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We compute the graviton induced corrections to Maxwell's equations in the one-loop and weak field
approximations. The corrected equations are analogous to the classical equations in anisotropic and inhomo-
geneous media. We analyze in particular the corrections to the dispersion relations. When the wavelength of
the electromagnetic field is much smaller than a typical length scale of the graviton two-point function, the
speed of light depends on the direction of propagation and on the polarization of the radiation. In the opposite
case, the speed of light may also depend on the energy of the electromagnetic radiation. We study in detail
wave propagation in two special backgrounds: flat Robertson-Walker and static, spherically symmetric space-
times. In the case of a flat Robertson-Walker gravitational background we find that the corrected electromag-
netic field equations correspond to an isotropic medium with a time-dependent effective refractive index. For
a static, spherically symmetric background the graviton fluctuations induce a vacuum structure which causes
birefringence in the propagation of light.
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[. INTRODUCTION electromagnetic field and a quantum gravitational field on
the propagation of EM radiation waves. We will show that,
It is well known that when the QED vacuum is modified indeed, the graviton loop leads to effects that are similar to
by external conditions such as background fields, finite temthose already studied and calculated for QED vacua.
perature, or boundary conditions, the propagation of the pho- Even though general relativity is a non-renormalizable
tons can be affected in a non-trivial way. The vacuum betheory, the one-loop corrections are meaningful when the
haves as a dispersive medium in which the propagation ofuantized gravitational field theory is looked upon as an ef-
light generally depends on the direction of propagation andective field theory[13]. It is possible to compute, for in-
on the polarization of the radiation. Physically, the effect canstance, the leadindong distancgquantum corrections to the
be understood as follows: the photon exists for part of theNewtonian potentia[14,15. Our calculation provides an-
time as a virtuab~e™ pair, on which the external conditions other example of a quantum gravity effect that can be esti-
do act and modify the propagation. In previous works themated using general relativity as a low energy effective field
problem of photon propagation in modified QED vacua hagheory for quantum gravity. Moreover, it could also be of
been analyzed for external electromagnefttM) fields  some interest from a phenomenological point of view. In-
[1-4], boundary conditiong5,6], external gravitational fields deed, Amelino-Cameliat al. [16] pointed out that many
[7,8], and finite temperaturg9]. Further references and de- quantum gravity scenarios predict a frequency-dependent ve-
tails can be found in Ref10]. There is also an experiment locity of light that could be observable fdgcosmological
under construction to detect birefringence of the QEDgamma-ray bursts. Gambini and Pull[d7] studied the
vacuum in the presence of a strong magnetic fiét. propagation of light in canonical quantum gravity and found
The phenomenon is of course quite general, and not rethat the modified Maxwell's equations imply a frequency
stricted toe"e™ pairs. The interaction of the photon with and helicity dependent velocity of propagation. We will see
any other field will produce similar effects: the photon will that, in principle, similar results can be found by taking into
not follow, in general, a geodesic of spacetitia.this paper ~ account the interaction between gravitons and EM radiation
we will analyze the effect of the coupling between a classicaln the low energy theory.
This paper is organized as follows. In Sec. Il we obtain
the quantum corrections to the classical Maxwell's equations

*Email address: dalvit@lanl.gov induced by the graviton loop. We write the corrections in
TEmail address: fmazzi@df.uba.ar terms of the coincidence limit of the graviton two-point func-
*Email address: molina@laeff.esa.es tion. In Sec. lll we present a qualitative analysis of the quan-

Yt is even possible to have superluminal propagation. Howeverfum corrections to the dispersion relations. We analyze the
as extensively discussed in the literat(ife10,13, this does not cases\>L. and\<L., where\ is the wavelength of the
imply causality violations. classical electromagnetic radiation ahgdis a typical scale
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of variation of the graviton two-point function. We show that the one-loop approximation, for which we expaSdip to

in general the velocity of light depends on the direction ofsecond order in gravitons. The second order term can be
propagation and on the polarization; i.e., we find gravita-shown to have the forril9]

tional birefringence. In Sec. IV we discuss quantitatively two
examples: a flat Robertson-Walk@W) background metric
and a static metric with spherical symmetry. Section V con-

(2) — 4y [ nvoT uvoT
tains our conclusions and final remarks. S f d'xy—gh,,(O*"77+ P#**"h, ., (5

Il. EFFECTIVE EQUATIONS OF MOTION R ) ) )
whereO=0*"?" is a second order differential operator that

Consider pure gravity described by the Einstein-Hilbertdepends on the background metric and is independent of the

(classical actiorf EM field [19] (we will not need its exact form in what fol-

) lows), and the tensoP= P*“"’7 arises from the expansion of

SGz_zj d“x\/—_gR, 1) Sgm to second order in gravitons, and reads
K
2

where k?=327G andR is the Ricci scalar. The classical pUvoT_ _ K = Fag(igwgm_lgwgw
action for the EM field is given by 8| P 4 2

1 2 v +£F g;LV(_gBUFaT+gaO'FBT)

SEM:_Z dX\/_gFMVF y (2) 2 apB
. X 1 oT B av «@ Bv

whereF,,=V A,—V A, is the field strength tensor and + EFaﬁg (—gFPHR"+ g *FF")

A, the gauge potential. The classical energy-momentum ten-
sor associated with the EM field is given by
+ 2Fa,3(FaTgﬁ'ugVU+ Fvﬁgaog,u,‘r_’_ FVTga,ugﬁa')} .

