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Outline of this Talk Lok Alamos

B Brief intro to Casimir physics

@ Basics, relevance, and simple geometries
@ Tailoring Casimir forces with metamaterials

@ Effective medium/homogenization in Casimir physics

® Tailoring Casimir forces with nanostructures

Q@ Metallic gratings for Casimir force manipulation
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Brief intro to Casimir phys. i aames
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The Casimir force :

@ Universal effect from confinement of
vacuum fluctuations

@ Depends only on A, ¢, and geometry
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(130nN/cm? @ d = 1um)

@ Alternative interpretation: fluctuating

charges and currents s
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@ The magnitude and sign of the force el ad
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The Lifshitz formula L% Alamos

Casimir interaction energy between materials slabs (Lifshitz 1956)
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Fresnel reflection coefficients Rtg =

The log factor can be re-written as
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Scattering theory
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Going to imaginary freq. Lok Alamos

Im ® =Re &

The function coth(fw/2kpT) has poles on the

imaginary frequency axis at \cm
. 21k B T Ci \\___._
Wi = %6m » E&m =m ;

After Wick rotation: — S
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. 2 [ we'(w) _ ' :
e(i) =1+ - /O e do Kramers-Kronig (causality)
Focd™® (non-retarded limit, small distances)
Some limiting cases: Focd™™® (retarded limit, larger distances)

F o< Td™® (classical limit, very large distances)

Q@ Casimir physics is a broad-band frequency phenomenon
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The sign of the Casimir force iz aamos

or | (27)2
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The sign of the force is directly connected to the sign of the product
of the reflection coefficients on the two plates, evaluated at
imaginary frequencies. As a rule of thumb, we have (p=TE, TM)

RY(i&) - R5(i€) > 0 (V £ < ¢/d) = Attraction
RY(i€) - R5(i€) < 0 (V &€ < ¢/d) = Repulsion

In terms of permittivities and permeabilities:

€q (Zf) =>> €y (Zf)

. . —> Repulsion
p(18) > fra (i€)
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Ideal attraction-repulsion . Lok Alamos

@ Ideal attractive limit
(Casimir 1948)
F_ . m he
A 240 g4
@ Ideal repulsive limit
(Boyer 1974)
F__T7n he S >
A 8 240 d4

@ Real repulsion

Natural occurring materials do NOT have
strong magnetic response in the optical —> Metamaterials

region, 1.e. p =1
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» Los Alamos
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Metamaterials and Casimir

Sunday, August 24, 14



. o ya
Ettective medium approx. SR
Imagine that the metamaterial is probed at 4%
wavelengths much larger that the average E‘EBBEE%%
distance between the constituent “meta- EB@EBE_;{;%
atoms” EBEBEE_—A:J
=
EEEEEEE
In this situation the MM is effectively a %%%BEE%E
continuous medium, whose optical response E@EE%E%E
can be characterized by an effective electric E@E@E%%Q
permittivity and an effective magnetic \\ﬁﬁ/
bility.
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Optical response Lok Alamos

Close to the resonance, both ¢(w)and p(w) can be modeled by

Drude-Lorentz formulas
Typical separations

d = 200 — 1000 nm

\Y4

Infrared-optical frequencies
Q/27 =5 x 10" Hz

] QE’Q/Q = 0.1 QM’Q/Q =0.3
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Attraction-repulsion Crossover . ioaamos

TIONSL LABDESTOEY
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EMA: correct model for u Lok Alamos

@ Drude-Lorentz model for permeability is wrong!

Q@ The correct expression for [ef (w) from Maxwell’s equations

=1 —

@ Correct low frequency behavior m-— i \\ - |
very different from Drude-Lorentz p L “
model _; C;:ll- _-.’—-K | \ 10\" 1007 - 107 107
/’Leff (Zé.) < 1 < Eeﬂ (Zé.) o- ——H «iéb\\\\\ \.\.\.\A:;Z”‘7-':_7-33-.
“““ Hgp!ls) ) Sl ~ I
00T l““l.(l)' (;1.];?\ 10’ 10

No Casimir repulsion!
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Other Casimir MMs: chirality . iz aemes

jf ,3,,,8,:,8,,

@ Constitutive relations mix electric and magnetic fields

D(r,w) = e(w)E(r,w) —ir(w)H(r,w)
B(r,w) = ik(w)E(r,w) + p(w)H(r,w)

Wrw

dispersive chirality: r(w) = —

2 .
W — W, p T+ 1YEW

Reflection matrices become non-diagonal
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Repulsion and chiral MMs Lo Atamos

@ Casimir force between two chiral materials

(73 4 .,,gp . 2_7,§p)6—21x'd - 2(,,,31) 1 ,,,SS,,,pp)2€—4Kd
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Repulsion can be achieved with
strong chirality, which results in
large values of 7y

E/Ahck

-10r

-15

107

kod

@ However, predictions are based on EMA in a region of parameters
where EMA is expected to fail!

