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We develop a theory for Casimir-Lifshitz and Casimir-Polder interactions with semiconductor or

insulator surfaces that takes into account charge drift in the bulk material through use of the classical

Boltzmann equation. We derive frequency-dependent dispersion relations that give the usual Lifshitz

results for dielectrics as a limiting case and, in the quasistatic limit, coincide with those recently computed

to account for Debye screening in the thermal Lifshitz force with conducting surfaces with small density

of carriers.

DOI: 10.1103/PhysRevLett.101.163203 PACS numbers: 34.35.+a, 12.20.�m, 42.50.Ct, 78.20.Ci

Introduction.—Propagating waves inside semiconduc-
tors interact with drifting carriers in the bulk material,
and this is the basis of phenomena such as solid-state
traveling-wave amplification [1,2]. Typically, an ultrasonic
wave or a microwave incident on a semiconductor is
amplified when the mean drift velocity of carriers exceeds
the phase velocity of the propagating wave. The theoretical
description of this phenomenon involves Maxwell’s equa-
tions for the electromagnetic field coupled to the classical
Boltzmann transport equation to describe the motion of
charged carriers in the bulk semiconductor.

In principle, the same type of coupling between prop-
agating waves and drifting carriers is also present for
quantum vacuum fluctuations of the electromagnetic field
in the presence of semiconductor boundaries. Hence, one
should expect that the complete description of the Casimir-
Lifshitz force between bulk materials and the atom-surface
Casimir-Polder force [3] should take into account the
possibility of carrier drift when one of the surfaces in-
volved is a semiconductor or a conductor with small den-
sity of carriers. In this limit, the classical Boltzmann
equation can be used to determine the dynamic equilibrium
between a time-varying and spatially varying electric field
and changes in the charge density within the material.

The effect of material properties on quantum vacuum
forces is encapsulated in the Lifshitz theory through the
frequency-dependent reflection amplitudes rpk;jði�nÞ of the
jth material boundary. Here p denotes the polarization of
incoming waves (transverse electric TE or transverse mag-
netic TM), k is their transverse momentum, and the reflec-
tion amplitudes are evaluated at imaginary frequencies
! ¼ i�n, where �n ¼ 2�nkBT=@ are the Matsubara fre-
quencies. The Casimir-Lifshitz pressure between two
plane semispaces separated by a vacuum gap d is [3]
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where K3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2=c2

p
and the prime in the sum over n

means that a factor 1=2 is to be included for the n ¼ 0
term. Equation (1) can be easily generalized to the cases
when there is mixing of polarization upon reflection by
replacing the reflection amplitudes by reflection matrices
and the sum over p by a trace. Assuming that one of the
media is dilute, one can derive from Eq. (1) the Casimir-
Polder force on an atom above a planar surface [3]. It has
been shown that the form of the plate(s) electrical permit-
tivity used to compute the reflection amplitudes via Fresnel
relations vastly alter the magnitude and form of the force in
these calculations [4]. The effect of carrier drift in the case
of dynamic fields has not yet been studied in relation to
Casimir-like forces, and as we show in this Letter, alters
the form of the field mode equations.
Recently Pitaevskii [5] has proposed a theory for the

thermal Lifshitz force between an atom and a conductor
with a small density of carriers that takes into account the
penetration of the static component of the fluctuating EM
field into the conductor. This approach is quasistatic, ap-
propriate for the large distance regime of the thermal
Lifshitz atom-surface interaction, and is essentially based
on the Debye-Hückel charge screening [6]. In this static
limit, the reflections coefficients are rTEk ð0Þ ¼ 0 and
rTMk ð0Þ ¼ ð ��0q� kÞ=ð ��0qþ kÞ. Here ��0 is the static