1
Eh=FyF ™= 707 F . FA. 3 ®

The classical action of the EM field depends on (blassi- There is also a second order term in the ghost fields that for

cal) gravitational background. It is then natural to ask Our'gauge-breaking terms linear in the metric fluctuations de-

selves what the effects are on Maxwell’'s equations due to . .
: e ) . couples from the gravitons and is only coupled to the back-
change in the gravitational background and, in this paper : ; . )
. S .“ground metric. This means that the one-loop effective action
particularly, what the implications are of the one-loop gravi-

ton fluctuations. for the combined system reafik9]

We define the classical action of the combined system
(gravitational field plus classical EM radiatipn i o A
Seil 9w ALl = Sciast ETr IN(O+P)—i Trin Ggpost,

Selas= Sem+ Sg - (4) @)

The effect of quantum metric fluctuations can be analyzed
by means of the background field method, expanding the A . . .
total actionSy,s around a background metric @,,—g,., where Ggpog is the second order differential operator that

+«h,,, and integrating over the graviton field (,) de- comes from integrating over the. ghost fields.
grees of freedom to get an effective action for the It is extremely complicated, in general, to calculate the

: : one-loop effective action. In this paper we will use the weak
lrflnahcslf[grgﬁggsfelelgg,éVajgg_:;‘\),;e.all?mogd?ér;%lg,'Lh](,% gviil:r?eitc;ne field approximation, assuming that the EM' field is qtest field
corresponding gauge-breaking action Syaued0.h] that does not affect the background metig, . In this ap-

_ —(1/2)fd4><\/—_gx"9,wx” and its corresponding ghost ac- proximation the effective action takes the form

tion Synost[ 18]. The complete effective actidByy; is obtained
by integrating the full actior$= S;j,st+ Syaugst SgnostoVver the i

graviton and ghost fields. We evaluate this effective action in Seii= Sglast zTr INO—i Trin éghost

n J =G (OF o OMA (%), (8)

20ur metric has signature<(+ + +) and the Riemann and Ricci
tensors, and the scalar curvature are definedRgs;=d,1'5
-+, Ryg=RE,5, and R:g“ﬁRaB, respectively. We use units
such thath=c=1. where
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K2 where we have also included the equations that follow from

M#PIT(X,X) = — 1_6<haﬂ(x)h§7;(x)+h§n(x)haﬁ(x)> the Bianchi identityv ,F,,+V F,,+V,F,,=0. The con-
stitutive relationsD[E,B] and H[E,B] are unusual when

1 By 1 0 O Mijk# 0, since in this caseoth the electric and magnetic

g9 79" —29"9 (97%g™—-g7"g™) fields appear in the definition d andH. However, when
Mgijk=0 the relations are exactly equivalent to those of a

L B nlnovnry cpovimr ~onauiare IN€AT Medium characterized by spacetime dependent electric

+ 29 (9*°g”"g 97979 9°7g""g permitivity and magnetic permeability tensors defined as

X

+g77g#7g"%) +g*4(grogTg B+ gPg T gr T Di= 6} El 6}5 5} —8Mi0? , (143
— g’ gMB — qoBgTHQY T oByTIqMaqVE } S ) . )

9"’ g "gHP—goBgTHg¥ )+ g?Pg g gy BI:M}H], M}E5}+25|mannabfabj- (14b)
—g7PgTgreghe|. (9 We emphasize two relevant technical points. On the one

hand, the graviton two-point function will depend, in gen-

Note that the tensoM“**" has the following symmetry eral, on the_ choice of the gauge-breaking term fqr thg gravi-
properties, which are similar to the symmetries of the Rie_ton fluctuations. However, the_ background metric will also_
mann tensor: MAY0 7= — MPATT  MAYTT— — MAY™  and depepd on thr—_z gaugg—breakmg term through the semi-

MAY77— M4 In view of thes'e properties, the o'nIy non- classlcal Einstein equation. Both dgpendences should cancel
vanishing components of this tensor &%, MO and out in the dynamics of any test fielbee Refs[15] and

MK wherei.j k.| are spatial indices. This tensor has 21'[20]). We will not consider this problem in what follows;

independent components and depends on the two-point funke we will assume that the background metric already con-

tion of gravitons, evaluated in an arbitrary quantum state?ams the back reaction of gravitons, computed with a given

e . . . gauge-breaking term. On the other hand, the two-point func-
L;I?Ié.wzhe two-point function of gravitons can be written as tion will diverge at the coincidence limit. Adequate counter-

terms are needed to absorb the divergences. In the spirit of
ffective field theories, these counterterms will not contrib-
MVOT, ! = \I} h,uV h(TT ! _;’_hG'T ! hILLV \I} e X X H . . i A
G (xX)=(¥ R ()R7(X") (x)h#(x)] %:’LO) ute in the long distance and low energy limit, which will be
dominated by the non-local, non-analytic part of the two-
taken at coincidencex&x'). In the following we will as-  Point function[13,15).
sume that the graviton sta@) preserves the symmetries of
the background metric, so that the tensdt*” will share I1l. QUALITATIVE ANALYSIS
those same symmetries.
The (one-loop gravitationally modified equations of mo-
tion for the EM field, 6S./ 6A,=0, are given by

Given the quantum corrected equations, we can distin-
guish two different physical regimes depending on the rela-
tive size of the wavelength of an EM radiation field de-

V,GH'=0, GH'=FH'—A4MIF7". (12) scribed byF#” and the typical scale of variation &f#"7,
c-
These equations are analogous to the classical Maxwell’s Whenk<L., we can take the tensdd“"’" outside the
equations in the presence of a linear, anisotropic, and norfovariant derivative in Eq(11), as it does not change sig-
homogeneous media. To see this explicitly, we recall that ifificantly over the scala. The equation of motion can then
a local Lorentz fram&®™=E™ andF™= ¢""B¥, so thatwe P& written in the form
can introduce the vector&®™=D™ and G™'=e"HK,

MY _ Mmv oT
namely V, F#'—4MEZV Fo7=0. (15)
Di=Ei—8M% EM—4M% (MK, (128 We first introduce the variabldg]
o . . . F,=f,e" 16
HI=BI—2€™M 1, nikeq BI— 46K M o E™. (12b) poom (18