Q@ Exact numerics shows that there is no repulsion
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Going beyond EMA 10k Alames

So far, we have treated the MM in the “long-wavelength
approximation”, i.e., field wavelengths much larger than the typical
size of the unit cell of the MM.

@ How to calculate Casimir forces when EMA does not hold?

Homogeneous Non-homogeneous
medium medium
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EMA beyond EMA
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Casimir nanostructures
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Scattering theory 1% Ataos

The Casimir force still may be
described in terms of reflections
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Finding the reflection matrix . icaamos

The reflection matrix can be obtained with standard methods of
numerical electromagnetism. One way is to solve Maxwell equations
for the transverse fields

OF
—ikait =V [X§3 -V X Ht] — kQ,u§3 X Ht
<
OH
~ik— L= Vv, [¢e3  V x By] + k2eé5 x Eq
zZ

Assuming a two-dimensional periodic structure, we have

- 2mn 2mm
E _ ytkr 8mn . .
t(z,y) =e Z n €Xp [z T T+ I, Y
m,n -
: 2 2 |
Ht(:v,y) = e'*T ;Hm,n exXp [Z 2-:x + 1 Z;ny_

)

2mn 2m™m
(@y) = D emn exXp [Z L, 'L y]
x Y

where m,n
2m™n 2mm
p(@,y) = fimn €xp |[i—z +i—y
— L, Ly
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Exact reflection matrix Lok Alamos

One can then write the equations for the transverse fields as

_ T - B 1
g'rznn wrzn n
Yy
a‘Ijm m! __ Z A/, ) . mn _ \Um n
m/n/ mn *mn mn — | qx — | w3
mn ?7/71 n mn
mn \I‘j mn

Here H is a complicated matrix, that encapsulates the coupling of
modes in the periodic structure.

By numerically solving this equation and imposing the proper
boundary conditions of the field on the vacuum-metamaterial
interphase (RCWA or S-matrix techniques), one can find the
reflection matrix of the MM.
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2D periodic structures

A
)
? LpsAlamos

NATIONSL LAETESTIEN

Example: Casimir force between a Au plane and Si pillars/grating /

membrane @ T=300 K
L \ J | | | | | | | | | | |
N eV o= :
8007 17 foilars = 1/4 |
! 1-6"|"‘ ______________ ]
Fa \ A - |
600—‘-“\ <150 L7 fgrating _ 1/2 "
g r o\ \ EE_ Lot :
S i Lo14 i
= S \ mh i S |
S 4000 . 3\ 130 e E
TR Y L |
\‘\\\ 12077 fmembrane = 3/4 ]
LN N A e
200+ \\ \\\\ 1.1 ;/ w’ - ! P ! i
S NN 0 0.2 0.3 0.4 05
Yoo N,
: Cay, ::;~.\__\ - Z (,um)
0 [ | RRRbLI DT 1Y ! ‘ ____ ‘ ___ ‘ ‘ | | | | |
0.1 0.2 0.3 04 o5

(Davids, Intravaia, Rosa, DD, 2010)

CasiMIR FOrcE

R = 50um
period = 400 nm
depth = 1070 nm
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Casimir plasmonics

7

Single interface

Antisymmetric

Symmetric
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Mode summation approach .1z aames

@ Alternative approach: compute Casimir energy as a sum over
zero-point energies

Mirror
ﬂ‘:
g /)
g2
Jounn

v 1o B ) D

y N ) A a—
V V Electromagnetic

Infinite zero point energy Setting the zero jiotd modes

In the case of metallic plates described by the plasma model

L—o0

/L[W]:l }_> E = ZZ[C&M_—Fw]i_)OO —|—Z [pr]

k p,

\

-~ /

~
Plasmonic contribution (Epi)  Photonic contribution (Epn)
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Surface plasmons interaction . icaamos

Single interface (S
@ Surface plasmons: evanescent modes of the %\ -
EM field associated with electronic density r \
oscillations at the metal-vacuum interface. | — o
@ When the tails of the evanescent fields overlap, |

the two surface plasmons hybridize K]
w- K]

@ At short distances the Casimir energy is given by the shift in the zero-point
energy of the surface plasmons due to their Coulomb (electrostatic) interaction

B A d’k [ hw4 + hw_ _Qhw""’ _ hean? A
e (2m)2\ 2 2 2 580\, L2
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Mode spectrum in a cavity

=)
» Los Alamos
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Plasmonic contribution (E,;)

-
—— e e -

Bulk modes

o[k]/wp
o
o

e TE photonic modes

===- Perfect mirrors modes

0 () 0 ) s V) o (6) ) o (5) 1 1.2
clk]/®,

All the TE-modes belong to the propagative sector

They differ from the perfect mirrors modes because
of the dephasing due to the non perfect reflection
coefficient.

