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Heat kernel and scaling of gravitational constants
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We consider the nonlocal energy-momentum tensor of quantum scalar and spinor fields in 2w-
dimensional curved spaces. Working to lowest order in the curvature we show that, while the nonlocal

terms proportional to OR, OO R, ...

,00%"2R are fully determined by the early-time behavior of

the heat kernel, the terms proportional to R depend on the asymptotic late-time behavior. This fact
explains a discrepancy between the running of the Newton constant dictated by the RG equations
and the quantum corrections to the Newtonian potential.

PACS number(s): 04.62.+v

In a recent paper [1] we have computed the correc-
tions to the Newtonian potential due to a quantum mas-
sive scalar field coupled to the metric in a R + R? the-
ory of gravitation. This computation was carried out by
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where m is the mass of the scalar field, £ is the coupling
to the scalar curvature, and
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The gravitational constants ayg, B9, and G depend on
the scale p according to the renormalization-group equa-

tions (RGE’s) [4]
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These are basically given by the Schwinger-DeWitt
(SDW) coefficients and can be obtained by imposing
Eq. (1) to be independent of the renormalization scale
p. Comparing the RGE’s with the effective Eq. (1) one
readily notes that, while the corrections proportional to
ln(——%) can be interpreted as nonlocal modifications to
ago and [y, this is not the case for the Newton constant.
Indeed, because of the identity

Ry — 3Rgu = GO)(HL) - 2H) + O(R?)  (6)
the nonanalytic corrections proportional to
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means of a nonlocal approximation to the effective action
(EA) [2,3], from which the effective gravitational equa-
tions of motion were deduced. Expanding in powers of

2 .
— -, these equations read
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[
—m—ﬁ—zln(—%) can be interpreted as modifying G only
for £ = 0. This has also been pointed out in Ref. [5].
This discrepancy can also be seen at the level of
the Newtonian potential, which has l’%’—' and r—2 quan-
tum corrections [1]. The r~3 corrections come from
the ln(——%) terms in the effective equations and sur-
vive in the massless limit (similar corrections due to the
graviton sector of the theory have been found in [6]).

The “‘T" corrections come from the term proportional to

—%2 ln(—%). In principle, one could “derive” these log-
arithmic corrections from the RGE (5), replacing in the
classical potential V;(r) the Newtonian constant by its
running counterpart and identifying p > 1. The re-
sulting “Wilsonian” potential V(r) = —G(p = r~1)/r
coincides with the one obtained in Ref. [1] only for min-
imal and conformal coupling.!

The aim of this work is to elucidate the origin of the
discrepancy between the scaling behavior of the Newton
constant deduced from the effective equations of motion
and that obtained through the RGE’s. To this end we will
show that there is a qualitative difference between the
nonlocal corrections proportional to In(—0) and those

proportional to — —"—5—2? In(—0). While the former are linked

'The coincidence at £ = 1/6 takes place only after tracing
the equations of motion.
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to the early-time behavior of the heat kernel [7] (and
consequently are determined by the a, SDW coefficient),
the latter depend on the late-time behavior and produce
the above-mentioned discrepancy. In the following we
will prove this claim and we will also extend the four-
dimensional (4D) results to arbitrary dimensions. Finally
we will analyze the same problem for spinor fields.

We emphasize that throughout this paper we will con-
sider quantum matter fields on a classical gravitational
background. This will be enough for our main discussion,
since at this semiclassical level we already have running
coupling constants and quantum corrections to the field
equations and Newtonian potential. Therefore we can
compare both answers and look for the reason of the dis-
crepancy.

In order to go beyond the semiclassical theory, there
are two alternatives. If the R 4+ R? theory is considered
as an effective, low-energy field theory [8,9], the inclu-
sion of the graviton sector can be done along the lines of
Ref. [6], and we expect additional =3 corrections to the
Newtonian potential. On the other hand, if the R + R?
theory is considered as a complete and renormalizable
theory of gravity, due to asymptotic freedom [10], the
graviton sector could produce an important increase of
G with distance [11]. However, in this case the R + R?
theory is nonunitary, and no definite conclusions can be
drawn. This point is beyond the scope of this paper.

Let us consider the evaluation of the one-loop contribu-
tion of a massive quantum scalar field to the gravitational
EA: T = ilndet(— O +m? + £R). The task of evalu-
ating this functional determinant on an arbitrary back-
ground is quite complicated and approximation methods
are compelling. Using the early-time expansion of the
heat kernel, the EA in 2w dimensions reads [2,3,7]
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where the ultraviolet divergence is regularized by the in-
troduction of a positive lower limit in the proper-time
integral. Here all the functions d,(x) are the coincident
limit of the SDW coefficients.

