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Part I: Review



The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by
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h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ) TrG(RA,RA, iξ)

Atomic polarizability:

Scattering Green tensor:

α(ω) = lim
ε→0

2

3h̄

∑

k

ωk0|d0k|2

ω2
k0

− ω2 − iωε

RA

(

∇×∇×−
ω2

c2
ε(r, ω)

)

G(r, r′, ω) = δ(r − r
′)
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Modern CP experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10% UCP = −

1

4πε0

π3h̄cα(0)

L4

[

3 − 2 cos2(πz/L)

8 cos4(πz/L)

]



Modern CP experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10%

 Classical reflection on atomic mirror Aspect et al (1996)
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Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



Modern experiments (cont’d)

 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2

 BEC oscillator Cornell et al (2007)



Part II:  Thermal CP force 



Surface-atom forceSurface-atom force
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Force includes  zero-point  (or vacuum) fluctuations effects +
thermal (or radiation) fluctuations effects  (crucial at large distance!)

Radiation from the substrate

Radiation from 
the environment (cell)

Radiation from the atom
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 force decays slower than  at thermal equilibrium:

 force depends on temperature more strongly than at equilibrium

 force can be attractive or repulsive depending on relative
  temperatures of substrate and environment

 simple extension to metals (Drude model                        )
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Large distance asymptotic behaviours

substrate environment

ωπσε /4'' =

M.Antezza, L.P.Pitaevskii and S.Stringari, PRL. 95, 093202 (2005)E.M. Lifshitz, Dokl. Akad. Nauk. 100, 879 (1955)

System at equilibrium System out of equilibrium
NEW



Attractive force ->  Trap
frequency decrease

Unperturbed
trap, ω

Modified
trap, ω

Move near
the surface

Use trapped BEC as a mechanical oscillator:
Measure changes in oscillation frequency

Oscillating
BEC

Surface

Measuring atom-surface interactions: dipolar oscillations of a BEC

Total force on the BEC is the sum of the forces on individual atoms. Role of 
BEC coherence/superfluidity not central.  A BEC is convenient since it is a 
spatially compact collection of large number of particles, well controlled.
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In M. Antezza, L.P. Pitaevskii and S. Stringari, PRA 70, 053619 (2004), the surface-atom
force has been calculated and used to predict the frequency shift of the center of mass
oscillation of a trapped Bose-Einstein condensate, including:
• Effects of finite size of the condensate
• Non harmonic effects due to the finite amplitude of the oscillations
• Dipole (center of mass) and quadrupole (long living mode) frequency shifts

Frequency shift of collective oscillations of a BEC
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+ surface-atom force  frequency of 
center of mass motion is given by 

Linear approximation 

First non-linear correction
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a= amplitude of c.m. oscillation

              Thomas-Fermi inverted parabola



Thermal effects on the surface-atom force

T=0K

T=300K

- Sapphire substrate
- Rubidium atoms

T=600K

Non-equilibrium:
substrate       T=300K
environment  T=600K

Non-equilibrium:
substrate       T=600K
environment  T=300K

equilibrium

Change of sign!



  Multiple dielectric surfaces!  Amorphous glass, crystalline sapphire.

  No conducting objects near atoms!

Fused
Silica

Sapphire BK7
Glass

Fused
Silica

Science Cell

                         The experimental apparatus

Interferometric measurement 
of temperature of substrate:
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Conclusions

    Surface-atom force out of thermal equilibrium exhibits  new asymptotic (large
     distance)  behaviour and can provide a new way to measure thermal effects

   Center of mass oscillation of a trapped Bose-Einstein condensate provides  a
      powerful mechanical tool to detect surface-atom force at large distances, and
      agrees with theoretical predictions for Casimir-Polder force
      (first measurement of  thermal effect)   Trento-Boulder collaboration

  Recent  realizations of  ultra-sensitive  atomic interferometers based on Bloch
     oscillations of  weakley  interacting BEC are encuraging  for  higher  precision
     measuments of small forces (surface-atom, possible non-Newtonian, etc. etc.)
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Part III:  Lateral CP force