) ) with f,, the amplitude andy the phase, such tha,
The quantum corrected equations in a local Lorentz frame-y ., is the momentum of the EM wave. We assume that
L .
read the amplitudef ,, is the slow varying variable and is the
fast varying variable, so that from now on we discard any

v-D=0, (133 gradients and/or time variations of the amplitugg .
We start from Eq(15) and make use of the new variables
V-B=0, 13D 5 write |
VXH=4aD, (139 k,fP'— 4k, MP77f , =0. (17)
VXE=—¢B, (130  The remaining Maxwell’'s equation implies the following:
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Ko vt Ko ot Ko f =0, (18) structure (M)=0 and (dM)=0, we obtain (FIM)
~ 9F (Xo){IM (X—Xo)) and (MJF )=~ 3?F (Xo){M(X—Xo)).
We now multiply Eq.(17) by k* and make use of E¢18) to  Therefore, in this approximation, the average of &4) will

obtain contain higher derivatives of the EM fieldgs long as
. Lurpvlon (M (x—Xg))#0]. As a consequence, on dimensional grounds
K7+ 8KM ™K, -, = 0. 19 we expect a modified dispersion relation of the form
This equation is similar to the one discussed by Drummond k2+cﬂyk,u,kv+cﬂypkp,kvkp:0' (22)

and Hathrell in Ref[7]. (See also Ref8].) In those refer-

ences the corrections are due to fermion loops and are proyherec —O(L2/L?) andc,,,=O(L2/L)

. . Yoo . . v nvp .
portional to the Riemann tens@” ” (this is true in the The quadratic correction modifies the speed of light as in
case of emE)LtV)’/mspaceUmes, so tiRit” and R vanish[7]),  the previous case. The cubic term is qualitatively different,
instead ofM#*7. since it produces a variation of the speed of light that in-

In the absence of quantum corrections one obtains thgreases linearly with the energy of the EM radiation. As
usual dispersion relatiok®=0. The graviton loop induces gjready mentioned, this kind of correction may be relevant
modifications to this relation; i.e., light rays do not follow from a phenomenological point of view, because it induces a

null spacetime geodesics. We will analyze in detail severahon.trivial structure in the arrival time of light rays coming
examples in the following sections. Here we discuss qualitafrom gamma-ray burstil6,17).

tively some general properties of the modified dispersion re-
lations.

It is easy to see that the tensh*"?“ is dimensionless
and proportional to the square of the Planck lenggh- «. In the following sections we will concentrate on two par-
Therefore we expedtl »"?7=(Lp/L.)2C#*P, with C#*?? a ticular classes of gravitational backgrounds, namely flat RwW
dimensionless, slowly varying tensor. Inserting this in Eg.metrics and static spherically symmetric backgrounds.
(19), we see that the modified dispersion relation will have

the general form A. Flat Robertson-Walker background

k2+c#,,k#kV:0, (20) We first consider the case of a flat RW background,
whose metric in conformal coordinates reads

IV. EXAMPLES

wherec,,, is a slowly varying tensor of orde®(L3/L?), . s
which depends on the direction of propagation and the po- ds*=a“(7)(—dy"+dx°). (23
larization of the EM radiation. Therefore, we expect the
modifications in the speed of light to be proportional to

L2/L2 and gravitational birefringence of the same order of

magnitude. . LT . .
9 For RW spacetimes the metric is invariant under spatial re-

We consider now the opposite case L. For simplicity X . . .
and in order to be able to compare with previous works, w fleé:it:(ons (due to its h_or_nogenelty and _|so_trc)pyso that
¥=0. For the remaining two non-vanishing sets of com-

assume that the background metric is flat and that the quan- fh 010} g MK he | :
tum state for gravitons is such that the two-point function hadonents oft € tensoM _an M. , We use the invariance
a random variation on micro-scalésuch smaller than any of the metric u_nder spatial rotations. This implies that they
other scale of the system, but still larger thag). In other can be written in the form
words, we assume that the spacetime looks classical at scales MOi0i = £ ( )gll (243
larger thanL. and has a complicated random structure at e
scales smaller thah.. This kind of state has been consid-
ered before in the context of loop quantum gravity,21.

In this situation, the quantum corrected equatidr)
reads

Under the assumption that the graviton quantum vacuum
preserves the symmetries of the background metric, we can
conclude that the tensdvi#”” has the same symmetries.

MU =f,(7)(g*g" ~g"g"), (249

wheref,(#n) andf,(#) are functions of time. Note that the
non-vanishing components of the tensor have the same form
BY_ AN B ory _ BT as the components of the Riemann tensor in RW spacetimes,
TpFH =AM (9,F7T) = 4(0, Mo F?7=0. (21) apart from the global factors, andf,. To determine these
It is, of course, not possible to neglect the derivatives of thdwo functions, we recall that the tenstt . is propor-
tensorM ,,,,,,. The equation describes the propagation of afional to the two-point function of gravitons, which in RW
classical electromagnetic wave in a random media. backgrounds can be expressed in terms of the two-point
As the wavelength is much larger than, in order to function of a massless n_ummally coupled scalar field
obtain a modified dispersion relation we average the field22,23. Therefore the function$,(») and f,(») must be
equation over a spacetime domain of slzg with L <L
<\. To compute the average of the productM()F and
M(dF) we expand- around a poink, in the domain. Sche-  3ror simplicity we have considered the case of a flat RW back-
matically F(x)~F(Xg) + dF (Xo) (X—Xo). Denoting by(---)  ground. Our results can be easily generalized to the closed and open
the average over the domain and using that for a randorRW spacetimes.
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proportional to{ ?(7)). In order to calculate the constants where({ ¢?(7))==,|F(x,k)|? is the coincidence limit of the
of proportionality exactly, we need to go beyond symmetrytwo-point function of a massless minimally coupled scalar
arguments and we must face the exact evaluation of théeld in a RW background. We can now insert this formula in
graviton two-point functionG#**?(x,x") of Eq. (10) in a  Eq. (9) in order to read off the expressions fby(#) and
RW gravitational background. The result can be found in thef,( %) in Egs.(24a@ and(24b). This procedure yields
literature(see for example Ref22]). We only need to quote
the final result of that reference. In the traceleb§=0),
transverse Y ,h*”=0), and synchronous gaugkenceh®” fa(m)= 482%( 7 )<¢ (),
=0), and assuming the graviton vacuum state to be homo-

geneous and isotropic, the coincidence limit of the two-point

2

function has only spatial non-vanishing components, and fa( 77)———<¢>2( 7). (28)
read$ [22]

