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The Casimir force

Casimir forces originate from changes in quantum 
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik 
Casimir in 1948

Dominant interaction in the micron and sub-micron lengthscales

The magnitude and sign of the Casimir force depend on 
the geometry and composition of surfaces
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Some relevant applications
 Gravitation / Particle theory:
The Casimir force is the main background force to measure 
these non-Newtonian corrections to gravity

 Quantum Science and Technology:

Atom-surface interactions (e.g., atom chips, BECs) 
and precision measurements

Nanotechnology:
Casimir force is a challenge (stiction), 
but also an opportunity (contactless 
force transmission)
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Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso et al, Decca et al

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al

 Micro-cantilever

plane-plane, cylinder-plane, d=1-3 um
Onofrio et al



The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
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Modern CP experiments
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Modern CP experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10%

 Classical reflection on atomic mirror Aspect et al (1996)
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Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)
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Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

 BEC oscillator Cornell et al (2007)
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Effects of geometry
Approximation methods (PFA, PWS)

Exact methods: scattering theory, Green function

E
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Effects of materials

Reflection matrices (Fresnel formulas for isotropic media):

The Lifshitz formula: Lifshitz (1956)

r
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Relevant frequencies:
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Going to imaginary frequencies

F
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The important message is that Casimir is a 
broad-band frequency phenomenon

Dominant frequencies below the near-infrared/optical 
region of the EM spectrum (gaps d= 200-1000 nm)



The sign of the Casimir force
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The sign of the force is directly connected to the sign of the product of 
the reflection coefficients on the two plates, evaluated at imaginary 
frequencies.  As a rule of thumb, we have (p=TE, TM)

Rp
1(iξ) · Rp

2(iξ) > 0 (∀ ξ ≤ c/d)⇒ Attraction

Rp
1(iξ) · Rp

2(iξ) < 0 (∀ ξ ≤ c/d)⇒ Repulsion

In terms of permittivities and permeabilities:

εa(iξ)! εb(iξ)

µb(iξ)! µa(iξ)
Repulsion
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials
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Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”



Metamaterials
 Artificial structured composites with designer electromagnetic properties

 MMs are strongly anisotropic, dispersive, magneto-dielectric media.

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg nano-pillars

ε, µ < 036µm 200nm



MMs + Casimir effect

In order to fix ideas, let us consider a metallic half-space facing a magneto-
dielectric (MM) half-space. 

The experiments in this project will actually be a metallic Au sphere glued to 
an AFM above a metamaterial planar structure. 



Effective medium approximation

Let us assume the metal is reasonably well described by a Drude response

For the MM the optical response is not 
so simple..... 

In the effective medium approximation 
(EMA) one describes the MM with an 
effective electric permittivity and an 
effective magnetic permeability.  This is 
an approximation valid when the MM is 
probed at wavelengths much larger that 
the average distance between the 
constituent “particles” of the MM.



Electric response

 Close to resonance, the optical response can be modeled by a Drude-
Lorentz permittivity



Magnetic response
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Metamaterial

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω =0 .1 ΩM,2/Ω =0 .3

ωE,2/Ω = ωM,2/Ω =0 .1

ΓE,2/Ω =Γ M,2/Ω =0 .01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz

Close to the resonance, both       and         can be modeled 
by Drude-Lorentz formulas  

ε(ω) µ(ω)



Attraction-repulsion crossover 

10 100 1000

d (nm)

0

2

4

6

8

10

F
/A

 (
P

a
)

Drude metals (Au)

Drude metal (Au)

Drude metal (Au)

Only attraction

10 100 1000

d (nm)

0

0.5

1

1.5

2

F
/A

 (
P

a
)

!/"=0.0

!/"=0.1

Metamaterial

Metamaterial

Only attraction

Drude metal (Au)

Metamaterial

Repulsion-attraction

10 100 1000

d (nm)

-2

-1

0

1

2

F
/ 

A
 (

P
a
)

!/"=0.0

!/"=0.1

!/"=0.01

Ideal attraction

Ideal repulsion



Drude background

 In some metallic-based MMs, there is a net 
conductivity due to the metallic structure, 
like the fishnet design on the right. 

