, µ ! −1

ε(iξ), µ(iξ) > 0

ε”(ω) < 0

2b−b

b
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Modelling optical response

Metamaterial

 Close to resonance, the optical response can be modeled 
by Drude-Lorentz permittivities and permeabilities

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz



Attraction-repulsion crossover 
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A slab made of Au (                         ) of width                could levitate in 
front of one of these MMs at a distance of                     !!!

ρ = 19.3 gr/cm3 δ = 1µm

d ≈ 110 nm

Casimir and metamaterials, Henkel et al (2005)
Casimir and surface plasmons, Intravaia et al (2005)

van der Waals in magneto-dielectrics, Spagnolo et al (2007)



Drude background
 Real metamaterials typically have metallic inclusions, and the 

corresponding Drude background makes attractive a Casimir force that 
would otherwise be predicted to be repulsive

ε(ω) = 1 − f
Ω2

D

ω2
− iωγD

− (1 − f)
Ω2

e

ω2
− ω2

e + iγeω

µ(ω) = 1 −

Ω2
m

ω2
− ω2

m
+ iγmω

f : filling factor

Gold plate in front of a silver-based MM 
with resonance in the near-infrared:

ΩD = 1.37 × 10
16

rad/sec

Ω1/ΩD = 0.96 γ1/ΩD = 0.004

Ag plasma frequency

Gold plate:

Silver-based MM:

γD/ΩD = 0.006

Ωe/ΩD = 0.04

Ωm/ΩD = 0.1

ωe/ΩD = ωm/ΩD = 0.1

γe/ΩD = γm/ΩD = 0.005



Optical anisotropy
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ε = diag(ε‖, ε‖, ε⊥) µ = diag(µ‖, µ‖, µ⊥) Uni-axial MMs:

Metallic-based MM with only 
electric anisotropy Dielectric-based MM (f = 0)(µ‖ = µ⊥)
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Summary part III

 Drude backgrounds in metallic-based MMs can spoil 
Casimir repulsion.

 Metamaterials might strongly influence the quantum 
vacuum, providing a route towards quantum levitation. 

For more details see: 

Rosa, Dalvit, Milonni,  arXiv: 0803.2908
to appear in Phys. Rev. Lett. 

 MMs with weak Drude backgrounds (polaritonic 
photonic crystals and dielectric structures) might lead to 
quantum levitation.



General conclusions

Casimir forces: still surprising after 60 years

CM

  Non-trivial geometry effects

  Non-trivial materials effects


