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Modeling electrostatic patch effects in Casimir force measurements
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Electrostatic patch potentials give rise to forces between neutral conductors at distances in the micrometer
range and must be accounted for in the analysis of Casimir force experiments. In this paper we develop a
quasilocal model for describing random potentials on metallic surfaces. In contrast to some previously published
results, we find that patches may provide a significant contribution to the measured signal and thus may be a more
important systematic effect than was previously anticipated. Additionally, patches may render the experimental
data at distances below 1 μm compatible with theoretical predictions based on the Drude model.
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I. INTRODUCTION

The Casimir effect [1–4] is a remarkable consequence of
vacuum field fluctuations which, in its simplest manifestation,
leads to the attraction of two neutral ideal conducting plates.
At very short distances, quantum fluctuation forces dominate
the interaction between neutral objects, making them an
essential consideration for micro-electro mechanical devices
(MEMS) and atom traps, among others. The comparison
between experimental measurements and theory for Casimir
forces between metallic plates has been a matter of debate in
recent years. This debate is of particular importance if this
comparison is used to derive constraints on hypothetical new
short-range interactions appearing in addition to the gravity
force in unification models [5–8].

Two recent experiments are at the heart of this debate.
Casimir force measurements by the IUPUI group [9,10],
performed at distances smaller than 750 nm, were interpreted
by the authors as excluding the dissipative Drude model
and agreeing with the lossless plasma model. This has
led to a discrepancy between experiments and physically
motivated theoretical models, such as the Drude model, for real
conductors which exhibit dissipation. In distinction, a recent
experiment by Sushkov et al. at Yale [11] was able to measure
Casimir forces at distances up to 7 μm and was interpreted by
the authors as being in agreement with the Drude prediction,
including quantum as well as thermal fluctuations, once an
electrostatic patch contribution was taken into account.

It is known that patch effects are a source of concern for
Casimir experiments [12–16], as well as for other precision
measurements [17–26]. For the Yale experiment the patches
were assumed to be much larger than the gap D between the
spherical and planar plates used in the measurement. Under
these conditions the patch force is found to be proportional to
RV 2

rms/D in the proximity force approximation (see below),
where R is the radius of curvature of the spherical plate and
Vrms is the rms voltage of electrostatic patch potentials [11]. For
the IUPUI experiment, a patch analysis was performed with
different assumptions, leading to the conclusion that the patch
effect had a negligible influence [9]. Unfortunately, it was not
possible in any of these experiments to measure the patches

independently. It follows that the conclusions of the theory-
experiment comparisons heavily rely on the patch models used
in the data analysis.

In this paper, we revisit electrostatic patch effects and an-
alyze their possible influence in Casimir force measurements.
Our approach is based on the method pioneered by Speake and
Trenkel [12], with the electrostatic patches described in terms
of a power spectral density. However, we develop a model for
the power spectral density differing from the one proposed
in [12] and used in [9,10].

Our model is based on the observation that bare metallic
surfaces are composed of crystallites, each of which constitutes
a single patch where the local surface voltage is determined
by the local work function [27]. By assuming that through the
surface preparation process the crystallographic orientation,
and hence the corresponding work function, of each crystallite
is determined independently and randomly, we can infer that
voltage correlations are restricted to points lying on the same
patch: We refer to this as quasilocal correlation. Our model
with quasilocal correlations can be compared to the case of
quenched charge disorder in dielectrics [28,29], and also shows
close similarities with models proposed recently to describe
patch correlation functions for atomic or ionic traps [30,31].

We show that the voltage correlation function from our
quasilocal model strongly differs from that initially proposed
in [12] and used in [9,10]. As a result, in contrast to the claims
of [9,10], patches may make a significant contribution to the
IUPUI measurements. In addition, we qualitatively address
the issue of surface contamination, which is expected to lead
to larger correlation lengths and reduced voltage fluctuations
[32]. Given that the degree of contamination is unknown, we
perform a fit of the patch model we propose to the difference
between measurements and the Casimir theoretical prediction
based on the Drude model and find that it qualitatively explains
the residual signal. For the Yale experiment, our results will
essentially reproduce those obtained in [11].

II. ELECTROSTATIC PATCH EFFECT

In the present section, we recall a few general results of
interest, assuming that the validity conditions of the proximity
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force approximation (PFA) are satisfied, that is, the radius
of the sphere used in the experiment is much greater than the
sphere-plane distance. In this case, the expression for the force
gradient Gsp (derivative with distance of the force Fsp) in the
sphere-plane geometry is written as follows in terms of the
pressure Ppp (the force per unit area) calculated between two
planes:

Gsp(D) ≡ ∂Fsp(D)

∂D
= 2πRPpp(D). (1)

This expression is used throughout the paper for both Casimir
and patch effects.

