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One-loop graviton corrections to Maxwell’s equations
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We compute the graviton induced corrections to Maxwell’s equations in the one-loop and weak field
approximations. The corrected equations are analogous to the classical equations in anisotropic and inhomo-
geneous media. We analyze in particular the corrections to the dispersion relations. When the wavelength of
the electromagnetic field is much smaller than a typical length scale of the graviton two-point function, the
speed of light depends on the direction of propagation and on the polarization of the radiation. In the opposite
case, the speed of light may also depend on the energy of the electromagnetic radiation. We study in detail
wave propagation in two special backgrounds: flat Robertson-Walker and static, spherically symmetric space-
times. In the case of a flat Robertson-Walker gravitational background we find that the corrected electromag-
netic field equations correspond to an isotropic medium with a time-dependent effective refractive index. For
a static, spherically symmetric background the graviton fluctuations induce a vacuum structure which causes
birefringence in the propagation of light.
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I. INTRODUCTION

It is well known that when the QED vacuum is modifie
by external conditions such as background fields, finite te
perature, or boundary conditions, the propagation of the p
tons can be affected in a non-trivial way. The vacuum
haves as a dispersive medium in which the propagation
light generally depends on the direction of propagation a
on the polarization of the radiation. Physically, the effect c
be understood as follows: the photon exists for part of
time as a virtuale2e1 pair, on which the external condition
do act and modify the propagation. In previous works
problem of photon propagation in modified QED vacua h
been analyzed for external electromagnetic~EM! fields
@1–4#, boundary conditions@5,6#, external gravitational fields
@7,8#, and finite temperature@9#. Further references and de
tails can be found in Ref.@10#. There is also an experimen
under construction to detect birefringence of the QE
vacuum in the presence of a strong magnetic field@11#.

The phenomenon is of course quite general, and not
stricted toe2e1 pairs. The interaction of the photon wit
any other field will produce similar effects: the photon w
not follow, in general, a geodesic of spacetime.1 In this paper
we will analyze the effect of the coupling between a class

*Email address: dalvit@lanl.gov
†Email address: fmazzi@df.uba.ar
‡Email address: molina@laeff.esa.es
1It is even possible to have superluminal propagation. Howe

as extensively discussed in the literature@7,10,12#, this does not
imply causality violations.
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electromagnetic field and a quantum gravitational field
the propagation of EM radiation waves. We will show th
indeed, the graviton loop leads to effects that are simila
those already studied and calculated for QED vacua.

Even though general relativity is a non-renormalizab
theory, the one-loop corrections are meaningful when
quantized gravitational field theory is looked upon as an
fective field theory@13#. It is possible to compute, for in
stance, the leading~long distance! quantum corrections to the
Newtonian potential@14,15#. Our calculation provides an
other example of a quantum gravity effect that can be e
mated using general relativity as a low energy effective fi
theory for quantum gravity. Moreover, it could also be
some interest from a phenomenological point of view.
deed, Amelino-Cameliaet al. @16# pointed out that many
quantum gravity scenarios predict a frequency-dependen
locity of light that could be observable for~cosmological!
gamma-ray bursts. Gambini and Pullin@17# studied the
propagation of light in canonical quantum gravity and fou
that the modified Maxwell’s equations imply a frequen
and helicity dependent velocity of propagation. We will s
that, in principle, similar results can be found by taking in
account the interaction between gravitons and EM radia
in the low energy theory.

This paper is organized as follows. In Sec. II we obta
the quantum corrections to the classical Maxwell’s equati
induced by the graviton loop. We write the corrections
terms of the coincidence limit of the graviton two-point fun
tion. In Sec. III we present a qualitative analysis of the qu
tum corrections to the dispersion relations. We analyze
casesl@Lc and l!Lc , wherel is the wavelength of the
classical electromagnetic radiation andLc is a typical scale

r,
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of variation of the graviton two-point function. We show th
in general the velocity of light depends on the direction
propagation and on the polarization; i.e., we find gravi
tional birefringence. In Sec. IV we discuss quantitatively tw
examples: a flat Robertson-Walker~RW! background metric
and a static metric with spherical symmetry. Section V co
tains our conclusions and final remarks.

II. EFFECTIVE EQUATIONS OF MOTION

Consider pure gravity described by the Einstein-Hilb
~classical! action2

SG5
2

k2 E d4xA2gR, ~1!

where k2532pG and R is the Ricci scalar. The classica
action for the EM field is given by

SEM52
1

4 E d4xA2gFmnFmn, ~2!

where Fmn5¹mAn2¹nAm is the field strength tensor an
Am the gauge potential. The classical energy-momentum
sor associated with the EM field is given by

TEM
st 5Fm

sFtm2
1

4
gstFmnFmn. ~3!

The classical action of the EM field depends on the~classi-
cal! gravitational background. It is then natural to ask o
selves what the effects are on Maxwell’s equations due
change in the gravitational background and, in this pa
particularly, what the implications are of the one-loop gra
ton fluctuations.

We define the classical action of the combined syst
~gravitational field plus classical EM radiation!

Sclas5SEM1SG . ~4!

The effect of quantum metric fluctuations can be analy
by means of the background field method, expanding
total actionSclas around a background metric asgmn→gmn

1khmn , and integrating over the graviton field (hmn) de-
grees of freedom to get an effective action for t
background fieldsgmn andAm . In order to fix the gauge one
must choose a gauge-breaking termxm@g,h#, with its
corresponding gauge-breaking action Sgauge@g,h#
52(1/2)*d4xA2gxmgmnxn and its corresponding ghost a
tion Sghost@18#. The complete effective actionSeff is obtained
by integrating the full actionS[Sclas1Sgauge1Sghostover the
graviton and ghost fields. We evaluate this effective action

2Our metric has signature (2111) and the Riemann and Ricc
tensors, and the scalar curvature are defined asRnab

m 5]aGnb
m

2•••, Rab5Ramb
m , and R5gabRab , respectively. We use unit

such that\5c51.
08402
f
-

-

t

n-

-
a
r

-

d
e

n

the one-loop approximation, for which we expandS up to
second order in gravitons. The second order term can
shown to have the form@19#

S(2)5E d4xA2ghmn~Omnst1Pmnst!hst , ~5!

whereÔ[Omnst is a second order differential operator th
depends on the background metric and is independent o
EM field @19# ~we will not need its exact form in what fol
lows!, and the tensorP̂[Pmnst arises from the expansion o
SEM to second order in gravitons, and reads

Pmnst52
k2

8 FFabFabS 1

4
gmngst2

1

2
gmsgntD

1
1

2
Fabgmn~2gbsFat1gasFbt!

1
1

2
Fabgst~2gbmFan1gamFbn!

12Fab~Fatgbmgns1Fnbgasgmt1Fntgamgbs!G .
~6!