CP within scattering theory

h(x,y)
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Ep′ (k′
, ω)

→
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→
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∫
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Input and output fields related via reflection operators

→
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∫
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Casimir-Polder force:
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2κ′
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Output fields:
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Specular/non specular scattering

〈k, p|R(0)|k′, p′〉 = (2π)2δ(2)(k − k
′) δp,p′ rp(k, ξ)

h(x,y)

In order to treat a general rough or 
co r ru g a t ed s u r f a c e , we make a 
perturbative expansion in powers of h(x,y) 

R = R
(0)

+ R
(1)

+ . . .

 Specular reflection:

rTE =
κ − κt

κ + κt

rTM =
ε(iξ)κ − κt

ε(iξ)κ + κt

(κt =
√

ε(iξ)ξ2/c2 + k2)Fresnel coefficients

 Non-specular reflection:

〈k, p|R(1)|k′, p′〉 = Rp,p′(k,k′) H(k − k
′) Fourier transform of h(x,y)

Greffet (1988), Reynaud et al (2005)

The non-specular reflection matrices depend on the geometry and material properties.

  See talk by Valery Marachevsky for an exact calculation of the Casimir force between 
real plates with rectangular corrugation (experiment by H. Chen for beyond-PFA forces)



Lateral Casimir-Polder force

UCP = U
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Approx. methods: PFA & PWS
  Proximity Force Approximation (PFA)

≈

  Pair-wise Summation (PWS)

ρPWS ≡

g(kc, zA)

gPWS(kc, zA)

  Deviations from PFA and PWS

Example:                                     

atom-surface distance                                    
   

zA = 2µm ! λA

corrugation wavelength                                   λc = 3.5µm

PFA largely overestimates the lateral CP force
PWS underestimates the lateral CP force                                               

ρPWS ≈ 115%

ρPFA =
g(kc, zA)

g(0, zA)

ρPFA ≈ 30%

zA − h

FL

zA

λc

FL

h

FL

λc ! zA
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  Optical data + Kramers-Kronig relations

ε(iξ) Reynaud et al (2005)
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Atoms as local probes
In contrast to the case of the lateral Casimir force between corrugated surfaces, an 
atom is a local probe of the lateral Casimir-Polder force. Deviations from the PFA 
can be much larger than for the force between two surfaces!

  Even larger deviations from PFA/PWS can be 
obtained for a periodically grooved surface.

  If the atom is located above one plateau, the PFA predicts that the lateral 
Casimir-Polder force should vanish.  A non-vanishing force appearing when the 
atom is moved above the plateau thus clearly signals a deviation from PFA! 

  A lateral force appears for PWS, but it should be much smaller than the 
exact result. 

  Deviations from PFA/PWS can be obtained 
for a sinusoidal corrugated surface.



CP energy for grooved surface 

h(x) = a

(

1 −

s

2λc

)

+
2aλc

π2s

∞
∑

n=1

(−1)n+1 1 − cos(nπs/λc)

n2
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(

2πnx
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 Surface profile for periodical grooved corrugation

U
(1)
CP(RA) =

∫
d2k

(2π)2
eik·rA g(k, zA) H(k) H(k)

  Single-atom lateral CP energy: it can be easily calculated using that the first 

order lateral CP energy                                                 is linear in 

kczA = 0.3 kczA = 10

zA



BEC as a field sensor

 BEC oscillator

Antezza et al (2004) Cornell et al (2005, 2007)

  The normal component of Casimir-Polder force 
shifts the normal dipolar oscillation frequency of a BEC 
trapped above a surface 

U
(0)
CP(z)

CM

V (r) = Vho(r) + UCP(r)

Vho(r) =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2) ωy ! ωx = ωz

  In order to measure the lateral component              , a cigar-shaped BEC could 
be trapped parallel to the corrugation lines, and the lateral dipolar oscillation  
measured as a function of time

ω2
x,CM = ω2

x
+

1

m

∫
dxdz n0(x, z)