As suggested by Vilkovisky [7], when the background
fields are weak but rapidly varying, one can obtain a non-
local expansion of the EA by summing all terms with a
given power of the curvature and any number of deriva-
tives in the SDW series. The result is well behaved in
the massless limit and can be written as

-1 1 2w - 1_

+RF;(O0)R + R, F2(O)R,., + O(RY)], (8)
F@O) =
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where h, = f1°7L2 dssn—wTlg—sm

-—smz
f1°7L2 ds<5= fi(—s0), and the form factors f; are func-
tions to be defined afterwards.
Up to here no assumptions about the mass m have been

made. In the large mass limit, m?R > VVR, the SDW
expansion is recovered, while in the opposite one, the
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form factors can be expanded in powers of z = "F We
shall be working in the latter limit. We have to evaluate
the integral

— 2
def e m's
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where o denotes generically the f;’s. In order to study
the behavior of I,, in terms of the small quantity z, we
split up the integral into two terms:
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where C is chosen such that z7! > C > 1.
analyze the two integrals separately.

For the A,, integral, one can use the Taylor expansion
of the form factor, namely o(n) = Y oo, 0,7" 2. The
constants o, can be read from the corresponding SDW
coefficient @, as follows from Egs. (7) and (8). The n >
w + 1 terms have a finite L? — oo limit that gives a O-
dependent contribution that is analytic in the variable z,
while the 2 < n < w terms are UV divergent. Expanding
the exponential in A,, in powers of the small quantity 7z
we obtain its final expression:
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where the ellipsis denotes finite terms, analytic in the
small quantity —%2. Note that both the divergent and
nonanalytic parts of A, are determined by the first w
SDW coefficients. In order to renormalize the theory,
the infinities have to be canceled by means of suitable
counterterms in the classical Lagrangian of the form
RR,ROR,RO?R,...,RO“ 2R, these being the
only quadratic counterterms that can appear. The UV
divergences proportional to In(L?) that appear in both
A, and the h,, integrals are absorbed in the bare con-
stants, being renormalized by terms of the form ln(i—:),
where p is an arbitrary scale parameter with units of
mass. The fact that the EA must not depend on this
arbitrary parameter implies that the gravitational con-
stants scale with p, the scaling being given by the RGE’s
[see Egs. (3)—(5) for the w = 2 case].

As for the B,, integral, its leading behavior in powers
of —%2 is governed by the asymptotic expansion of the
form factor. Assuming that o(n) = 5 as 7 — oo, where
k is a numerical factor, the integral B,, reads

“r e () n (g )

the ellipsis being analytic terms.
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Given the EA one can derive the effective gravitational field equations. After a straightforward calculation we find

_ 1
8rG

= (Tw) =

In this equation the cosmological constant term has been
omitted and a; and B; denote the gravitational constants
associated with the higher order terms in the classical
Lagrangian.

In four-dimensional space-time the basic integral I,,
can be calculated using Egs. (11) and (12). Up to analytic

. 2 . . 0
terms in — - it is given by

I, =—03ln (—"E)z— k— In ( "52)
+0( (-2) ) . (19)

The corresponding stress tensor reads

1 O
Tww) = g2 [‘“ (—g) VHD + o H )

2 2
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the ag) and k() being the numerical constants in
Eq. (14), respectively, associated with the R2? and
R,,R,, terms in the EA.

The m2-independent terms in (7},,) can be interpreted
as being quantum corrections to the gravitational con-
stants ap and Bp. As was already mentioned, the numer-
ical coefficients a;') associated with these corrections are
basically given by the @ SDW coefficient (early-time be-
havior of the heat kernel). When the equations of motion
are traced and solved, these terms produce r~3 quantum
corrections to the Newtonian potential [1].

In an analogous way, one would expect that the m?2-
dependent terms in (7T,, ), namely,

m2k(® m2\ 1 £
S5 1o (_—:T) 5 (H,(j) + Wﬂ,ﬁ)) ,  (16)
could be expressed in a combination proportional to
m?In(— 55 )(Ruy — $Rguy), so that they can be inter-
preted as a quantum correction to the Newton constant.
From Eq. (16) we see that the aforementioned combina-
tion comes up only for k() /k(1)) = —2, a condition that
is not always met. Also note that the correction depends
on the numerical coefficients k(*), which are given by the
asymptotic late-time behavior of the heat kernel. The
terms in Eq. (16) produce a 27 correction to the New-
tonian potential [1].
The coefficients o,’s and k’s can be evaluated from the
form factors f;’s. These are defined through the basic

form factor f(n) = [ dte=*(1=9" as [3,12]
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From here the relevant coefficients for the four-
dimensional theory can be calculated: 02’) = f;(0) and

k() = lim, o0 nfi(n). Therefore we have

1 2
g)“z[(%_g)z_gl—o]v a‘é)zé,
D =¢2- L k@=1 (18)

It is straightforward to see that only for minimal cou-
pling (¢ = 0) can the m2-dependent part of (T,,) be
interpreted as correcting the Newton constant.

