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Unconditional Pointer States from Conditional Master Equations
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When part of the environment responsible for decoherence is used to extract information about the
decohering system, the preferred pointer states remain unchanged. This conclusion — reached for a spe-
cific class of models —is investigated in a general setting of conditional master equations using suitable
generalizations of predictability sieve. We also find indications that the einselected states are easiest to
infer from the measurements carried out on the environment.
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Introduction.—Open quantum systems undergo
environment-induced superselection (einselection) which
leads to a preferred set of quasiclassical pointer states
[1]. They entangle least with the environment — and,
therefore, lose the least information. Hence, they can be
found using the predictability sieve, which seeks states
minimizing entropy production [2].

However, the information lost to the environment could
be, in principle, intercepted and recovered. Will the pre-
ferred states remain at least approximately the same when
the environment is monitored in this fashion? This is a
serious concern, as decoherence is caused by the entangle-
ment between the system S and the environment E . It
is well known that a pair of entangled quantum systems
suffers from the basis ambiguity: One can find out about
the different states of one of them (e.g., S ) by choosing a
different measurement of the other (e.g., E ) [1].

This issue was pointed out, for example, by Carmichael
et al. [3], who used complete monitoring of the photon
environment to develop a trajectory approach to quantum
dynamics [4]. Reference [3] demonstrated that —when all
of E can be intercepted — any basis of S can be inferred
from the appropriate measurement on E , so at least in that
limit substantial ambiguity is inevitable. This concern is
further underscored by the realization [5] that nearly all
of our information comes not from direct observation of
the system, but, rather, by intercepting a small fraction of
(e.g., photon) environment.

Here we use the predictability sieve in combination
with the conditional master equation (CME) [6] (which is
obtained when only a part of the environment — and not all
of it —is traced out). We show — using specific models —
that even when the additional data are taken into ac-
count, the pointer states are unchanged. We demonstrate,
using fidelity, that even when all of E is intercepted
pointer states are unchanged. Moreover, using specific
models we find indications that — for an observer who ac-
quires the data about the system indirectly by monitoring
the environment —pointer states are easiest to discover.

An example of CME. —The master equation for a driven
two-level atom whose emitted radiation is measured by
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homodyne detection [4,6] is an example of CME,
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where we set the spontaneous emission time to 1. We
use the Itô version of stochastic calculus. r is a 2 3 2
density matrix of the atom, V is a frequency of transitions
between the excited and the ground state driven by a laser
beam, g � Reif is the amplitude of the local oscillator
in the homodyne detector, and c � �sx 2 isy��2 is an
annihilation operator. Nt is the number of photons detected
until time t. Its increment dN [ �0, 1� is a dichotomic
stochastic process with the average

dN � hdt Tr�r�cy 1 g�� �c 1 g��

� hdt�R2 1 �sx	R cosf 2 �sy	R sinf 1 �cyc	�
(3)

and dN2 � dN . The parameter h [ �0, 1� describes the
efficiency of the measurement. A fully efficient measure-
ment �h � 1� occurs when the observer is continuously
projecting the environment onto a pure state, so that an
initial pure state of the system remains pure after the mea-
surement [7]. In the fully inefficient h � 0 case, the
observer has no measurement records or ignores them
completely. In this case, the equation reduces to the un-
conditional master equation (UME), dr � drUME.

The average over realizations dr � drUME, because
dN 2 dN � 0 and drst � 0. dr � drUME is not a spe-
cial property of Eq. (1) and (2) but an axiomatic property
of any CME. The noise average means that we ignore any
knowledge about the state of environment so the state of
the system cannot be conditioned by this knowledge.
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For R � 0 the measurement scheme is simply a pho-
todetection: dN is proportional to the probability that the
atom is in the excited state. Every click of the photode-
tector �dN � 1� brings the atom to the ground state, from
where it is excited again by the laser beam. For R ¿ 1
the homodyne photodetector current is a linear function of
�sx	 
 Tr�rsx� for f � 0 (x measurement) or of �sy	
for f � 2p�2 (y measurement). These homodyne mea-
surements drive the conditional state of the atom towards
sx and sy eigenstates, respectively.

Conditional pointer states are unconditional.—Are the
pointer states of a stochastic CME the same as pointer
states of its corresponding deterministic UME? An affir-
mative answer requires the assumption that there is only
one type of environment coupled to the system and the
detector, but to nothing else, so that the detector can, in
principle, be fully efficient �h � 1� in continuously pro-
jecting the environment onto pure states. This assumption
is standard in quantum optics [7].