‘‘bare’’ dielectric constant of the medium (which does
not take into account the contribution from current car-

riers), q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2

p
, and �2 ¼ 4�e2n0= ��0kBT, where�e

is the electron charge and n0 is the (uniform) carrier
density [5]. Note that � ¼ 1=RD is the inverse of the
Debye radius RD. For good metals the Debye radius is
very small (on the order of interatomic distances), while for
semiconductors it is much larger (on the order of microns
or more). This quasistatic calculation for the thermal
Lifshitz force interpolates between the ideal dielectric limit
(d � RD) and the good conductor limit (d � RD). We
further point out that the Debye-Hückel charge screening
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effect can produce a large correction to an electrostatic
calibration because a static field can penetrate a finite
distance into the plates, leading to an error in the determi-
nation of the plate separation [7]. On the other hand, it can
be expected that screening should affect dynamic fields as
well; however, the phenomenological dispersion relation
suggested in [7] for dynamic fields is shown here to be
incorrect. In the following we will extend Pitaevskii’s
calculation beyond the quasistatic regime.

Field equations.—For an intrinsic semiconductor, the
densities of carriers and holes are comparable, but the
dynamics are different. Here we follow the approach in
[1,2], and treat the carriers and holes as dynamically
equivalent, which roughly doubles the charge density.
This treatment is very accurate in the quasistatic limit.
Assuming that there is no external applied field on the
semiconductor, and all fields have a time dependency of
the form e�i!t, Maxwell’s equations take the form r�
E ¼ i�0!H, r�H ¼ �i ��ð!Þ!Eþ J, and r �E ¼
�en= ��ð!Þ. Here ��ð!Þ is the frequency-dependent bare
permittivity of the semiconductor, that does not take into
account the contribution from current carriers, n is the
intrinsic carrier density, and �0 is the permeability of
vacuum. The carrier current is J ¼ �env, where v is the
mean velocity of carriers. The fact that carriers can drift in
the semiconductor is modeled by Boltzmann transport
equation [1,2]

�
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þ v � r

�
v ¼ � e
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E� v2

T

n
rn� v

�
; (2)

where m is the effective mass of the charge carriers, vT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is their mean thermal velocity, and � is the carrier

relaxation time. Linearizing Eq. (2) with respect to the ac
fields which have a factor e�i!t, one can solve it forrn and
then use the result in Maxwell’s equation to derive the
fundamental equation for the electric field inside the semi-
conductor [1,2]

�
r2 þ�0 ��ð!Þ!2

�
1þ i

~!c

!

��
E ¼ ½1þ i�0 ��ð!Þ! ~D�r

� ðr �EÞ: (3)

Here ~!c ¼ !c=ð1� i!�Þ and ~D ¼ D=ð1� i!�Þ, where
!c ¼ 4�en0�= ��ð!Þ, � ¼ e�=m is the mobility of car-
riers, and D ¼ v2

T� is the diffusion constant. Note that the
frequency-dependent ratio !c=D ¼ 4�e2n0= ��ð!ÞkBT co-
incides with �2 ¼ 1=R2

D in the quasistatic limit.
TM and TE reflection amplitudes.—Let us assume that

the semiconductor occupies the semispace region z < 0
and the region z > 0 is vacuum. Equation (3) allows TM
and TE solutions. For TMmodes ey ¼ 0, so that (the phase

factors e�i!t will be omitted from now on) E ¼ ½exðzÞx̂þ
ezðzÞẑ�eikx. Substituting this into Eq. (3) one gets two
coupled equations, which can be combined into two un-
coupled fourth-order differential equations for ex and ez,
namely ð@2z � �2

TÞð@2z � �2
LÞex ¼ 0 and ð@2z � �2

TÞ�

ð@2z � �2
LÞez ¼ 0, where [1]
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The solutions that vanish for z ! �1 are exðzÞ ¼
ATe

�Tz þ ALe
�Lz and ezðzÞ ¼ A0

Te
�Tz þ A0

Le
�Lz, where

we assume Re�T and Re�L to be positive. The amplitudes
AL and AT are arbitrary so far, and A0