The quantum correction to the classical EM action due to the
Gk (x,x)=2 m'mim<* m'* + mi* mi* mkm) [F(x,k) |2, coupling with the graviton degrees of freedom can now be

(x) ; ( IFOK] obtained from Eq(8) by making use of the above results.
(25 We get

The sum ovek denotes a sum over a three dimensional set @) dxy—g[—4 ¢ FFO
of spatial wave vectors. The complgspacelikg¢ vector M) = X [—4a%(m)f1(m)Fo

mi(k) is defined asm'(k)=(1/y2)[e}(k)+ie,(k)]. The
vectorse; (k) ande,(k) are spacelike vectors, such that the

set{ey(k),e,(k),k} forms an orthonormal basis in the three Note that the one-loop effective action for the electromag-
dimensional spacelike hypersectiofisere k=k/k and k netic field isSEM+<S(E2,3,), which is a divergent quantity and
=(k-k)¥?]. The mode functionF is given by F(x,k) has to be suitably renormalized. This is accomplished by the
=F(7.x,k)=f(7,k)e**/327°kV, whereV is a constant renormalization of $?(7)), for example, by means of adia-
comoving volume. The mode function§ (x,k) andf(k, 7) batic regularizatiorj24].
are a solution to the equations Having the EM effective action and assuming that one
first solves the pure gravity part in order to get the corrected
OF(x,k)=0, (263 background metric after graviton back reactithat is, we
assume one solves the pure gravitational part and gets the
) 2a. new scale factoa(»)], one can get the corrected Maxwell’s
f(9,k)+ —Ff(7,k)+k?f(5,k)=0, (26b) equations from the variation of the effective action, namely,
a 0Ses/ 6A,=0. We will assume that,(#) andf,(7) have a
time variation much slower than that associated with the EM
ﬂeld so that we can approximate the equations of motion as
in Eq. (15). The source-free equations are the usual ones

respectively, i.e., correspond to the dynamical equation of

massless mlnlmally coupled scalar field in a RW back-;

ground. Here the overdot denotes derivation with respect to

the conformal time variabley. 1
The two-point function, given in Eq25), can be simpli- ——V-B=0, (303

fied by making use of the identitg}el +elel+k 2k'kl a(n)

=g'. We can then perform the sum over momenta as

|F(x,k)|? depends only on the modulus lof The final result LBJF 2a(z) B=— ! V XE,
reads a(n)  a(n) a(»)
(30b)
Gkl (x,x)= 4 g kgl + §gilgik_gijgkl ($%(7)) where the overdot denotésd », andV is vector notation for
152 2 ’ al dx.
(27) The other two equations read
— V.-E=0, 31
“The choice of vacuum corresponds to that used in [R&. This a(n) €erl( 7) (313
graviton vacuum is homogeneous, isotropic, and the same for the
two helicity states of the gravitonsH2,—2). 1 (,7)
5The normalization of the mode functidh differs from that of al ) €l 7])E+ a(7) €ei(m)E= = ),ueﬁ(n)VX B.
Allen [22] in a k! factor. The reason is that we have defined the (31b)

graviton fluctuations viay,,,—gd,,+ «h,, and our graviton two-

point function[see Eq(10)] is given in terms of thih“", whereas  |n the first term on the left hand side of the last equation we
Allen has 9= Gunt hw, and defines the graviton two-point have discarded a contribution proportional to the time de-
function in terms ofh rivative of the effective electric permittivitg.(7) since, as

084023-5



DALVIT, MAZZITELLI, AND MOLINA-PARI ‘s PHYSICAL REVIEW D63 084023

already discussed in E@L5), we are assuming that it does B. Static and spherically symmetric backgrounds

not change significantly over the wavelength of the EM field. | this section we consider a static and spherically sym-
The effective electric permittivity and magnetic permeability ,otric spacetime described by the metric

tensors in RW backgrounds are proportional to the identity

(3x3) matrix, namely, ;= €x(7) 8, and ;= per(7) 5, ds?= — A(r)dt?>+ B(r)dr2+r2dQ?2. (35)
with
In order to compute the tensd*”?” one needs to calculate
ee( 1) =1+8a%(n)f1(7), (328  the graviton two-point function, evaluated in an arbitrary
quantum state. It would be a rather formidable task to explic-
Mer(7)=1+8f5(7). (32b itly calculate such an object. Instead, we will use symmetry

. . . arguments and assume that the graviton quantum state pre-
Hence the presence of gravitons introduces a time depergryes the symmetries of the background metric to derive the
dent effective refraction indeRes(7) = Veer( 7) te(7) fOr  pasic structure of the tensd#7*". It is shown in Appendix
a traveling EM wave, and therefore implies a time dependeng that the tensoM“*°™ can be written as

speed of light in the mediufn
, MA7(r) = (1) URPU 7+ (1) VAT

ver(7)=1—4[a%(n)fy(n) +fa(m)]=1+ %<¢2( 7). +f5(r) (XMYXIT+ YHVYOT)

33 (1) (WEWTHZ90Z77),(36)
-;lj—rh(;?)aegjgi:;lr\lleai%e?gr o;I"gpr:)ﬁ:;i;g%;r?smgff?ﬁslIE?\;Irer(;tlﬁ;;O?lfwhere the function$;(r) depend on the particular choice of
field, in agreement with the isotropy and homogeneity of\llﬁcvu\tjm' Wﬂ-l;hfw fﬂn,,t'?r?&?fytr:re dgfriﬂg:j in EXVO ené?;lsBors
RW spacetimes. In Appendix A we give an alternative deri- ust, as ,in tﬁe c,ase ,of RW backarounds tﬁg onl n.on-
vation of this result based on a direct study of the dispersior’i| o 0i0j gi]-k, o y
relation for light in the graviton modified medium. vanishing components aM™" andM"™, withi,j k| spa-

i i ; tial indices. In general, the structure of the tenktf”?* in
The renormalized two-point functiotip?(7)) does not i ' : _
have a definite sigrisee, for example, Ref§19,25). The Eq. (36) is much more complicated than that for the Riemann

effective speed of light in the graviton vacuum can be greatej'ensor corresponding to the metc5). However, this form