According to the predictability sieve [2], pointer states
minimize the increase of von Neumann entropy, or, equiv-
alently, the decrease of purity P � Tr�r2� due to the in-
teraction with an environment. Suppose that we prepare a
system in a pure state r0 � r

2
0 . The noise-averaged initial

rate of purity loss is

dP0 
 Tr�2r0dr0 � 1 Tr� dr0dr0 � . (4)

Any CME can be written in the form of Eq. (1), where
Nt would represent a general stochastic process. The sto-
chastic process feeds the information from measurements
of E into the conditional state of S . The noise-averaged
dr0 � dr

UME
0 depends neither on the efficiency h nor on

the kind of measurement we make on E . For a determinis-
tic UME the second term on the right-hand side of Eq. (4)
would be O�dt2�. For a stochastic CME this second term
gives a contribution proportional to hdt which comes from
Tr� drstdrst �. The manifestly positive second term re-
duces the rate of purity loss because a measurement of E
tends to purify the conditional state. For h � 1 the ob-
server gains full knowledge about the environmental state,
the conditional state of the system remains pure all the
time, and dPt � 0. Thus we see that for h � 1 the two
terms of Eq. (4) should cancel each other. Given that the
first and second terms cancel for h � 1 and that the sec-
ond term is linear in h, we can write the initial purity loss
rate as

dP0 � �1 2 h�Tr�2r0drUME
0 � . (5)

Up to the prefactor of �1 2 h� this expression is the same
as the corresponding one for the UME. Except for h � 1
we can conclude that pointer states are the same as those
for the UME no matter what the efficiency is or what type
of measurement is being made.

When h � 1 we have dP0 � 0 and no preferred pointer
states can be distinguished with the predictability sieve, in
accordance with [3]. However, even the conditional pure
state can drift away from the free unitary evolution due
374
to the coupling with E which is measured completely
�h � 1�. The faster it drifts away the less predictable
is the state of the system. The fidelity with respect to
the initial state is defined as Ft � Tr�r0rint

t �, where the
superscript “int” refers to interaction picture. For any h

the noise-averaged initial decrease of fidelity is

dF0 
 Tr�r0dr0 � � Tr�r0drUME
0 � . (6)

Thus, UME pointer states maximize fidelity.
Fidelity and purity provide a basis for two physically dif-

ferent criteria which lead to the same unconditional pointer
states [8]. UME is an average over CME’s, so for linear
predictability criteria the pointer states should not change.
We have, however, seen that the same holds for purity,
which is nonlinear.

The expressions (5) and (6) can be worked out for
the example of the two-level atom master equation. For
V ø 1 there is one pointer state: the ground state. An
atom in the ground state cannot change its state by photo-
emission and the external driving is slow. In the limit V ¿
1 the externally driven oscillations are much faster than
photoemission. In fact it would be misleading to use
Eq. (5) and (6) as they stand. It is more accurate to
average them over one period of oscillation: dF0 �
V
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8. Here the density matrix is parametrized by rt �
�I 1 xtsx 1 ytsy 1 ztsz��2 with x2

t 1 y2
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t # 1.
Given the last constraint, the states with x � 61 (eigen-
states of the self-Hamiltonian Vsx) are pointer states [9].
It should be noted that dP0 or dF0 for, say, y � 61 states
(sy eigenstates) is only 50% worse than for the pointers,
for reasons that are specific to our small system.

Pointer states are the easiest to find.— Given the
assumptions of the argument above, we have seen that
pointer states do not depend on the kind of measurement
carried out by the observer or on its efficiency. This
robustness of pointer states might convey the wrong
impression that all types of measurements are equivalent
from the point of view of the observer trying to find
out about the system by monitoring its environment.
In what follows we give two examples which strongly
suggest that the measurement of the environment states
correlated with the pointer basis of the system is the most
efficient one in gaining information about the state of
the system.

We begin with the two-level atom. In the limit of
V ¿ 1, the pointer states are eigenstates of the driv-
ing self-Hamiltonian Vsx . For h � 0 the UME has
a stationary mixed state rs � I�2 1 O�1�V�. Sup-
pose that we start monitoring the environment of the
atom at t � 0 [detectors are turned on at t � 0, and
h�t� � hu�t�]. How fast do we find out about S ? This
can be measured by the purity of the conditional state.
For h ø 1 the response of r to the switching-on of h

at t � 0 can be described by a small perturbation of the
density matrix dr � �sxdx 1 sydy 1 szdz��2 such
that r � rs 1 dr. The evolution of dr is described by
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where dn � dN 2 dN and dN � hdt�R2 1 1�2�. For
R ¿ 1 a formal solution of these stochastic differential
equations leads to a noise-averaged purity
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For any time t . 0 the highest purity is obtained for
homodyne (R ¿ 1) measurement of �sx	 �f � 0�. As
anticipated, this is the measurement in the basis of envi-
ronmental states correlated with the pointer states of the
system. The purity saturates for t ¿ 1 at

P` �
1
2

1
h

6
�3 cos2f 1 2 sin2f� , (9)

for R ¿ 1. The small h measurements in the pointer
state x basis �f � 0� are only 50% better than in the y
basis �f � p�2� (see Fig. 1). As mentioned before, in
the two-level atom, pointer states are not well distinguished
from the chaff by the predictability sieve.