L ¼ �i�LAL=k and
A0
T ¼ �ikAT=�T . The magnetic field inside the semicon-

ductor is H ¼ iŷATe
�Tzeikxðk2 � �2

TÞ=�0!�T .
The boundary conditions on the z ¼ 0 interface are Hk,

Ek,D? and B? continuous. The latter one is automatically

satisfied for TM modes, while the other ones imply Ex and
Hy continuous, and ��ð!ÞEz continuous. Imposing these

boundary conditions, and using the expressions for the
fields inside the semiconductor derived above, we obtain
the reflection amplitude for fields impinging from the

vacuum side, r ¼ ð1� �Þ=ð1þ �Þ, with � ¼ k2

i�Lkz
½ 1
��ð!Þ �

!2=c2

k2��2
T

þ �L�T!
2=c2

k2ðk2��2
T Þ �. Expressed along imaginary frequencies

! ¼ i�, the TM reflection amplitude is

rTMk ði�Þ ¼ ��ði�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2=c2

p � 	

��ði�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2=c2

p þ 	
; (6)

where 	 ¼ 1
�L

½k2 þ ��ði�Þ �2

c2
�L�T�k2

�2
T�k2

�.
For TE modes ez¼0, so thatE ¼ ½exðzÞx̂þ eyðzÞŷ�eikx.

Plugging this into Eq. (3) one gets two equations: ½@2z þ
�0 ��ð!Þ!2ð1þ i ~!c=!þ i ~Dk2=!Þ�ex ¼ 0, and ½@2z�k2þ
�0 ��ð!Þ!2ð1þ i ~!c=!Þ�ey¼ ik½1þ i�0 ��ð!Þ! ~D�@zex. The
solutions are exðzÞ ¼ Ae
z and eyðzÞ ¼ Be�Tz þ Ce
z.

Here A and B are constants, 
2 ¼ �i�0 ��ð!Þ! ~D�2
L,

and C ¼ ikA
ð1þ i�0 ��ð!Þ! ~DÞ=ð
2 � �2
TÞ (we as-

sume Re
> 0). The magnetic field inside the semi-
conductor is H ¼ ð1=i�0!Þ½�ðB�Te

�Tz þ C
e
zÞx̂þ
A
e
zŷ þ ikðB�Te

�Tz þ C
e
zÞẑ�eikx.
Imposing the boundary conditions on the z ¼ 0 inter-

face, and upon performing the rotation ! ! i�, we get the
TE reflection amplitude for fields impinging from the
vacuum side

rTEk ði�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2=c2

p � �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2=c2

p þ �T

: (7)

Note that �2
T ¼ k2 þ ½ ��ði�Þ þ 4��ði�Þ=���2=c2 (where

�ði�Þ ¼ �0=ð1þ ��Þ and �0 ¼ e2n0�=m are the ac and
dc Drude conductivities, respectively), so Eq. (7) gives the
usual Fresnel TE reflection coefficient with account of ac
Drude conductivity. On the other hand, Eq. (6) gives a
modified Fresnel TM reflection coefficient due to the pres-
ence of Debye-Hückel screening and charge drift.
Limiting cases.—Let us study the behavior of the

frequency-dependent reflection amplitudes we have de-
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rived above for some interesting limiting cases.
(a) Quasistatic limit: When � ! 0, we have �2

T � k2 þ
��0�!c=c

2 and �2
L � k2 þ �2 ¼ q2 (recall that !c=D ¼

�2 in the quasistatic limit). Here ��0 � ��ð0Þ. Therefore,
	 � k2=q, and from (6) and (7) we obtain that the zero-
frequency limit of the reflection amplitudes is rTEk ð0Þ ¼ 0
and rTMk ð0Þ ¼ ð ��0q� kÞ=ð ��0qþ kÞ, which coincides with
the prediction of [5] for the reflection coefficients in the
quasistatic limit. (b) Ideal dielectric limit: In this case the
free charge density is small (n0 � 1), and the discrete
charges are quasibound, making their effective thermal
velocity very small. Therefore, ~!c= ~D � 1=�2

D is small
(as in the quasistatic limit for ideal dielectrics), where
~!c � 4�e2n0=m� ��ði�Þ and ~D are both small.
Consequently, �2

T � k2 þ ��ði�Þ�2=c2, �2
L � �2=v2

T ! 1,
and 	 � �T . We recover from (6) and (7) the usual results
for ideal dielectrics.