MVOT H
or smaller than that in free space, depending on the particul Parr;nZI ttintsrg':vlof DrLJIrsmwr?1(<))(r)1((j:i zﬂguggt;?@;f"y an analysis
form of the scaling parameta( ). In any case, the correc- P Starting from Eq(19), which describes thé ropagation of
tion is extremely small, typically proportional to the ratio of an EM nge in thqe résence of aravitons vﬁe ghgw in Ap-
the spacetime scalar curvature and Planck’s curvaRiiRy . . ; presenc gr; ' P
As we go back in time towards the big bang singularity thepend|x B that it ha_s T‘O”'t“"'a‘ SOIL!UOHS only yvhen the wave
modulus of the correction to the phase velocity increases. d?oti]mentumkﬂ satisfies the following determinantal condi-
course, we cannot trust this calculation for such early time§ :
since the correction would become too large and since gen- K2 2 2 2,2

- ; i 1+8fg)ke—8(fg+f)kr—8(f,+f3)(kj+k
eral relativity would not be valid as an effective low energy L( 3) (fat Ta)kr —8(FoH f3) (Kot ky)]

and large distance theory in that regime. X[(1+8f3)(1+8f,)k?—8(fz+f,)(1+8f,)k?
It is worth mentioning that similar results are obtained ,
due to QED vacuum polarizatioiY]. The QED effects are —8(f1+f,)(1+8f3)(ky+ky)]=0. (37)

generically much larger than the graviton corrections. How-

ever, there are situations in which the QED correction vanThe solutionk?=0 corresponds to the usual dispersion rela-
ishes, while the graviton correction does not. To show arfion, in which the light ray follows the null geodesics of the
explicit example, let us consider de Sitter spacetime. Virtuapackground metric. Apart from thigrivial) case, the previ-

e"e* pairs modify Maxwell's equations as follow3]: ous equation admits new dispersion relations, depending on
the direction of propagation and polarization of the EM ra-
diation field.

5| DuF*"=0, (39 When the light ray moves radiallkg=k,=0) the deter-
10807rm minantal conditionsee Eq.(37)] has two possible solutions

wherem is the mass of the electron amdthe fine structure (1+8f3)(—k2+k2)—8(f3+f4)k2=0 (383

constant. The corrected equations coincide with Maxwell’s v ro

equations up to a trivial normalization and the dispersion (1+8f3)(1+8f1)(—kt2+kr2)

relation is the classical one. However, graviton vacuum cor-
rections in de Sitter spacetime do affect the propagation of

_ 2_
individual light rays. 8(f3+f,)(1+8f)kr=0.

(38b

If we assume that (£8f,)#0, the two dispersion relations
®This velocity corresponds to the phase Veloifyase ¢/ Nt - that follow from the above equations are the same, which
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agrees with the fact that as the gravitational background is
spherically symmetric, a radial EM wave should not be af- M*""(r~2MG)~
fected by birefringence. We can conclude that for radial light
rays the absolute value of the quantum corrected velocity is + Fa(1)(XHYXIT+ YHVYIT)

M 2
Vp) [FL(L)UFUTT+ Fp( VIV

given by
+ Fa(1) (WHPWI T+ ZBVZ97) ], (43
k—t =1—-4(f,+f3). (39 Hence, near the horizon the birefringence effects induced by
r gravitons are of orde@(Mﬁ,/Mz).
When the EM wave moves transversalk; € k,=0), we The Reissner-Nordstno spacetime describes the metric
get the following two possible solutior(€or 1+ 8f4+0): of a static and charged black hole:
2 2 _ 2
—(1+8f3)ki+(1-8f,)k5=0, (408 o [, 2MG_ QG) .,
r 4qr?
—(1+8f,)ki+(1-8f,)k3=0. (40b) i
2MG Q%G T )
As opposed to the previous case, the two dispersion relations ~ +| 1~ — A2 dr?+r?(d6”+sin*6dg?).
that follow from these two equations are different. Light rays &
propagate with different velocities (44)

This spacetime has in general two event horizons The
=1-4(fy+f3), (418 exterior one atr,=MG[1+(1—Q?%4wM?)?] coincides

t

ko with that of the Schwarzschild metric in the lin@><M?.

Kk, We can carry out an analysis similar to the previous one, and
o =1-4(f,+1,), (41 write f;(r)=(Mp/M)2G,(r/2MG,r/Q+/G) with G, four new

b dimensionless functions. Near the exterior event horizon (

depending on their polarization. Similarly, given the symme—:r+) we can approximate

try under the exchange ap to 6, azimuthal moving EM YIRE . "
waves k. =k,=0) have the same dispersion relations as M“V”T(r~r+)~(—P) 1 _+, + uryor
transverse light rays. Both for traverse and azimuthal propa- M 2MG' QG
gation we obtain gravitational birefringence due to graviton
vacuum fluctuations. Similar results are obtained from cor- N N+ o
rections due to QED vacuum effects. +0 2MG’ Q\/E Vv
It is worth mentioning that the previous results are appli-
cable to any static and spherically symmetric background. r, r,
We will now consider two particular examples, the +Gs3 MG’ (XHPXIT+YHYYOT)
Schwarzschild background and the Reissner-Nordstro QVG

background. The Schwarzschild spacetime is described by

. r r
the metric _*t .t
" ZMG'Q@>
2MG 2MG)\ 1!
ds?=—|1— ——|dt?+|1—- —— dr?
r r X(W}LVWUT+ Z,uvz(rT) ) (45)
+r2(de?+sirf0dg?). (42

Hence, near the outer event horizon the birefringence effects
fnduced by one-loop gravitons are again of order
O(M2/M?).