There is also a second order term in the ghost fields that
gauge-breaking terms linear in the metric fluctuations
couples from the gravitons and is only coupled to the ba
ground metric. This means that the one-loop effective act
for the combined system reads@19#

Seff@gmn ,Am#5Sclas1
i

2
Tr ln~Ô1 P̂!2 i Tr ln Ĝghost,

~7!

where Ĝghost is the second order differential operator th
comes from integrating over the ghost fields.

It is extremely complicated, in general, to calculate t
one-loop effective action. In this paper we will use the we
field approximation, assuming that the EM field is a test fie
that does not affect the background metricgmn . In this ap-
proximation the effective action takes the form

Seff5Sclas1
i

2
Tr ln Ô2 i Tr ln Ĝghost

1E d4xA2gFmn~x!Fst~x!Mmnst~x,x!, ~8!

where
3-2
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ONE-LOOP GRAVITON CORRECTIONS TO MAXWELL’S . . . PHYSICAL REVIEW D 63 084023
Mmnst~x,x!52
k2

16
^hab~x!hzh~x!1hzh~x!hab~x!&

3F S 1

8
gabgzh2

1

4
gazgbhD ~gsmgtn2gsngtm!

1
1

2
gab~gmzgsngth2gmsgnzgth2gshgmzgtn

1gshgmtgnz!1gaz~gmsgthgnb1gsbgtngmh

2gnsgthgmb2gsbgtmgnh!1gsbgthgmagnz

2gsbgthgnagmzG . ~9!

Note that the tensorMmnst has the following symmetry
properties, which are similar to the symmetries of the R
mann tensor: Mmnst52M nmst, Mmnst52Mmnts, and
Mmnst5Mstmn. In view of these properties, the only non
vanishing components of this tensor areM0i0 j , M0i jk , and
Mi jkl , where i , j ,k,l are spatial indices. This tensor has
independent components and depends on the two-point f
tion of gravitons, evaluated in an arbitrary quantum st
uC&. The two-point function of gravitons can be written
follows:

Gmnst~x,x8![^Cuhmn~x!hst~x8!1hst~x8!hmn~x!uC&,
~10!

taken at coincidence (x5x8). In the following we will as-
sume that the graviton stateuC& preserves the symmetries o
the background metric, so that the tensorMmnst will share
those same symmetries.

The ~one-loop! gravitationally modified equations of mo
tion for the EM field,dSeff /dAn50, are given by

¹mGmn50, Gmn5Fmn24Mst
mnFst. ~11!

These equations are analogous to the classical Maxw
equations in the presence of a linear, anisotropic, and n
homogeneous media. To see this explicitly, we recall tha
a local Lorentz frameF0m5Em andFmn5ek

mnBk, so that we
can introduce the vectorsG0m5Dm and Gmn5ek

mnHk,
namely

D j[Ej28M0m
0 j Em24Mmn

0 j ek
mnBk, ~12a!

H j[Bj22e jmnMmnikeq
ikBq24e jkiMki0mEm. ~12b!

The quantum corrected equations in a local Lorentz fra
read

¹•D50, ~13a!

¹•B50, ~13b!

¹3H5] tD, ~13c!

¹3E52] tB, ~13d!
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where we have also included the equations that follow fr
the Bianchi identity¹mFns1¹nFsm1¹sFmn50. The con-
stitutive relationsD@E,B# and H@E,B# are unusual when
M0i jkÞ0, since in this caseboth the electric and magnetic
fields appear in the definition ofD and H. However, when
M0i jk50 the relations are exactly equivalent to those o
linear medium characterized by spacetime dependent ele
permitivity and magnetic permeability tensors defined as

Di5e j
i Ej , e j

i [d j
i 28M0 j

i0 , ~14a!

Bi5m j
i H j , m j

i [d j
i 12emn

i Mmnabeab j . ~14b!

We emphasize two relevant technical points. On the o
hand, the graviton two-point function will depend, in ge
eral, on the choice of the gauge-breaking term for the gra
ton fluctuations. However, the background metric will al
depend on the gauge-breaking term through the se
classical Einstein equation. Both dependences should ca
out in the dynamics of any test field~see Refs.@15# and
@20#!. We will not consider this problem in what follows
i.e., we will assume that the background metric already c
tains the back reaction of gravitons, computed with a giv
gauge-breaking term. On the other hand, the two-point fu
tion will diverge at the coincidence limit. Adequate counte
terms are needed to absorb the divergences. In the spir
effective field theories, these counterterms will not contr
ute in the long distance and low energy limit, which will b
dominated by the non-local, non-analytic part of the tw
point function@13,15#.

III. QUALITATIVE ANALYSIS

Given the quantum corrected equations, we can dis
guish two different physical regimes depending on the re
tive size of the wavelengthl of an EM radiation field de-
scribed byFmn and the typical scale of variation ofMmnst,
Lc .

Whenl!Lc , we can take the tensorMmnst outside the
covariant derivative in Eq.~11!, as it does not change sig
nificantly over the scalel. The equation of motion can the
be written in the form

¹mFmn24Mst
mn¹mFst50. ~15!

We first introduce the variables@7#

Fmn5 f mneic, ~16!

with f mn the amplitude andc the phase, such thatkm
5¹mc is the momentum of the EM wave. We assume th
the amplitudef mn is the slow varying variable andc is the
fast varying variable, so that from now on we discard a
gradients and/or time variations of the amplitudef mn .

We start from Eq.~15! and make use of the new variable
to write

kr f rn24krM rnst f st50. ~17!

The remaining Maxwell’s equation implies the following:
3-3
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km f ns1kn f sm1ks f mn50. ~18!