ε(ω) = 1 − f
Ω2

D

ω2
− iωγD

− (1 − f)
Ω2

e

ω2
− ω2

e + iγeω

µ(ω) = 1 −

Ω2
m

ω2
− ω2

m
+ iγmω

f : filling factor

A Drude background is detrimental for 
Casimir force reduction or repulsion, 
since it results in an electric response 
much stronger than the magnetic one

ε2(iξ)! µ2(iξ)
 (Rosa, DD, Milonni, PRL 2008) 



Split ring resonators (SRRs)

SRRs structures provide an opportunity to avoid the large Drude 
background, since they can be built in two natural complementary ways

Continuously-metallized 

SSR  

Discontinuously-metallized 

SSR  



Complementary SRRs + Drude

The continuous version presents a considerable Drude background ...

... but the discontinuous one does not!



Maxwell-Garnett ε

Clausius-Mossotti formula Sphere polarizability

In order to understand how non-connected materials behave, we consider 
a simple model composed of tiny metallic spheres (radius   , permittivity    , 
filling factor    ) in a given host medium (permittivity    ).

a εi

f εh

Important consequence:

ε(ω → 0) is finite!

 (Rosa, DD, Milonni, PRA 2008) 



EMA magnetic activity 

The appearance of the      factor in the numerator is very important: ω2

Although close to the resonance this 
behaves in the same way as the “standard” 
EMA permeability, it has a completely 
different low-frequency behavior

µeff(iξ) < 1 < εeff(iξ)

Drude-Lorentz for permebility is wrong.  The correct expression that 
results in EMA from Maxwell’s equations is (Pendry 1999) 

No Casimir repulsion!



All-dielectric metamaterials
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Optical anisotropy
In an anisotropic medium, the constitutive relations between E, D, B, and H 
are more involved:

due to the tensorial nature of the permittivity and permeability

due to the tensorial nature of the permittivity and permeability

Examples of uniaxial 
anisotropy in stacked MMs



Anisotropy: Uniaxial MMs

Anisotropy axis 

Anisotropy produces polarization mixing 
(non-diagonal reflection matrices)

 (Rosa, DD, Milonni,  PRA 2008) 



Chiral MMs and Casimir

The chirality of a MM is defined by the chirality of its unit cell

In a chiral medium, the constitutive relations mix electric and magnetic fields

dispersive chirality: κ(ω) =
ωkω

ω2 − ω2
κR + iγkω



Casimir repulsion with chirality

In chiral MMs the reflection matrix is non-diagonal (mixing of E and H fields). 

The integrand of the Casimir-Lifshitz force between two identical chiral MMs  
has the form: 

One might achieve repulsive Casimir 
forces with strong chirality (i.e., large 
values of       ) rsp

 (Soukoulis et al, 2009) 



Beyond the EMA

Everything discussed so far is based on the assumption that the effective 
medium approximation (EMA) holds. We recall that this amounts to treating 
the MM in the “long-wavelength approximation”, i.e., field wavelengths much 
larger than the typical size of the unit cell of the MM.

How to calculate Casimir forces when EMA does not hold?

Homogeneous 
medium

Non-homogeneous 
medium

EMA beyond EMA



k 

k’ 

Scattering theory

The Casimir force still may be described in terms of reflections (scattering 
theory)

Symbolically, we may write the Casimir energy as

where



Finding the reflection matrix

The reflection matrix can be obtained with standard methods of numerical 
electromagnetism. One solves Maxwell equations for the transverse fields

Assuming a two-dimensional periodic structure, we have

where 

Et(x, y) = eik·r
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[
i
2πn
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x + i

2πm
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y

]
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∑
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i
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2πm
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y

]

ε(x, y) =
∑
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]
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i
2πn
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x + i

2πm
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Exact reflection matrix

One can then write the equations for the transverse fields as

Here H is a complicated matrix, that encapsulated the coupling of modes in 
the periodic structure.

By numerically solving this equation and imposing the proper boundary 
conditions of the field on the vacuum-metamaterial interphase (RCWA or 
S-matrix techniques), one can find the reflection matrix of the MM.



Ongoing projects at LANL

 Casimir force engineering with 
metamaterials (LANL, SNL)

 Controlling the Casimir force 
with deformable nanostructures 

(LANL, ANL, NIST, Indiana)



Final remarks

 Casimir force repulsion is more challenging, since permeabilities and 
chiralities have to be much stronger than permittivities over a large range of 
frequencies.

 Metamaterials offer several possibilities to tailor the electromagnetic 
response for Casimir force engineering.

 Casimir force reduction should be possible with MMs with decreased 
dielectric response, increased magnetic activity, and possibly with chirality.

 Effective medium approximation should break down for gaps of the order 
or smaller than the size of the MM unit cell. Exact numerical methods that go 
beyond EMA are needed in those regimes.