In this case, using dimensional analysis, we can write th
functions fi(r) (i=1,...,4) as fi(r)=(Mp/M)2F(r/
2MG) with F four dimensionless functions anélp the
Planck mass. As we have already mentioned, the exact form
of these functions is unknown, since it is not possible to

calculate explicitly the graviton two-point function for the  |n this paper we have computed the quantum corrections
Schwarzschild background. However, near the horizon g (classical Maxwell’s equations due to the interaction be-
~2MG, we can approximate tween the EM field and the fluctuations of the spacetime
metric. The modified equations look like Maxwell’s equa-
tions in the presence of a linear medium, with electric per-
"As we already mentioned at the end of Sec. II, the backgroundnittivity and magnetic permeability tensors proportional to
metric should be a solution of the semi-classical Einstein equatiorthe coincidence limit of the graviton two-point function.
This is not the case for the particular examples we will be considFrom the modified equations we have found the quantum
ering in this section. We include them only for illustrative purposes.corrections to the dispersion relations. In general, as for the

V. CONCLUSIONS
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DALVIT, MAZZITELLI, AND MOLINA-PARI ‘s PHYSICAL REVIEW D63 084023

case of linear media in classical electrodynamics, the speashe also expects classical, stochastic fluctuations of the
of light depends on the direction of propagation and on thespacetime metric. Its dynamics should be described by a
state of polarization. The quantum corrections we have com-semi-classical Einstein-Langevin equation[28]. These
puted should be considered along with the graviton backlassical fluctuations will also affect the propagation of pho-
reaction on the background metrithis is crucial, for ex- tons(see for examplg29]).

ample, for the cancellation of the gauge-breaking depen-

dence; see Refd15,19). Throughout the paper we have ACKNOWLEDGMENTS

assumed that the metric does contain szhck reactioh . . .
corrections, and have focused on the interaction of the gravit-. VIVeI thgnthhe tUS'Vf rtsr:dafd %@rlﬂs III_tdcla_tMgdr}d anDp'ar—
tons with the electromagnetic field. Icufarly Lr. forant L. Lythe for nis hospitality during D.D. S

We have shown that, when the EM field wavelenytis visit to Spain, while part of this work was carried out. We
small compared to the,typical scalg of variation of the also thank Paul R. Anderson for helpful discussions and a

permittivity and permeability tensors, the corrections to thecarer| reading of the manuscript. F.D.M. acknowledges sup-

speed of light are proportional tdp/L.)2. We have de- port from Universidad de Buenos Aires, CONICET, and

. . . . ! . ANPCyT (Argenting and C.M.-P. from CAB(CSIC/INTA)
scribed in detail the quantum corrections in both RW grav"(Spair). D.D. thanks Alejandra Kandus for discussions.

tational backgrounds and static spherically symmetric space-

times.
. APPENDIX A: STRUCTURE OF THE TENSOR M FOR
For RW spacetimes we have computed the quantum cor- HOMOGENEOUS AND ISOTROPIC BACKGROUNDS

rections by two different methods: the analysis of the modi-
fied Maxwell's equations in a coordinate basis and the study \We consider a flat homogeneous and isotropic spacetime
of the dispersion relations in a local Lorentz frame. The cordescribed by the metricconformal coordinatgs
rections we found are similar to those of Rif9], where the
analysis was based on the effect of gravitons on the space- ds?=a’(7)(—dyp*+dx*+dy?+dz?). (A1)
time null geodesics. The results agree qualitatively but no
guantitatively (as is to be expectg¢dsince the coupling of
gravitons to point particles is in general different to the cou
pling to massless fields.

For spherically symmetric spacetimes we have been abl
to estimate the quantum corrections using symmetry and d
mensional argumentsee Appendix B avoiding the explicit
computation of the graviton two-point function.

The quantum corrections for small wavelengths are als
qualitatively similar to those produced by virtual e* in
non-trivial backgrounds. However, for some particular cases 1

}n order to compute the tensbt#”?” one needs to calculate
the graviton two-point function, evaluated in an arbitrary
quantum state. We will assume that the graviton state pre-

erves the symmetries of the background metric. The aim of
fhis appendix is to use those symmetries to find the structure
of the tensoM#"?7 given in EQ.(9). In order to obtain this
structure we choose an orthonormal basis of the spacetime
Ainder consideration. The orthonormal basis is defined by the
vector fields

(such as the de Sitter backgrounthe QED vacuum does €, = i, (A2a)

not affect the propagation of photons, whereas the graviton a(n) in

vacuum does induce a modification on the propagation of 1 9

light rays. g=———, (A2b)
The opposite limit,\>L., is more interesting from a a(n) ox

phenomenological point of view. Assuming a non-trivial and 1 g

random spacetime structure at scales of otdgrthe modi- o=, (A2¢)

fied field equations are similar to the ones describing the a(n) ay

propagation of classical waves in random media. To lowest

order, it is possible to describe the wave propagation in terms eZ:L i (A2d)

of an “effective medium.” The average corrections to the a(n) 0z

speed of light are independent of the wavelength and propor- . ) . .
tional to (Lp/Lg)2. The “effective medium” is only an av- We also introduce the following set of antisymmetric ten-

eraged description. Stochastic fluctuations are expected fPrs:
occur, f_or example, in the arrival time of photons_ coming ULr=elel—eel, (A3a)
from point source§26,27]. To next order, the corrections are K K
proportional toL,%E/(LC)\), whereE is the photon energy. In Ukr=elel—eel (A3Db)
. - y 7 7 !

the extreme caskp~L (which we cannot reach within our
effective field theory approaglhe corrections would be pro- Uy'=e,e,—€e, (A3c)
portional toE/Ep, whereEp is the Planck energy. In this
regime quantum gravity effects increase with energy, while Vi =e/e,—gjey, (A3d)
other medium effects should decrease with energy. They can
be distinguished by this property and could be relevant in Vi =e/e—ee, (A3e)
cosmological situationgl6].