All this reasoning can be extended for arbitrary values
of w. For example, in 6D space-time the integral I, can
be calculated using Egs. (11) and (12) and is given by

I,_, =030In(—0/u?) + oam?In(— 0O /u?)
—k(m*/20) In(— O /m?) . (19)

For this theory the coefficients o2 and k are the same
as those of the four-dimensional one, while the o3 coef-
ficients are obtained from the term of the form factors
that is linear in 7 and read

w__1 €& & o__1 (20)
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In this case one obtains that the m® (m?2) terms in (T}, )
are interpreted as quantum corrections to the gravita-
tional coefficients ag, By (a1, 81) and depend on the a;
(@3) SDW coefficient. As before, one can view the m*
terms as a quantum correction to the Newton constant
only for minimal coupling.

Having evaluated the energy-momentum tensor, we
shall make a brief comment on the trace anomaly. As
is well known [4], the classical theory is conformally in-
variant for m = 0 and £ = igz 2 Because of quantum
effects, a trace anomaly in (T,,*) appears, which is local
and proportional to the da,, SDW coefficient. In our com-
putation of the energy-momentum tensor we have con-
centrated on the nonlocal terms and we have absorbed
the local ones into the renormalized classical gravita-
tional constants. Using the expressions for the coeffi-
cients o) evaluated at conformal coupling [see Egs. (18)
and (20) for the w = 2 and w = 3 cases| one can
readily prove that the trace of the nonlocal and mass-
independent terms of the energy-momentum tensor van-
ishes. Although the local terms are irrelevant for the
main point of this work, which is thoroughly developed
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in previous paragraphs, their evaluation from the inte-
gral A,, is straightforward. At conformal coupling these
terms give the correct trace anomaly, up to the order we
are working.

Now we shall extend the reasoning to spinor fields in
four dimensions. The one-loop contribution to EA of the
free Dirac field on a gravitational background is

[=-1Trlnk ,
¥ =WVu+m)(—7V, +m)¥
=(—0+m?+iR)V. (21)

Therefore we have to evaluate the trace of an operator
similar to that associated with the scalar field for £ = 1/4
and trace over the spinor indexes.

We shall evaluate the EA following the method de-
scribed in the previous section [see Eq. (8)]. The second
order term in curvatures can be written as [2,3]

re = L / d*z\/g[4RF}(0)R + 4R, F3(0) R,

+Tr('Ru,,F3(D)R#,,)] ) (22)

where Ry, = [V, Vo] = §[va(2), 15(2)]-Rappus (2) is
the commutator of the covariant derivatives [13]. Here
Fy(0O) and F3(0O) are the scalar field—form factor integrals

evaluated at £ = 1/4. We have a new contribution pro-
J

<T/W> = -
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portional to F3(0) = f1°7L, :,,,'ml —("—’D)— due to the

nonvanishing commutator of the covarlant derivatives.
Using the expression for R,, and calculating the
trace of the product of four v matrices, the last term
in Eq. (22) can be written as TrR, F3(0)R,.. =
——;—Raﬁng(D)RaﬂW. Finally, using integration by
parts, the Bianchi identities and the nonlocal expansion
of the Riemann tensor in terms of the Ricci tensor [3,12]

1
Roguw = —D-{V#VQR,,;; + V., VR, — V.,V R,s

—V.VgR,.} + O(R?) , (23)

one can rewrite the last expression through a kind of
generalized Gauss-Bonnet identity: namely,

/ d*zTrR . F3(O)R 0

= /d4z [%RFg(D)R — 2R, F3(0)Ry, + O(Rs)]
(24)

In view of this identity, the stress tensor is basically the
one for the scalar field, modified as

ol (B)[(or ) -]

2 2 1
+% In (—%) [(4k(1) + 5k<3>> HY + (4k@ — 2k(3))H;3)] } . (25)

The new coefficients, associated to the form factor in-
tegral F3, are given by Uéa) = 1/12 (early-time be-
havior) and k) = 1/2 (late-time behavior), and the
other coefficients, written in Eq. (18), are evaluated at
¢ = 1/4. Therefore the m?-dependent terms in (T),)
can be seen as correcting the Newton constant since
(4@ — 2k®)/(4k™ 4 2y — _2. The spinor field be-
haves, in this respect, as the minimally coupled scalar
field.

Finally, after tracing and solving the equations of mo-
tion, the quantum correction to the Newtonian poten-

[
tial reads 6V (r) = ng”"‘ —°— which coincides with
the Wilsonian potential, obtamed from the RGE for the
Newton constant G(u).
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