Free energy and entropy.—The Casimir-Lifshitz free
energy for two parallel planar media is

E¼ A@

2�

X
p

X10

n¼0

Z d2k

ð2�Þ2 g
p
kðin;Þ;

gpkð!;Þ ¼ ln½1� rpk;1ð!;Þrpk;2ð!;Þe�2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�!2=c2

p
�; (8)

where  ¼ 2�kBT=@ and A is the area of the plates. Note
that we have allowed for an explicit dependence of the
reflection coefficients on temperature. In Fig. 1 we plot the
behavior of gpk as a function of the imaginary frequency

! ¼ i� and transverse momentum k for TM and TE polar-
izations [the corresponding reflection amplitudes are ob-
tained from Eqs. (6) and (7)]. As an example, we consider
the case of two identical media made of intrinsic germa-

nium. The permittivity of Ge is known to have a weak
dependence on temperature, and becomes constant as T
goes to zero [8]. It can be approximately fitted with a
Sellmeier-type expression ��ði�Þ ¼ ��1 þ!2

0ð ��0 �
��1Þ=ð�2 þ!2

0Þ, with ��0 ¼ 16:2, ��1 ¼ 1:1, and !0 ¼
5:0� 1015 rad= sec. The intrinsic carrier density varies

with temperature as n0ðTÞ ¼ ffiffiffiffiffiffiffiffiffiffi
ncnv

p
e�Eg=2kBT , where Eg

is the energy gap, and nc (nv) is the effective density of
states in the conduction (valence) band [9]. The relaxation
time � has an exponential dependency on temperature, and
at low temperatures goes linearly in T to a nonzero con-
stant [9]. Given typical parameters of intrinsic semi-
conductors, ~!c and ~D=� are both very small in the relevant
range of frequencies for the Lifshitz formula, and then only
the n ¼ 0 TMmode is modified significantly. The effect of
drifting carriers can therefore, to very high accuracy, be
fully modeled by the Debye-Hückel screening length.
The Casimir-Lifshitz free energy for pure germanium

and pure silicon for various conductivity models is shown
in Fig. 2, where the increase of the energy due to the finite
conductivity as compared to the bare permittivity is dem-
onstrated for large distances. In one case, the theory of
drifting carriers [Eqs. (6) and (7)] is used to model the
interaction of the field with the plates; in the other, a simple
additive term to the bare permittivity, 4��0=�, is em-
ployed in the usual Fresnel reflection coefficients [10].
For the drifting carriers, when the plate separation becomes
much larger that the Debye-Hückel screening length, the
plates appear as perfect conductors for the TM n ¼ 0
mode, while in the case of the additive term, the plates
appear as perfect conductors for the TM n ¼ 0 mode at
distances of the order of �T ¼ @c=kBT (’7 �m at T ¼
300 K), independent of the material properties.

FIG. 1. Behavior of the functions gpkði�Þ used to compute the
Casimir-Lifshitz free energy and entropy for semiconductor
materials with account of drifting carriers. The reflections co-
efficients are given by (6) and (7), parameters are for intrinsic Ge
(see text), and the distance is set to d ¼ 1 �m. The variation
with temperature (in the range T ¼ 0–300 K) of the TE function
is not perceptible on the scale of the figure. The corresponding
functions without account of Debye screening and carrier drift
correspond to the T ¼ 0 K plots in this figure.