In the effective field theory approach to quantum gravity Vi'=ele - . (A3f)
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Given the fact that the's form an orthonormal basis, this set symmetric under the exchange of the two pair of indices

of six tensors constitutes a basis for the antisymmetric ordejnply that the tensor must be a linear combination of the
fwo tensors. following kind (with coefficients that may depend only on

It is easy to see that the symmetries of the terdgro”  '0"OWING coefricients that may depend only o
(antisymmetric in the first two indices, and the last two, and?):

METT=ay () UL U+ ap( ) (U "UYT+ UL UL +ag() (U U7 T+ U UT)
Fag(n) (U VEPURT) +as( ) (U VY +VEPUTT) +ag( ) (U V7T VLY UL
+az(mU§TU +ag(7) (U U7+ USUTT) +ag( ) (UGVIT+VEPUDT) +age 7) (UG VYT + Vi UgT)
+an(n) UGV +VEUI) +a(n) U U7 +agy( 7) (UL VT VETUTT)
+ag(n)(UVIT+VEPUTT) +ags( n) (USV T+ VEPUTT) +age ) Vi VYT
+ad ) (VYT + VIV +agg(n) (VEV T+ VIV

+agd P)V§IVy T+ an n) (VEVIT+ VIV +ax( n) VeV, (A4)

Since the metric is homogeneous and isotropic, the functionamplitude and two polarizationsas we still have the choice
a,, as, a4, as, ag, ag, g, a1g, 811, A13, 14, 15, A17, of gauge for the EM field. Sincé,, is gauge invariant,
a;g, anda,y must vanish identically. Here we should stresswithout loss of generality we consider the Coulomb gauge
once again the fact that the quantum state of the gravitonand choose,=0. With this choice the three non-vanishing
does not break these symmetries. The background symmeemponents for the gauge potential arg a,, anda,, so
tries also imply that,=a;=a;,=a anda;g=a;g=a,;=B. that

After these symmetry considerations, we can write the
general expression of the tenddr“*?” for a homogeneous fx=kax,  fy=kay—kyay,
and isotropic background:

f,y=k,a,, fy,,=ka,—k,a,,

M HYoT= a( U)(U;’“VU;{T‘F UgVUgT‘i‘ U;LVulZT’T) ny 7y yz— Ny“z %y
+:8( n)(vgvvgfr_l_ V§LVV§'7+ V/;VV(ZTT). (AS) f‘r]Z_ kr]aZ' fZX_ kZaX kxaza (A8)
This is all the information we can obtain regarding the tenSOIfjlnd we can then write
structure ofM#”?7 by making use of the symmetries of the
gravitational background. The functiong ») andB( %) will
depend on the particular choice of vacuum and are not
known a priori.

We now make use of the newly obtained form féf"~
[see EQ.(A5)] to solve the equation of motion for the EM
field in the presence of graviton one-loop quantum fluctua
tions in flat homogeneous and isotropic backgroysese Eq.
(19)]. Following the very same steps as described in Réf.
we introduce the sixdependentfunctions

Ux=2f %, vy=2fy,,
uy=2f,,, vy=2f,,
u,=2f,,, v,=2f, (A9)

so that in terms of the independent $ef,uy ,u,} the three
dependent ones can be written as

1
v,= —(kyu,—k,u,), Al0
ux:f,uyuf(uju Ux:f,wV)’(w. X ky]( y“z z y) ( @
u,=f, U ov,=f, VL, 1
yooermy ooy vy=k—”(kzux—kxuz), (A10b)
u,=f,Us" v,=f,Vy". (AB)
) 1
From Eq.(18) it follows that v,= k—(kxuy—kyux). (A100)
n
f.=k.a,—k,a,, (A7)

With all these definitions in mind we project EL9) onto
for some gauge potential, . Hence, for a given EM wave the three tensord,, U, andU, (which yieldu,, u,, and
momentunk,,, f,, has three independent componefase  u,, respectively, to obtain the following set of equations:
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0=K2uy+8af uy(— K5+ k) +Ky(kyuy +K,u,) ] M#r77= () (UL U7+ UL Uy + UL UYT)
+8pk,(kyv,—kyy), (Alla) +B() (VEVTT+VEVTT+VEVTT).

2 2.2 (A17)

0=k?uy+8aluy(—kj+ky)+ky (K, +kuu,)]

Let us now calculate the only non-vanishing components

of this tensor 177 and MM in the coordinate basis
defined by the vector fields, ,d,d, andd,. We get

+ 88K, (kux—kew,), (Al1b)

0=k2u,+8afu,(—k2+k2)+K,(Kext+Kyuy)]

+8Bk,(kwy—kyvy). (Allo M7"’7'=a(7])(U)’(7'U;”+U;'U;,”%—U;"U;”)z#:77)) ij
We point out that the components of the vedtaorrespond (A18)
to the orthonormal basis given in Eq§A2), so thatk o i ML ML\ sijy
=k7e,+ ke +k'e,+k%,. If we wrte the components ~ M"™"=B(7)(ViVy "+ VyVyT+ VZVzT)
(vx,vy,v;,) as functions of ¢,,uy,u,), we have = B(7)(g™g"—gi"gim), (A19)
0=k?Uy,+8a Uy — K5 +KZ) +ky(Kyuy +K,u,)] which means in particular that the functioagz) and 3(7)

introduced in this appendix are related to the functions de-
fined in Egs.(24a and (24b) as f,(7)=a(n)/a%(y) and
fo(n)=pB(7n). Hence, we conclude that

+ 8,3[ ky( kxuy_ kyux) - kz( kzux_ kx“z)]y (Alza)

0=k2uy +8af uy(—k2+kZ) +Ky (ke +K,u,)]

+ 88k, (kyu,—kzuy) —ky(keuy—kyu,) ], (A12b) ?’7 =1-4(a+p)
0=K2u,+ 8 u,(—k2+K2) + ky(Kety+kyuy)] =1—4[a®(n)f(n)+fan)]
881 Ky (KU, — kyt,) — ky (Kyu,— kyuy) ], (A12 2
+ 8Bk~ kytp) — (g, — ko). (AL20 =1+ S (F (), (A20)

Imposing the condition that the determinant of this set of
equations vanish, so that we do not obtain the trivial solutiorwhich agrees with our previous result obtained from Max-
(ux=uy=u,=0), we obtain the following determinantal re- well's equations and the two-point function of the gravitons

striction: [see Eq(33)].
k2(1+8a)[(1+8a)k?—8(a+ B)(Ki+kj+k)]?=0. APPENDIX B: STRUCTURE OF THE TENSOR M FOR
(AL3) STATIC AND SPHERICALLY SYMMETRIC