We now multiply Eq.~17! by km and make use of Eq.~18! to
obtain

k2f mn18k[mM n]strks f tr50. ~19!

This equation is similar to the one discussed by Drummo
and Hathrell in Ref.@7#. ~See also Ref.@8#.! In those refer-
ences the corrections are due to fermion loops and are
portional to the Riemann tensorRmnrs ~this is true in the
case of empty spacetimes, so thatRmn and R vanish @7#!,
instead ofMmnrs.

In the absence of quantum corrections one obtains
usual dispersion relationk250. The graviton loop induces
modifications to this relation; i.e., light rays do not follo
null spacetime geodesics. We will analyze in detail seve
examples in the following sections. Here we discuss qua
tively some general properties of the modified dispersion
lations.

It is easy to see that the tensorMmnrs is dimensionless
and proportional to the square of the Planck lengthLP;k.
Therefore we expectMmnrs5(LP /Lc)

2Cmnrs, with Cmnrs a
dimensionless, slowly varying tensor. Inserting this in E
~19!, we see that the modified dispersion relation will ha
the general form

k21cmnkmkn50, ~20!

where cmn is a slowly varying tensor of orderO(LP
2 /Lc

2),
which depends on the direction of propagation and the
larization of the EM radiation. Therefore, we expect t
modifications in the speed of light to be proportional
LP

2 /Lc
2 and gravitational birefringence of the same order

magnitude.
We consider now the opposite casel@Lc . For simplicity

and in order to be able to compare with previous works,
assume that the background metric is flat and that the q
tum state for gravitons is such that the two-point function h
a random variation on micro-scales~much smaller than any
other scale of the system, but still larger thanLP!. In other
words, we assume that the spacetime looks classical at s
larger thanLc and has a complicated random structure
scales smaller thanLc . This kind of state has been consi
ered before in the context of loop quantum gravity@17,21#.

In this situation, the quantum corrected equation~11!
reads

]mFmn24Mst
mn~]mFst!24~]mMst

mn!Fst50. ~21!

It is, of course, not possible to neglect the derivatives of
tensorMmnrs . The equation describes the propagation o
classical electromagnetic wave in a random media.

As the wavelength is much larger thanLc , in order to
obtain a modified dispersion relation we average the fi
equation over a spacetime domain of sizeL4, with Lc!L
!l. To compute the average of the products (]M )F and
M (]F) we expandF around a pointx0 in the domain. Sche-
matically F(x)'F(x0)1]F(x0)(x2x0). Denoting by^¯&
the average over the domain and using that for a rand
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structure ^M &50 and ^]M &50, we obtain ^F]M &
']F(x0)^]M (x2x0)& and ^M]F&']2F(x0)^M (x2x0)&.
Therefore, in this approximation, the average of Eq.~21! will
contain higher derivatives of the EM fields@as long as
^M (x2x0)&Þ0#. As a consequence, on dimensional groun
we expect a modified dispersion relation of the form

k21cmnkmkn1cmnrkmknkr50, ~22!

wherecmn5O(LP
2 /L2) andcmnr5O(LP

2 /L).
The quadratic correction modifies the speed of light as

the previous case. The cubic term is qualitatively differe
since it produces a variation of the speed of light that
creases linearly with the energy of the EM radiation.
already mentioned, this kind of correction may be relev
from a phenomenological point of view, because it induce
non-trivial structure in the arrival time of light rays comin
from gamma-ray bursts@16,17#.

IV. EXAMPLES

In the following sections we will concentrate on two pa
ticular classes of gravitational backgrounds, namely flat R
metrics and static spherically symmetric backgrounds.

A. Flat Robertson-Walker background

We first consider the case of a flat RW backgroun
whose metric in conformal coordinates reads3

ds25a2~h!~2dh21dx2!. ~23!

Under the assumption that the graviton quantum vacu
preserves the symmetries of the background metric, we
conclude that the tensorMmnst has the same symmetrie
For RW spacetimes the metric is invariant under spatial
flections ~due to its homogeneity and isotropy!, so that
M0i jk50. For the remaining two non-vanishing sets of co
ponents of the tensor,M0i0 j andMi jkl , we use the invariance
of the metric under spatial rotations. This implies that th
can be written in the form

M0i0 j5 f 1~h!gi j , ~24a!

Mi jkl 5 f 2~h!~gikgjl 2gil gjk!, ~24b!

where f 1(h) and f 2(h) are functions of time. Note that th
non-vanishing components of the tensor have the same f
as the components of the Riemann tensor in RW spacetim
apart from the global factorsf 1 and f 2. To determine these
two functions, we recall that the tensorMmnst is propor-
tional to the two-point function of gravitons, which in RW
backgrounds can be expressed in terms of the two-p
function of a massless minimally coupled scalar fie
@22,23#. Therefore the functionsf 1(h) and f 2(h) must be

3For simplicity we have considered the case of a flat RW ba
ground. Our results can be easily generalized to the closed and
RW spacetimes.
3-4
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proportional to^f2(h)&. In order to calculate the constan
of proportionality exactly, we need to go beyond symme
arguments and we must face the exact evaluation of
graviton two-point functionGmnrs(x,x8) of Eq. ~10! in a
RW gravitational background. The result can be found in
literature~see for example Ref.@22#!. We only need to quote
the final result of that reference. In the traceless (hm

m50),
transverse (¹mhmn50), and synchronous gauge~henceh0m

50), and assuming the graviton vacuum state to be ho
geneous and isotropic, the coincidence limit of the two-po
function has only spatial non-vanishing components, a
reads4 @22#

Gi jkl ~x,x!52(
k

~mimjmk* ml* 1mi* mj* mkml !uF~x,k!u2.

~25!

The sum overk denotes a sum over a three dimensional
of spatial wave vectors. The complex~spacelike! vector
mi(k) is defined asmi(k)5(1/A2)@e1

i (k)1 ie2
i (k)#. The

vectorse1(k) ande2(k) are spacelike vectors, such that t
set $e1(k),e2(k),k̂% forms an orthonormal basis in the thre
dimensional spacelike hypersections@here k̂5k/k and k
5(k•k)1/2#. The mode functionF is given by F(x,k)
5F(h,x,k)[ f (h,k)eik•x/A32p3kV, whereV is a constant
comoving volume.5 The mode functionsF(x,k) and f (k,h)
are a solution to the equations

hF~x,k!50, ~26a!

f̈ ~h,k!1
2ȧ

a
ḟ ~h,k!1k2f ~h,k!50, ~26b!

respectively, i.e., correspond to the dynamical equation
massless minimally coupled scalar field in a RW ba
ground. Here the overdot denotes derivation with respec
the conformal time variableh.