53d)>)

Pa L—oo

7

~
Photonic contribution (E,p)

1.2}

== TM photonic modes

e TM plasmonic modes

=== Perfect mirror modes

0 0.2 0.4 0.6 0.8 1 1.2
clkl/o,

TM-modes propagative modes look qualitatively like TE
modes.

There are only two evanescent modes.They are the
generalization to all distances of the coupled plasmon
modes.
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Plasmonic & photonic parts . icaemes

0.5} /_w
0

-0.5¢

Lifshitz = Red + Blue |

-1.5¢

o o1 02 03 04 05
L/
@ The photonic contribution is always attractive

@ The plasmonic contribution is repulsive at large distances, and
attractive at short distances

@ Their sum is always attractive due to a delicate cancellation

Can one control the Casimir force by changing the
balance of the two contributions?
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Metallic nano-gratings Lok Alamos

p
| €—>} Metallic grating

"

MEMS
oscillator

P 5

electrode electrode

~
~
N
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Uniform
flime s > >

Grating
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Strong force reduction L
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» Los Alamos

. frrvrryrrrrprrrrprrrrey
@ Torsional balance set-up Al
1.00 _
@ Metallic sphere (R = 150 pm) . s w
: « 250 90 216
@ Metallic nanostructures w, p, h ~ 100 nm B e e
075 L . 300 130 480 -
R . | © « 600 110 500
@ Sputtering and electroplating : 800 150 500
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X :
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: k ~ ":: f —_— — i
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Sunday, August 24, 14




/2

Modeling and simulation Lok Alamos

Q@ Use of standard PFA to treat the sphere’s curvature
Fi,~2rRP);  d/R<6x1073
@ Exact plane-grating pressure I’

Scattering approach + modal expansions

E.(z,y) i
Ey(2,y) (5,03 () [ (5,7 2[5
) _ A1)y (8,0 x, VSJ A Y
H(z,y) ; ’ S
Hﬂ?(xay) 1 7

Analytical expressions for eigenvectors

Transcendental equation for eigenvalues oo

0 =D (n) = — cos(aop) + cos(p1+/7) cos(pav/n — [(i€) — 1]€3)
1 (wn GO -TE | o’G@)ya

(8) /- — I 5

oy (i€) /7 Vi — [e(i€) — 1J¢

) sin(py /) sin(pay/7 — [€(i€) — 1)82),

o
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Reflection matrices
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» Los Alamos
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Normalizing to grating’s PFA . isasmos

P;ngA(d) = [Ppp(d) + (1 — f)Ppp(d + 1)

1.0 SR
Vo AN,
Woad oo 0
05 TR Small separations: PFA
e .
: underestimates the total pressure
o 0.0 # '.t:,--.:
o =250nm, w=90nm, h=216nm el .
i Large separations: PFA
-0.5 =300nm, w=H6nm, h=214nm—— -3 .
(Similar filling factors) i Ykoveres.’umates. the exact pressure
-1.0 ;
f1=0.360 f1 =0.387

: , : —4
200 300 500 700 1000 Pressure is going to zero faster than d
Distance(nm)

Q@ Strong suppression of the Casimir force
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Previous works on 51 gratings - Loaames

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

150 - 14? ““““““““

<
&

= 100 - L;

3. <

= L

=z

8 L

. 0.9

50 - 08 ]
015 020 025 030 0.35 0.40 0.45 050
O ............. PSP TS W VU VR MR e
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Z (um)
period=1um, depth = 1070 nm, and filling factor = 0.510
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PFA underestimates the real force
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Open problem

n
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» Los Alamos

1.4
————_ ~_ EMA Limit
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| PFA Limit e ~—__ 1 Numerical crosschecks
T 0.8l 2 show that the theory is
o | A accurate within few %
> 0.6| R
| e
0.4l LA Double checks on the
bR experiment show no
0.2] s apparent mistakes
0.0l 2o '
100 200 500 1000 2000 5000

Distance (nm)

Experiment/theory discrepancy: open problem in Casimir physics
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What is going on? Los Alamos

Q@ Are there problems with the experiment?

- set-up similar to previous ones
- sphere-plane force re-obtained with new set-up

@ Are we correctly describing the experiment?

- finite-size grating

P (Pa)

- thermal equilibrium

@ Is something wrong with the theory? o W.,W.../ .......
- Reflection matrices prereeum
- Optical properties
- Surface roughness S
- Electrostatic patches lPF A
- Validity of PFA for the sphere’s curvature Ty
_ etc -]
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Flnal Comments . Lgs Alamos

Q@ Importance of correct description of optical properties

@ Narrow-band intuition (as in standard photonics) does not
always work in Casimir physics

@ Care must be exercised when using effective medium
approximations in Casimir physics

@ There are still open problems
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Thank you!

Loctuee Notes In Py B4
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