∂2

∂x2
U

(1)
CP(x, z)

U
(1)
CP(x, z)

Lateral frequency shift: 



BEC as a field sensor (cont’d)
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the potential 
is related to the 1D density profile as

Measurement of the magnetic field 
variations along a current-carrying wire

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)



BEC as a field sensor (cont’d)
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the potential 
is related to the 1D density profile as

Measurement of the magnetic field 
variations along a current-carrying wire

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)

  To measure the lateral CP force, the elongated 
BEC should be aligned along the x-direction, and a 
density modulation along this direction above the 
plateau would be a signature of a nontrivial 
(beyond-PFA) geometry effect.

   
∆U

(1)
CP ! 10

−14
eV

For the lateral CP force, perfect conductor, 
sinusoidal corrugation (                  ), distance       
               , PFA limit 

a = 100nm

zA = 2µm (kczA ! 1)

CM
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Single-atom/BEC frequency shift

 Single-atom / BEC comparison

Rb Rbωx/2π = 229 Hz

s = λc/2

a = 250nm

zCM = 2µm

λc = 4µm

   

Given the reported sensitivity                        for relative frequency shifts from E. 
Cornell’s experiment, we expect that beyond-PFA lateral CP forces on a BEC 
above a plateau of a periodically grooved silicon surface should be detectable for 
distances                , groove period              , groove amplitude               , and a 
BEC radius of, say, 

γ = 10
−5

− 10
−4

zCM < 3µm λc = 4µm a = 250nm

R ≈ 1µm

γ0 ≡

ωx,CM − ωx

ωx

 Single-atom lateral freq. shift 



Towards the experiment

 Surfaces are being fabricated by Matt Blain

 CP force measurements with BEC will be done by Malcolm Boshier

SiO2

Si3N4

Si

SiO2

Number of periods, 100/set
•Length of “grooves”, 2 mm
•see next slide

Si

Process sequence
1. Deposit/pattern SiN oxidation mask
2. Grow SiO2 in exposed Si to thicknesses of t = 100, 200, 500 and 2000 nm

t
a = 0.44t

c~ 5 µm sinitial = c/2 = 2.5 µm

3. Strip SiN and SiO2

Si

a = 44, 88, 220, 
and 888 nm

4. Deposit SiO2 or Au to a thickness of w = 1 µm

SiO2 or Au

Corners will be rounded by the oxidation process in step 2

sfinal ≈ c/2 – w ≈ 2.0 µm
 ≈ 0.5, step coverage factor

sfinal may be adjusted by changing sinitial



Summary part III

  Novel cold atoms techniques open a promising way of 
investigating nontrivial geometrical effects on quantum vacuum

  Important feature of atoms: they can be used as local 
probes of quantum vacuum fluctuations

  Non-trivial, beyond-PFA effects should be measurable using 
a BEC as a vacuum field sensor with available technology

For more details see: 

Dalvit, Maia Neto, Lambrecht, and Reynaud,  
Phys. Rev. Lett. 100, 040405 (2008)

J. Phys. A 41, 164028 (2008)



Part IV: Carrier drift in SC

In collaboration with Steve Lamoreaux 
(theoretical and experimental work in progress)

Some preliminary results in arXiv: 0805.1676



Part IV: Carrier drift in SC

 Maxwell eqns  Boltzmann eqn

Mobility

Debye length

Diffusion constant

= κ2 = 1/R2
D

The equation for the field allows TE and TM solutions. 



Reflection coefficient w/ drift

 TE modes

 TM modes

 Quasi-static limit - Application to thermal CP force for surfaces with small density 
of carriers (semiconductors, dielectrics)

 (ideal dielectric limit)d! RD

d! RD  (good conductor limit)

 Relation to spatial dispersion in Casimir physics.



Carrier drift / conduc. in SC

 Application to intrinsic semiconductors: Ge and Si

Including the effect of conductivity        l     leads to an increase of the force in disagreement 
with Cornell’s experiment    