The two-point function, given in Eq.~25!, can be simpli-
fied by making use of the identitye1

i e1
j 1e2

i e2
j 1k22kikj

5gi j . We can then perform the sum over momenta
uF(x,k)u2 depends only on the modulus ofk. The final result
reads

Gi jkl ~x,x!5
4

15S 3

2
gikgjl 1

3

2
gil gjk2gi j gklD ^f2~h!&,

~27!

4The choice of vacuum corresponds to that used in Ref.@22#. This
graviton vacuum is homogeneous, isotropic, and the same for
two helicity states of the gravitons (12,22).

5The normalization of the mode functionF differs from that of
Allen @22# in a k21 factor. The reason is that we have defined t
graviton fluctuations viagmn→gmn1khmn and our graviton two-
point function@see Eq.~10!# is given in terms of thishmn, whereas

Allen has gmn→gmn1h̃mn , and defines the graviton two-poin

function in terms ofh̃mn .
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where^f2(h)&[(kuF(x,k)u2 is the coincidence limit of the
two-point function of a massless minimally coupled sca
field in a RW background. We can now insert this formula
Eq. ~9! in order to read off the expressions forf 1(h) and
f 2(h) in Eqs.~24a! and ~24b!. This procedure yields

f 1~h!5
k2

48a2~h!
^f2~h!&,

f 2~h!52
k2

16
^f2~h!&. ~28!

The quantum correction to the classical EM action due to
coupling with the graviton degrees of freedom can now
obtained from Eq.~8! by making use of the above result
We get

^SEM
(2)&5E d4xA2g@24a2~h! f 1~h!F0iF

0i

12 f 2~h!Fi j F
i j #. ~29!

Note that the one-loop effective action for the electroma
netic field isSEM1^SEM

(2)&, which is a divergent quantity and
has to be suitably renormalized. This is accomplished by
renormalization of̂ f2(h)&, for example, by means of adia
batic regularization@24#.

Having the EM effective action and assuming that o
first solves the pure gravity part in order to get the correc
background metric after graviton back reaction@that is, we
assume one solves the pure gravitational part and gets
new scale factora(h)#, one can get the corrected Maxwell
equations from the variation of the effective action, name
dSeff /dAm50. We will assume thatf 1(h) and f 2(h) have a
time variation much slower than that associated with the E
field, so that we can approximate the equations of motion
in Eq. ~15!. The source-free equations are the usual ones

1

a~h!
“•B50, ~30a!

1

a~h!
Ḃ1

2ȧ~h!

a~h!
B52

1

a~h!
“3E,

~30b!

where the overdot denotes]/]h, and“ is vector notation for
]/]x.

The other two equations read

1

a~h!
eeff~h!“•E50, ~31a!

1

a~h!
eeff~h!Ė1

2ȧ~h!

a~h!
eeff~h!E5

1

a~h!
meff

21~h!“3B.

~31b!

In the first term on the left hand side of the last equation
have discarded a contribution proportional to the time
rivative of the effective electric permittivityeeff(h) since, as

he
3-5
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already discussed in Eq.~15!, we are assuming that it doe
not change significantly over the wavelength of the EM fie
The effective electric permittivity and magnetic permeabil
tensors in RW backgrounds are proportional to the iden
(333) matrix, namely,e j

i 5eeff(h)d j
i and m j

i 5meff(h)d j
i ,

with

eeff~h![118a2~h! f 1~h!, ~32a!

meff~h![118 f 2~h!. ~32b!

Hence the presence of gravitons introduces a time de
dent effective refraction indexneff(h)5Aeeff(h)meff(h) for
a traveling EM wave, and therefore implies a time depend
speed of light in the medium6

veff~h!5124@a2~h! f 1~h!1 f 2~h!#511
k2

6
^f2~h!&.

~33!

This effective speed of light is the same for all directions
propagation and for all polarizations of the EM radiati
field, in agreement with the isotropy and homogeneity
RW spacetimes. In Appendix A we give an alternative de
vation of this result based on a direct study of the dispers
relation for light in the graviton modified medium.

The renormalized two-point function̂f2(h)& does not
have a definite sign~see, for example, Refs.@19,25#!. The
effective speed of light in the graviton vacuum can be grea
or smaller than that in free space, depending on the partic
form of the scaling parametera(h). In any case, the correc
tion is extremely small, typically proportional to the ratio
the spacetime scalar curvature and Planck’s curvature,R/RP.
As we go back in time towards the big bang singularity, t
modulus of the correction to the phase velocity increases
course, we cannot trust this calculation for such early tim
since the correction would become too large and since g
eral relativity would not be valid as an effective low ener
and large distance theory in that regime.

It is worth mentioning that similar results are obtain
due to QED vacuum polarization@7#. The QED effects are
generically much larger than the graviton corrections. Ho
ever, there are situations in which the QED correction v
ishes, while the graviton correction does not. To show
explicit example, let us consider de Sitter spacetime. Virt
e2e1 pairs modify Maxwell’s equations as follows@7#:

S 11
7aR

1080pm2D DmFmn50, ~34!

wherem is the mass of the electron anda the fine structure
constant. The corrected equations coincide with Maxwe
equations up to a trivial normalization and the dispers
relation is the classical one. However, graviton vacuum c
rections in de Sitter spacetime do affect the propagation
individual light rays.

6This velocity corresponds to the phase velocityvphase5c/neff .
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B. Static and spherically symmetric backgrounds

In this section we consider a static and spherically sy
metric spacetime described by the metric

ds252A~r !dt21B~r !dr 21r 2dV2. ~35!

In order to compute the tensorMmnst one needs to calculat
the graviton two-point function, evaluated in an arbitra
quantum state. It would be a rather formidable task to exp
itly calculate such an object. Instead, we will use symme
arguments and assume that the graviton quantum state
serves the symmetries of the background metric to derive
basic structure of the tensorMmnst. It is shown in Appendix
B that the tensorMmnst can be written as

Mmnst~r !5 f 1~r !UmnUst1 f 2~r !VmnVst

1 f 3~r !~XmnXst1YmnYst!