To try with an example known for well-distinguished
pointer states, let us pick the quantum Brownian motion at
zero temperature. We can think of the environment quanta
as phonons. The CME obtains from Eqs. (1) and (2) (by
a formal replacement) c ! a, where a, ay are bosonic
annihilation/creation operators,
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This equation is valid in the rotating wave approximation.
After the replacement c ! a in Eq. (3), we get

dN � hdt�R2 1 �a	Re2if 1 �ay	Re1if 1 �aya	� .

For R � 0 the measurement drives the conditional state to
the ground state of the harmonic oscillator. In the homo-
dyne limit �R ! `� the phonodetector current gives infor-
mation about the coherent amplitude �a	 of the state; the
conditional state tends to be localized around coherent
states.

For the pointer states fidelity loss dF0 � Tr�r0 3

dr
UME
0 � � Tr�r0ayr0a 2 r0aya� is the least. It van-
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FIG. 1. Purity gain, DP � P 2 1�2, as a function of the ho-
modyne phase f according to the formula (8) for times: 0.5,
1, and 10. The parameters were chosen as h � 0.1, R � 100
(homodyne limit).

ishes if r0 is a coherent state, r0 � jz	 �zj (ajz	 � zjz	):
Coherent states are perfect pointers. In contrast to other
states such as, say, number eigenstates, initially they do
not lose either purity � dP0 � 0� or fidelity � dF0 � 0�
(but see [10]).

We expect homodyne measurement to provide more in-
formation than phonodetection. To support this, pick a
coherent state jz	. If r � jzj ¿ 1, then �1z j2z	 � 0
and ayjz	 � z�jz	. In this approximation, a general den-
sity matrix, in the subspace spanned by j6z	, is

r �
1 1 A

2
j1z	 �1zj 1

1 2 A
2

j2z	 �2zj

1 Cj1z	 �2zj 1 C�j2z	 �1zj . (11)

Here A [ �21, 11�. Substitution of Eq. (11) into
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FIG. 2. The probability distribution Eq. (13) for early �t �
0.05�, intermediate �t � 0.5�, and late �t � 5� times.
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Eq. (10), and subsequent left and right projections on
j6z	, gives stochastic differential equations for A and C.
These equations are most interesting in two limits. In the
phonodetection limit �R � 0� they are dA � 0, dC �
2C�2r2dt 1 �dN 2 dN ��. The off-diagonal C decays
after the decoherence time of 1�r2 ø 1. A does not
change; phonodetection does not produce any purity.
Phonodetection is a very poor choice: By this mea-
surement we learn nothing about the system. In the
opposite homodyne detection limit �R ! `� the noise
dN 2 dN can be replaced (up to a constant) by a
white noise dW such that dW � 0 and dW2 � dt [11].
Again, C decays after the decoherence time of 1�r2.
Introducing B � tanh 21�A�, defining a time scale t 

4thr2 cos 2�f 2 u� [here u is the phase of the coherent
state, z � r exp�iu�], and a noise dz 
 2

p
h r cos�f 2

u�dW �dz 2 � dt�, we get the following Stratonovich
stochastic equation:

dB
dt

� tanhB 1
dz

dt
. (12)

Suppose that at t � 0 we had A � B � 0 and C � 0.
This is the most mixed state possible in our subspace. The
probability distribution for A at time t . 0 is
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This distribution is localized at A � 0 for t � 0 but after
a time scale t � 1 it becomes concentrated at A � 61
(see Fig. 2). By these times the conditional state is almost
certainly one of the coherent states j6z	 and purity is 1.
The asymptotic bimodal distribution is obtained the fastest
for a homodyne tuned to the phase of the coherent states,
f � u. This result is in sharp contrast to the nil result for
phonodetection. In Fig. 3 we plot three realizations of a
stochastic trajectory A�t�.

For any h , 1, purity becomes 1 after a time propor-
tional to 1�h. A patient observer gets the full information
about the system monitoring only a small part of the envi-
ronment: Information about pointer states is recorded by
the environment in a redundant way [12,13].

In the above example we assumed that r � jzj ¿ 1 so
that �1z j2z	 � 0 and ayjz	 � z�jz	. This convenient
assumption also naturally separates the decoherence and
purification time scales (�1�r2) from the time scale for
decay towards the ground state (�1). On the fast time
scales �1�r2 we can neglect the decay and that is why
our system remains in the j6z	 subspace. In this sense our
calculation is self-consistent.

Concluding remarks.—The aim of our paper was to
study the issue of the preferred states in the context of con-
ditional master equations using the predictability sieve. We
have shown under reasonable, but not completely general,
conditions that the most classical states of a system which
is being monitored are independent both of the type of
measurement and of the detector efficiency. Furthermore,
we have found indications that the best measurements of
376
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FIG. 3. Three stochastic trajectories of A�t� evolving accord-
ing to Eq. (12). For any time t an average over such trajectories
gives a probability distribution like that in Fig. 2 For late times
the trajectories settle down at A � 61; the frequency of jumps
between A � 61 decays like exp�2t�2��

p
t.

the environment for gaining information about a system
extract data about its pointer basis.
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