FIG. 2. Casimir-Lifshitz free energy at T ¼ 300 K for intrinsic
semiconductor parallel plates for different conductivity models
as follows: Carrier drift with Debye-Hückle screening, and a dc
conductivity term 4��0=� added to the bare permittivity. The
free energy is normalized to the free energy computed with the
standard Lifshitz theory using the bare permittivity only.
Parameters are as follows: For Ge, the bare permittivity is quoted
in the text, the Debye length is RD ¼ 0:68 �m and the dc
conductivity is �0 ¼ 1=ð43 � cm). For Si, ��0 ¼ 11:87, ��1 ¼
1:035, !0 ¼ 6:6� 1015 rad= sec, RD ¼ 24 �m, and �0 ¼
1=ð2:3� 105 � cm).
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Although this effect has yet to be demonstrated for the
Casimir-Lifshitz force, the drifting carrier treatment pro-
vides a way to include a finite conductivity term in the
Casimir-Polder force which has been measured between an
atom and a fused silica plate [11]. For fused silica the
Debye-Hückel screening length is expected to be ex-
tremely large due to the low charge concentration and the
quasibound character of charges that are contained in a
dielectric material. Taking an effective RD > 1 cm is cer-
tainly not unreasonable, in which case the fused silica used
in [11] can be treated as a perfect dielectric, as has been
assumed in the analysis of this experiment. On the other
hand, including the effect of dc conductivity by adding
4��0=� to the permittivity in the usual Fresnel formulas
leads to a increase in the force (by up to nearly a factor of 2
[12]) at distances of order 10 �m where the experiment
was performed, and this disagrees with the experimental
result.

Our theory for Casimir forces taking into account the
possibility of carrier drift in intrinsic semiconductor media
is compatible with Nernst theorem of thermodynamics,
that states that the entropy S ¼ �dE=dT should vanish
at zero temperature for a system with a nondegenerate
ground state. Whether the systems we are considering
here have nondegenerate ground states remains open; how-
ever, satisfaction of the Nernst theorem provides weak
evidence for the possible viability of a theoretical model.
Following, for example, the technique in [13], and using
the fact that the intrinsic carrier density vanishes exponen-
tially as T ! 0 (which in turn implies that the derivatives
of gpkði�; Þ with respect to � and to  exponentially vanish

at zero frequency as T ! 0, see Fig. 1), it can be shown
[14] that our theory predicts that the Casimir entropy
verifies SðT ¼ 0Þ ¼ 0.

Conclusions.—We have shown that treating the finite
conductivity of a nondegenerate semiconductor (or insula-
tor) by use of the classical Boltzmann equation in con-
junction with Maxwell’s equation leads to a modification
of the Casimir-Lifshitz force between such materials and
provides a way to describe the effects of a small conduc-
tivity. In particular, for small electric fields such that
jeEjRD=kBT � 1, as expected for Casimir and related
forces, a standard treatment of adding a term 4�i�0=!
to a bare dielectric permittivity is not correct for distances
less than the Debye-Hückle screening length. This is be-
cause the current driven by the electric field, J ¼ �E, is
counterbalanced by thermal diffusion, as modeled through
the classical Boltzmann equation. Thus, this result repre-
sents the dynamic equilibrium between a time-varying
field and the charge distribution in the material.
However, the finite temperature correction described in
[4] and its apparent disagreement with experiment cannot
be addressed within the scope of our model which does not
apply to metals, where the electron density is sufficiently
large that the electron gas is degenerate. The classical
Boltzmann equation is applicable in the nondegenerate

continuum limit, that is, for low electron density and
when the electromagnetic wavelengths of interest are
much longer than the electron thermal wavelength and
the crystal lattice spacing [15].
It is possible to show that the reflection amplitudes

derived in this work can be interpreted in terms of ‘‘non-
local’’ dielectric functions (spatial dispersion) [16]. We
have shown that these effects can be derived from readily
available material properties, and that only the quasistatic
limit (zero Matsubara frequency TM mode) is relevant. In
the near future we plan to apply these results to an ongoing
measurement of the Casimir-Lifshitz force between pure
germanium plates.
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