1 f 4~r !~WmnWst1ZmnZst!, ~36!

where the functionsf i(r ) depend on the particular choice o
vacuum. The antisymmetric order two tenso
Umn,Vmn,Wmn,Xmn,Ymn, andZmn are defined in Appendix B.
Just as in the case of RW backgrounds, the only n
vanishing components areM0i0 j andMi jkl , with i , j ,k,l spa-
tial indices. In general, the structure of the tensorMmnsr in
Eq. ~36! is much more complicated than that for the Riema
tensor corresponding to the metric~35!. However, this form
for the tensorMmnst is good enough to carry an analys
parallel to that of Drummond and Hathrell@7#.

Starting from Eq.~19!, which describes the propagation o
an EM wave in the presence of gravitons, we show in A
pendix B that it has non-trivial solutions only when the wa
momentumkm satisfies the following determinantal cond
tion:

k2@~118 f 3!k228~ f 31 f 4!kr
228~ f 21 f 3!~ku

21kf
2 !#

3@~118 f 3!~118 f 1!k228~ f 31 f 4!~118 f 1!kr
2

28~ f 11 f 4!~118 f 3!~ku
21kf

2 !#50. ~37!

The solutionk250 corresponds to the usual dispersion re
tion, in which the light ray follows the null geodesics of th
background metric. Apart from this~trivial! case, the previ-
ous equation admits new dispersion relations, depending
the direction of propagation and polarization of the EM r
diation field.

When the light ray moves radially (ku5kf50) the deter-
minantal condition@see Eq.~37!# has two possible solution

~118 f 3!~2kt
21kr

2!28~ f 31 f 4!kr
250, ~38a!

~118 f 3!~118 f 1!~2kt
21kr

2!

28~ f 31 f 4!~118 f 1!kr
250.

~38b!

If we assume that (118 f 1)Þ0, the two dispersion relation
that follow from the above equations are the same, wh
3-6
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agrees with the fact that as the gravitational backgroun
spherically symmetric, a radial EM wave should not be
fected by birefringence. We can conclude that for radial lig
rays the absolute value of the quantum corrected velocit
given by

Ukt

kr
U5124~ f 41 f 3!. ~39!

When the EM wave moves transversally (kr5ku50), we
get the following two possible solutions~for 118 f 3Þ0):

2~118 f 3!kt
21~128 f 2!kf

2 50, ~40a!

2~118 f 1!kt
21~128 f 4!kf

2 50. ~40b!

As opposed to the previous case, the two dispersion relat
that follow from these two equations are different. Light ra
propagate with different velocities

U kt

kf
U5124~ f 21 f 3!, ~41a!

U kt

kf
U5124~ f 11 f 4!, ~41b!

depending on their polarization. Similarly, given the symm
try under the exchange off to u, azimuthal moving EM
waves (kr5kf50) have the same dispersion relations
transverse light rays. Both for traverse and azimuthal pro
gation we obtain gravitational birefringence due to gravit
vacuum fluctuations. Similar results are obtained from c
rections due to QED vacuum effects.

It is worth mentioning that the previous results are app
cable to any static and spherically symmetric backgrou
We will now consider two particular examples, th
Schwarzschild background and the Reissner-Nordst¨m
background.7 The Schwarzschild spacetime is described
the metric

ds252S 12
2MG

r Ddt21S 12
2MG

r D 21

dr 2

1r 2~du21sin2udf2!. ~42!

In this case, using dimensional analysis, we can write
functions f i(r ) ( i 51, . . . ,4) as f i(r )5(MP/M )2Fi(r /
2MG) with Fi four dimensionless functions andMP the
Planck mass. As we have already mentioned, the exact f
of these functions is unknown, since it is not possible
calculate explicitly the graviton two-point function for th
Schwarzschild background. However, near the horizonr
'2MG, we can approximate

7As we already mentioned at the end of Sec. II, the backgro
metric should be a solution of the semi-classical Einstein equat
This is not the case for the particular examples we will be con
ering in this section. We include them only for illustrative purpos
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Mmnst~r'2MG!'S M P

M D 2

@F1~1!UmnUst1F2~1!VmnVst

1F3~1!~XmnXst1YmnYst!

1F4~1!~WmnWst1ZmnZst!#. ~43!

Hence, near the horizon the birefringence effects induced
gravitons are of orderO(M P

2 /M2).
The Reissner-Nordstro¨m spacetime describes the metr

of a static and charged black hole:

ds252S 12
2MG

r
1

Q2G

4pr 2D dt2

1S 12
2MG

r
1

Q2G

4pr 2D 21

dr 21r 2~du21sin2udf2!.

~44!

This spacetime has in general two event horizonsr 6 . The
exterior one atr 15MG@11(12Q2/4pM2)1/2# coincides
with that of the Schwarzschild metric in the limitQ2!M2.
We can carry out an analysis similar to the previous one,
write f i(r )5(M P /M )2Gi(r /2MG,r /QAG) with Gi four new
dimensionless functions. Near the exterior event horizonr
5r 1) we can approximate

Mmnst~r'r 1!'S M P

M D 2FG1S r 1

2MG
,

r 1

QAG
D UmnUst

1G2S r 1

2MG
,

r 1

QAG
D VmnVst

1G3S r 1

2MG
,

r 1

QAG
D ~XmnXst1YmnYst!

1G4S r 1

2MG
,

r 1

QAG
D

3~WmnWst1ZmnZst!G . ~45!

Hence, near the outer event horizon the birefringence eff
induced by one-loop gravitons are again of ord
O(M P

2 /M2).

V. CONCLUSIONS

In this paper we have computed the quantum correcti
to ~classical! Maxwell’s equations due to the interaction b
tween the EM field and the fluctuations of the spaceti
metric. The modified equations look like Maxwell’s equ
tions in the presence of a linear medium, with electric p
mittivity and magnetic permeability tensors proportional
the coincidence limit of the graviton two-point function
From the modified equations we have found the quant
corrections to the dispersion relations. In general, as for

d
n.
-
.
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case of linear media in classical electrodynamics, the sp
of light depends on the direction of propagation and on
state of polarization. The quantum corrections we have c
puted should be considered along with the graviton b
reaction on the background metric~this is crucial, for ex-
ample, for the cancellation of the gauge-breaking dep
dence; see Refs.@15,19#!. Throughout the paper we hav
assumed that the metric does contain such~back reaction!
corrections, and have focused on the interaction of the gr
tons with the electromagnetic field.