BACKGROUNDS
Let us assume that the EM radiation is characterized by a

three-dimensional momentunk, such that k2+ k§+ k2 We assume a static and spherically symmetric spacetime

—k-k. The non-trivial dispersion relation becomes then ~ described by the metric

ds?=— A(r)dt?+ B(r)dr2+r2dQ2. Bl

(1+8a)(—k>+k-k)—8(a+pB)k-k=0. (Al4) " " B1)
In order to compute the general form of the ten8Bt”’” we

The EM radiation waves will propagate with the dispersionwill follow the same steps as in Appendix A. We choose an

relation orthonormal basis of the spacetime given by the veatprs
&, €, ande,. This orthonormal basis is defined by

k2
7
—ZL =1-8(a+p), (A15) 4
K a=[AM] 2, (828
or, equivalently, p
&=[B(N1 ", (B2b)
?” =1-4(a+p). (A16)
190
. . . , €=—">7, (B2¢)
We can now compare with the previous formulation of this rade
problem in terms of the two-point function of the gravitons
(see Sec. IV A We already know from symmetry consider- o = 1 K2 (B2d)
ations that the tensavi#”?” can be written as " rsing d¢-
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We also introduce the following basis of antisymmetric order Yrr=el'el,—elel, (B3d)
two tensors:
v v_ WH'=el'ey—e/el (B3e)
Ur'=el'el—e'e, (B3a) e'ep— el
Zrr=¢l'e—ele;. B3f
VA=l — elet, (B3b) &y e (B3

) L The tensoM#*?™ must be a linear combination of the fol-
Xtr=ef'ey—efey, (B30)  Jowing kind (with coefficients that may depend only o}

ME207= 2, (F)UR U7+ (1) (UFVT+ VAU ™) + ag(r) (UF/ X7+ XHU )
+ag(r) (USY T YRYUOT) + ag(r) (UA"WI T+ WEPU7T) + ag(r ) (U1 Z77+ ZHU )
+a7(N) VAV T+ ag(r) (VAX T+ XEIVOT) + ag(r) (VAYY 77+ YRV
+ a1 (VAW W7 + gy (1) (VA ZO 7+ ZEVOT) + ag f 1) XEIXT
21 (XFPY T+ YEVXTT) + g 1) (XEPWO T+ WHEYXTT) + @y 1) (XEYZO T+ ZH7XT)
+a3e(1) YFY O™ 2y (1) (YR WO+ WHPY77) + g 1) (YAVZO T+ ZH7Y )
+ 2 WHI W T+ (1) (WHPZOT+ ZHP W) + 8y (1) ZH7Z7. (B4)

Since the metric is static, we can make use of the time inin the Coulomb gauge, the three non-vanishing components
version invariance to show that the terms in E8¢) involv-  for the gauge potential am , a,, anda,, so that
ing the functionsa,, as, ag, ag, &g, a14, 15, 817, andayg

must vanish identically. Here we should stress once again fo=ka,, Tfo=kay,

that the quantum state of the gravitons does not break time

inversion invariance(This is not true in general. For ex- fro=kay, frg=Kas—Kea,

ample, the Unruh vacuum state in Schwarzschild spacetime

does break the time inversion symmeyry. fro=kiag—Kgar, fo=Koay—kyay, (B7)

Because of the spherical symmetry of the metsigatial
inversion as wejl the following coefficients have to vanish:
as, a4, a1, a11, &13, and a,y. Furthermore, the coeffi-

and we can then write

cientsa;, anda;g must be equal as they have to be invariant u=2f w=2f,,
under spatial rotations. The same is true for the pajrand e o
aZl. X=2ft9, Z=2fr¢,

After these symmetry considerations, we can finally write
the general expression for the tenddr*”“” in a static,

spherically symmetric background: y=2fy, v=2fy, (B8)

MAPOT= £ (F)URY U+ f (1) VAT so that in terms of the independent getx,y}, the three
dependent ones can be written as
+F5(1) (XHXTT+ YAIYOT)

1
+E4 () (WHYWIT+ ZRPZ97). (B5) w= E(er_ kou), (B9a
The functions f;(r) (with i=1,...,4) will depend on 1
the _pa_rt|cular choice of graviton state and are not known 2=~ (ky—kyu), (B9b)
a priori. k¢
As in Apendix A we introduce the six functions
1
u=f, U, o=f, V", v=k—t(k0y—k¢x). (B9o)
x=f,, Xr, y=1f,, Y, We now project Eq(19) onto the three tensotd, X, andY
(which yield u, x, andy, respectively, to obtain the follow-
w=f, Wk z=f Z+" (B6) ing set of equations:
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0=k2u—8f,u(ki—k?)+8f 3k, (xKs+yKy)
+8f 1k (Wky+zky), (B10a

0=k?x+8f uk ky+8f ukik s— 8F 3x(kZ—k?)

+8f3ykgk s — 8f qwkik, (B10b)
0: k2y+ 8f1u krsz)_ 8f2U ktk0+ 8f3xkgk¢
—8fy(kf — k%) —8f 4zkk. (B10¢)

If we write the componentsu(w,z) as functions of (,X,y),
we have
0=[k*(1+8f1) —8(f1+ ) (K5+k3)u+8(f3+f)kkex

+8(f5+ Fokkgy, (B11a

PHYSICAL REVIEW D63 084023

0=8(f1+f,)kkou+[k*(1+8f3)—8(f,+f3)k)
—8(f3+ f)k2IX+8(fa+ F4)kekyy, (B11b
0=8(f;+f,)kkyu+8(fo+f3)kgkyx
+[K2(1+8f3)—8(f,+ f3)k3—8(f5+f,)k?]y.
(B119

In this case the components of the vedtdn the orthonor-
mal basis are given bly=k'e,+k'e, +k’e,+ k%, .
Imposing that the determinant of the set of three equations
vanishes, we obtain the following determinantal condition:
K2[(1+8f3)k?—8(f3+fo)ki—8(f,+f3)(K5+Kk5)]
X[(1+8f5)(1+8f1)k?—8(f3+f,)(1+8f)k?

—8(f1+1,)(1+8f3)(kj+k3)]=0. (B12)
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