We have shown that, when the EM field wavelengthl is
small compared to the typical scaleLc of variation of the
permittivity and permeability tensors, the corrections to
speed of light are proportional to (LP /Lc)

2. We have de-
scribed in detail the quantum corrections in both RW gra
tational backgrounds and static spherically symmetric spa
times.

For RW spacetimes we have computed the quantum
rections by two different methods: the analysis of the mo
fied Maxwell’s equations in a coordinate basis and the st
of the dispersion relations in a local Lorentz frame. The c
rections we found are similar to those of Ref.@19#, where the
analysis was based on the effect of gravitons on the sp
time null geodesics. The results agree qualitatively but
quantitatively~as is to be expected!, since the coupling of
gravitons to point particles is in general different to the co
pling to massless fields.

For spherically symmetric spacetimes we have been
to estimate the quantum corrections using symmetry and
mensional arguments~see Appendix B!, avoiding the explicit
computation of the graviton two-point function.

The quantum corrections for small wavelengths are a
qualitatively similar to those produced by virtuale2e1 in
non-trivial backgrounds. However, for some particular ca
~such as the de Sitter background!, the QED vacuum does
not affect the propagation of photons, whereas the grav
vacuum does induce a modification on the propagation
light rays.

The opposite limit,l@Lc , is more interesting from a
phenomenological point of view. Assuming a non-trivial a
random spacetime structure at scales of orderLc , the modi-
fied field equations are similar to the ones describing
propagation of classical waves in random media. To low
order, it is possible to describe the wave propagation in te
of an ‘‘effective medium.’’ The average corrections to th
speed of light are independent of the wavelength and pro
tional to (LP /Lc)

2. The ‘‘effective medium’’ is only an av-
eraged description. Stochastic fluctuations are expecte
occur, for example, in the arrival time of photons comi
from point sources@26,27#. To next order, the corrections ar
proportional toLP

2E/(Lcl), whereE is the photon energy. In
the extreme caseLP;Lc ~which we cannot reach within ou
effective field theory approach! the corrections would be pro
portional toE/EP , whereEP is the Planck energy. In this
regime quantum gravity effects increase with energy, wh
other medium effects should decrease with energy. They
be distinguished by this property and could be relevan
cosmological situations@16#.

In the effective field theory approach to quantum grav
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one also expects classical, stochastic fluctuations of
spacetime metric. Its dynamics should be described b
‘‘semi-classical Einstein-Langevin equation’’@28#. These
classical fluctuations will also affect the propagation of ph
tons ~see for example@29#!.
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APPENDIX A: STRUCTURE OF THE TENSOR M FOR
HOMOGENEOUS AND ISOTROPIC BACKGROUNDS

We consider a flat homogeneous and isotropic space
described by the metric~conformal coordinates!

ds25a2~h!~2dh21dx21dy21dz2!. ~A1!

In order to compute the tensorMmnst one needs to calculat
the graviton two-point function, evaluated in an arbitra
quantum state. We will assume that the graviton state p
serves the symmetries of the background metric. The aim
this appendix is to use those symmetries to find the struc
of the tensorMmnst given in Eq.~9!. In order to obtain this
structure we choose an orthonormal basis of the space
under consideration. The orthonormal basis is defined by
vector fields

eh5
1

a~h!

]

]h
, ~A2a!

ex5
1

a~h!

]

]x
, ~A2b!

ey5
1

a~h!

]

]y
, ~A2c!

ez5
1

a~h!

]

]z
. ~A2d!

We also introduce the following set of antisymmetric te
sors:

Ux
mn5eh

mex
n2eh

n ex
m , ~A3a!

Uy
mn5eh

mey
n2eh

n ey
m , ~A3b!

Uz
mn5eh

mez
n2eh

n ez
m , ~A3c!

Vx
mn5ey

mez
n2ey

nez
m , ~A3d!

Vy
mn5ez

mex
n2ez

nex
m , ~A3e!

Vz
mn5ex

mey
n2ex

ney
m . ~A3f!
3-8
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Given the fact that thee’s form an orthonormal basis, this se
of six tensors constitutes a basis for the antisymmetric o
two tensors.

It is easy to see that the symmetries of the tensorMmnst

~antisymmetric in the first two indices, and the last two, a
io
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to
m

th

so
e

n

ua
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symmetric under the exchange of the two pair of indic!
imply that the tensor must be a linear combination of t

following kind ~with coefficients that may depend only o
h):
Mmnst5a1~h!Ux
mnUx

st1a2~h!~Ux
mnUy

st1Uy
mnUx

st!1a3~h!~Ux
mnUz

st1Uz
mnUx

st!

1a4~h!~Ux
mnVx

st1Vx
mnUx

st!1a5~h!~Ux
mnVy

st1Vy
mnUx

st!1a6~h!~Ux
mnVz

st1Vz
mnUx

st!

1a7~h!Uy
mnUy

st1a8~h!~Uy
mnUz

st1Uz
mnUy

st!1a9~h!~Uy
mnVx

st1Vx
mnUy

st!1a10~h!~Uy
mnVy

st1Vy
mnUy

st!

1a11~h!~Uy
mnVz

st1Vz
mnUy

st!1a12~h!Uz
mnUz

st1a13~h!~Uz
mnVx

st1Vx
mnUz

st!

1a14~h!~Uz
mnVy

st1Vy
mnUz

st!1a15~h!~Uz
mnVz

st1Vz
mnUz

st!1a16~h!Vx
mnVx

st

1a17~h!~Vx
mnVy

st1Vy
mnVx

st!1a18~h!~Vx
mnVz

st1Vz
mnVx

st!

1a19~h!Vy
mnVy

st1a20~h!~Vy
mnVz

st1Vz
mnVy

st!1a21~h!Vz
mnVz

st . ~A4!
ge
g

Since the metric is homogeneous and isotropic, the funct
a2 , a3 , a4 , a5 , a6 , a8 , a9 , a10, a11, a13, a14, a15, a17,
a18, anda20 must vanish identically. Here we should stre
once again the fact that the quantum state of the gravi
does not break these symmetries. The background sym
tries also imply thata15a75a12[a anda165a195a21[b.

After these symmetry considerations, we can write
general expression of the tensorMmnst for a homogeneous
and isotropic background:

Mmnst5a~h!~Ux
mnUx

st1Uy
mnUy

st1Uz
mnUz

st!

1b~h!~Vx
mnVx

st1Vy
mnVy

st1Vz
mnVz

st!. ~A5!

This is all the information we can obtain regarding the ten
structure ofMmnst by making use of the symmetries of th
gravitational background. The functionsa(h) andb(h) will
depend on the particular choice of vacuum and are
known a priori.

We now make use of the newly obtained form forMmnst

@see Eq.~A5!# to solve the equation of motion for the EM
field in the presence of graviton one-loop quantum fluct
tions in flat homogeneous and isotropic backgrounds@see Eq.
~19!#. Following the very same steps as described in Ref.@7#,
we introduce the six~dependent! functions

ux5 f mnUx
mn , vx5 f mnVx

mn,

uy5 f mnUy
mn, vy5 f mnVy

mn,

uz5 f mnUz
mn, vz5 f mnVz

mn . ~A6!

From Eq.~18! it follows that

f mn5kman2knam , ~A7!

for some gauge potentialam . Hence, for a given EM wave
momentumkm , f mn has three independent components~one
ns

ns
e-

e

r

ot

-

amplitude and two polarizations!, as we still have the choice
of gauge for the EM field. Sincef mn is gauge invariant,
without loss of generality we consider the Coulomb gau
and chooseah50. With this choice the three non-vanishin
components for the gauge potential areax , ay , andaz , so
that

f hx5khax, f xy5kxay2kyax ,

f hy5khay, f yz5kyaz2kzay,

f hz5khaz, f zx5kzax2kxaz , ~A8!

and we can then write

ux52 f hx , vx52 f yz ,

uy52 f hy , vy52 f zx ,

uz52 f hz , vz52 f xy , ~A9!

so that in terms of the independent set$ux ,uy ,uz% the three
dependent ones can be written as

vx5
1

kh
~kyuz2kzuy!, ~A10a!

vy5
1

kh
~kzux2kxuz!, ~A10b!

vz5
1

kh
~kxuy2kyux!. ~A10c!

With all these definitions in mind we project Eq.~19! onto
the three tensorsUx , Uy , andUz ~which yield ux , uy , and
uz , respectively!, to obtain the following set of equations:
3-9



o
io
-

y

on

is
ns
r-

nts

de-

x-
ns

time

an

DALVIT, MAZZITELLI, AND MOLINA-PARI ´S PHYSICAL REVIEW D63 084023
05k2ux18a@ux~2kh
21kx

2!1kx~kyuy1kzuz!#

18bkh~kyvz2kzvy!, ~A11a!

05k2uy18a@uy~2kh
21ky

2!1ky~kxux1kzuz!#

18bkh~kzvx2kxvz!, ~A11b!

05k2uz18a@uz~2kh
21kz

2!1kz~kxux1kyuy!#

18bkh~kxvy2kyvx!. ~A11c!

We point out that the components of the vectork correspond
to the orthonormal basis given in Eqs.~A2!, so that k
5kheh1kxex1kyey1kzez . If we write the components
(vx ,vy ,vz) as functions of (ux ,uy ,uz), we have

05k2ux18a@ux~2kh
21kx

2!1kx~kyuy1kzuz!#

18b@ky~kxuy2kyux!2kz~kzux2kxuz!#, ~A12a!

05k2uy18a@uy~2kh
21ky

2!1ky~kxux1kzuz!#

18b@kz~kyuz2kzuy!2kx~kxuy2kyux!#, ~A12b!

05k2uz18a@uz~2kh
21kz

2!1kz~kxux1kyuy!#

18b@kx~kzux2kxuz!2ky~kyuz2kzuy!#. ~A12c!

Imposing the condition that the determinant of this set
equations vanish, so that we do not obtain the trivial solut
(ux5uy5uz50), we obtain the following determinantal re
striction:

k2~118a!@~118a!k228~a1b!~kx
21ky

21kz
2!#250.

~A13!

Let us assume that the EM radiation is characterized b
three-dimensional momentumk, such that kx

21ky
21kz

2

5k•k. The non-trivial dispersion relation becomes then

~118a!~2kh
21k•k!28~a1b!k•k50. ~A14!

The EM radiation waves will propagate with the dispersi
relation

kh
2

k•k
5128~a1b!, ~A15!

or, equivalently,

Ukh

k U5124~a1b!. ~A16!

We can now compare with the previous formulation of th
problem in terms of the two-point function of the gravito
~see Sec. IV A!. We already know from symmetry conside
ations that the tensorMmnst can be written as
08402
f
n

a

Mmnst5a~h!~Ux
mnUx

st1Uy
mnUy

st1Uz
mnUz

st!

1b~h!~Vx
mnVx

st1Vy
mnVy

st1Vz
mnVz

st!.

~A17!

Let us now calculate the only non-vanishing compone
of this tensor (Mh ih j and Mi jmn) in the coordinate basis
defined by the vector fields]h ,]x ,]y and]z . We get

Mh ih j5a~h!~Ux
h iUx

h j1Uy
h iUy

h j1Uz
h iUz

h j !5
a~h!

a2~h!
gi j ,

~A18!

Mi jmn5b~h!~Vx
i j Vx

mn1Vy
i j Vy

mn1Vz
i j Vz

mn!

5b~h!~gimgjn2gingjm!, ~A19!

which means in particular that the functionsa(h) andb(h)
introduced in this appendix are related to the functions
fined in Eqs.~24a! and ~24b! as f 1(h)5a(h)/a2(h) and
f 2(h)5b(h). Hence, we conclude that

Ukh

k U5124~a1b!

5124@a2~h! f 1~h!1 f 2~h!#

511
k2

6
^f2~h!&, ~A20!

which agrees with our previous result obtained from Ma
well’s equations and the two-point function of the gravito
@see Eq.~33!#.

APPENDIX B: STRUCTURE OF THE TENSOR M FOR
STATIC AND SPHERICALLY SYMMETRIC

BACKGROUNDS

We assume a static and spherically symmetric space
described by the metric

ds252A~r !dt21B~r !dr 21r 2dV2. ~B1!

In order to compute the general form of the tensorMmnst we
will follow the same steps as in Appendix A. We choose
orthonormal basis of the spacetime given by the vectorset ,
er , eu , andef . This orthonormal basis is defined by

et5@A~r !#21/2
]

]t
, ~B2a!

er5@B~r !#21/2
]

]r
, ~B2b!

eu5
1

r

]

]u
, ~B2c!

ef5
1

r sinu

]

]f
. ~B2d!
3-10
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We also introduce the following basis of antisymmetric ord
two tensors:

Umn5et
mer

n2et
ner

m , ~B3a!

Vmn5eu
mef

n 2eu
nef

m, ~B3b!

Xmn5et
meu

n2et
neu

m , ~B3c!
in

a
tim
-
tim

:
-
n

ite

w

08402
r Ymn5et
mef

n 2et
nef

m , ~B3d!

Wmn5er
meu

n2er
neu

m , ~B3e!

Zmn5er
mef

n 2er
nef

m . ~B3f!

The tensorMmnst must be a linear combination of the fo
lowing kind ~with coefficients that may depend only onr ):
Mmnst5a1~r !UmnUst1a2~r !~UmnVst1VmnUst!1a3~r !~UmnXst1XmnUst!

1a4~r !~UmnYst1YmnUst!1a5~r !~UmnWst1WmnUst!1a6~r !~UmnZst1ZmnUst!

1a7~r !VmnVst1a8~r !~VmnXst1XmnVst!1a9~r !~VmnYst1YmnVst!

1a10~r !~VmnWst1WmnVst!1a11~r !~VmnZst1ZmnVst!1a12~r !XmnXst

1a13~r !~XmnYst1YmnXst!1a14~r !~XmnWst1WmnXst!1a15~r !~XmnZst1ZmnXst!

1a16~r !YmnYst1a17~r !~YmnWst1WmnYst!1a18~r !~YmnZst1ZmnYst!

1a19~r !WmnWst1a20~r !~WmnZst1ZmnWst!1a21~r !ZmnZst. ~B4!
nts
Since the metric is static, we can make use of the time
version invariance to show that the terms in Eq.~B4! involv-
ing the functionsa2 , a5 , a6 , a8 , a9 , a14, a15, a17, anda18
must vanish identically. Here we should stress once ag
that the quantum state of the gravitons does not break
inversion invariance.~This is not true in general. For ex
ample, the Unruh vacuum state in Schwarzschild space
does break the time inversion symmetry.!

Because of the spherical symmetry of the metric~spatial
inversion as well!, the following coefficients have to vanish
a3 , a4 , a10, a11, a13, and a20. Furthermore, the coeffi
cientsa12 anda16 must be equal as they have to be invaria
under spatial rotations. The same is true for the paira19 and
a21.

After these symmetry considerations, we can finally wr
the general expression for the tensorMmnst in a static,
spherically symmetric background:

Mmnst5 f 1~r !UmnUst1 f 2~r !VmnVst

1 f 3~r !~XmnXst1YmnYst!

1 f 4~r !~WmnWst1ZmnZst!. ~B5!

The functions f i(r ) ~with i 51, . . . ,4) will depend on
the particular choice of graviton state and are not kno
a priori.

As in Apendix A we introduce the six functions

u5 f mnUmn, v5 f mnVmn,

x5 f mnXmn, y5 f mnYmn,

w5 f mnWmn, z5 f mnZmn. ~B6!
-

in
e

e

t

n

In the Coulomb gauge, the three non-vanishing compone
for the gauge potential arear , au , andaf , so that

f tr5ktar , f ru5ktau ,

f tu5ktaf , f rf5krau2kuar ,

f tf5kraf2kfar , f uf5kuaf2kfau , ~B7!

and we can then write

u52 f tr , w52 f ru ,

x52 f tu , z52 f rf ,

y52 f tf , v52 f uf , ~B8!

so that in terms of the independent set$u,x,y%, the three
dependent ones can be written as

w5
1

kt
~krx2kuu!, ~B9a!

z5
1

kt
~kry2kfu!, ~B9b!

v5
1

kt
~kuy2kfx!. ~B9c!

We now project Eq.~19! onto the three tensorsU, X, andY
~which yield u, x, andy, respectively!, to obtain the follow-
ing set of equations:
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05k2u28 f 1u~kt
22kr

2!18 f 3kr~xku1ykf!

18 f 4kt~wku1zkf!, ~B10a!

05k2x18 f 1ukrku18 f 2vktkf28 f 3x~kt
22ku

2!

18 f 3ykukf28 f 4wktkr , ~B10b!

05k2y18 f 1ukrkf28 f 2vktku18 f 3xkukf

28 f 3y~kt
22kf

2 !28 f 4zktkr . ~B10c!

If we write the components (v,w,z) as functions of (u,x,y),
we have

05@k2~118 f 1!28~ f 11 f 4!~ku
21kf

2 !#u18~ f 31 f 4!krkux

18~ f 31 f 4!krkfy, ~B11a!
o
F

08402
058~ f 11 f 4!krkuu1@k2~118 f 3!28~ f 21 f 3!kf
2

28~ f 31 f 4!kr
2#x18~ f 31 f 4!kukfy, ~B11b!

058~ f 11 f 4!krkfu18~ f 21 f 3!kukfx

1@k2~118 f 3!28~ f 21 f 3!ku
228~ f 31 f 4!kr

2#y.

~B11c!

In this case the components of the vectork in the orthonor-
mal basis are given byk5ktet1krer1kueu1kfef .

Imposing that the determinant of the set of three equati
vanishes, we obtain the following determinantal condition

k2@~118 f 3!k228~ f 31 f 4!kr
228~ f 21 f 3!~ku

21kf
2 !#

3@~118 f 3!~118 f 1!k228~ f 31 f 4!~118 f 1!kr
2

28~ f 11 f 4!~118 f 3!~ku
21kf

2 !#50. ~B12!
ics,
R.
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