The basic description of the patch effect after [12] is a
statistical ensemble of patch potentials Vi(r) on the surfaces of
two planar plates labeled i = 1,2. The potentials are assumed
to have zero mean 〈Vi(r)〉 = 0 and to be described by the
two-point potential correlation functions,

Cij (r) = 〈Vi(r)Vj (0)〉 =
∫

d2k
4π2

eik·rCij [k]. (2)

In the plane-plane geometry, points on the planes are denoted
in Cartesian coordinates as r = (x,y) and the point 0 is an
arbitrary origin. The correlation functions Cij (r) and therefore
the power spectra Cij [k] are also assumed to be isotropic. The
relations between these two functions can be written

Cij (r) = 1

2π

∫ ∞

0
dk k J0(kr) Cij [k],

(3)

Cij [k] = 2π

∫ ∞

0
dr r J0(kr) Cij (r),

where we have simply denoted r ≡ |r| and k ≡ |k| and where
Jn(x) is the nth-order Bessel function [33]. The patch power
spectrum Cij [k] corresponds to the notation C̃ij (k) in [12]. As
usual, the variances and covariances are given by the integrals

Cij (0) = 〈ViVj 〉 = 1

2π

∫ ∞

0
dk k Cij [k]. (4)

The pressure due to electrostatic patches in the plane-plane
geometry can be computed exactly [12] as

P patch
pp (D) = εo

4π

∫ ∞

0

dk k3

sinh2(kD)
×{C11[k] + C22[k] − 2C12[k] cosh(kD)} . (5)

It is worth emphasizing at this point that the integral is reduced
to a very simple expression when patch sizes, with a typical
value denoted �patch, are larger than the distance D. In this case,
all wave vectors k contributing to the integral (5) satisfy kD �
1, so that the pressure scales universally as 1/D2, irrespective
of the particular details of the power spectrum [Eq. (4) is used]:

P patch
pp (D) = εo

2D2

∫ ∞

0

dk k

2π
{C11[k] + C22[k] − 2C12[k]}

= εo

2D2
〈(Vi − Vj )2〉, D � �patch. (6)

The above result is expected from the analogy with a parallel-
plate capacitor with prescribed voltages. In contrast, when the
relevant wave vectors no longer satisfy the above inequality,
different models for the patch power spectrum result in
different predictions for the patch contribution to the pressure.

It is also worth mentioning here some conditions for the
expression (5) of the electrostatic patch pressure between two
plates to be valid. A fundamental assumption in this analysis
is that the ergodic hypothesis is satisfied, which means that
the distribution of patches within the interaction area is a fair
approximation of the ensemble-averaged distribution function
defined by the power spectrum Cij [k]. When applied to two
plane plates of finite area A, we expect this assumption to
be well satisfied if the effective interaction area contains a
large number of patch correlation areas A � �2

patch. For the
sphere-plane geometry, the effective area of interaction is of
the order of πDR, leading to the validity requirement

πDR � �2
patch. (7)

In the following two subsections we recall a model used
in [12] and [9,10], and introduce another model with quasilocal
correlations which we think to be a better description of
sputtered surfaces.

A. The sharp-cutoff model

We now discuss the model of patch correlations which was
proposed as an example in [12] and then used in [9,10] to
assess the contribution of electrostatic patches to the Casimir
force measurements.

It is a simple description based upon two assumptions:
(a) the power spectrum of patches is an annulus in k space,
possessing no other dependence than a sharp cutoff at small
(kmin) and large (kmax) wave vectors (hence the name sharp-
cutoff model); (b) there are no cross correlations between the
two plates (C12 = 0). This model gives the power spectrum
for a single plate as

Cii[k] = 4πV 2
rms

k2
max − k2

min

θ (kmax − k)θ (k − kmin), (8)

where V 2
rms is the variance of the potential on one plate and θ

is the Heaviside step function.
In order to determine the parameters of this model, the

authors of [9] used the further assumptions: (c) based on AFM
images of the surfaces, the minimum and maximum grain
sizes of the samples were determined to be �min

patch = 25 nm and
�max

patch = 300 nm; (d) the patch sizes were assumed to be the
same as the grain sizes and the cutoffs in k space were derived
from the inverse maximum and minimum grain sizes kmin =
2π/�max

patch = 20.9 μm−1 and kmax = 2π/�min
patch = 251 μm−1;

(e) the rms voltage was obtained by computing the variance of
the work functions over the different crystallographic planes of
gold, which led to Vrms ≈ 80.8 mV. Using the five assumptions
(a)–(e), it was concluded in [9] that the patch pressure
had a negligible influence on the estimation of the Casimir
force. A reasonable agreement was then obtained between the
experimental data and the prediction for the Casimir pressure
using the lossless plasma model (more discussions below).

We now argue that model (8) is not a good description for the
patch power spectrum for the surfaces used in the experiments,
and later on, we also question the relation between patch and
grain sizes. In order to make the former point clear, let us write
the correlation function Cii(r) of patches in real space which
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FIG. 1. Comparison of the sharp-cutoff and quasilocal patch
models described in Secs. II A (dashed lines) and II B (solid lines),
respectively. Plot (a) shows the voltage correlation functions in real
space while plot (b) shows the associated spectrum in Fourier space.
All plots correspond to the correlation function C ≡ Cii divided by
V 2

rms. On the lower plot, the sharp-cutoff spectrum discussed in II A
is multiplied by a factor of 100 in order for it to appear at the scales
shown. The parameters used for both models, discussed in Secs. II A
and II B, are taken from [9] but do not correspond to the same average
patch size.

can be obtained through an inverse Fourier transform (3) from
the spectrum (8):

Cii(r) = 2V 2
rms

kmaxJ1(kmaxr) − kminJ1(kminr)(
k2

max − k2
min

)
r

. (9)

As one moves away from coincidence the correlation function
Cii(r) oscillates between positive and negative values with a
period of the order of the smallest patch size and is contained
within an envelope decaying as r−3/2 (see Fig. 1). These
oscillations imply that the patch potential shows correlations
as well as anticorrelations in space. Such behavior could be
expected for surfaces exhibiting some kind of antiferroelectric
ordering (where the configurational energy is minimized when
adjacent surface dipoles are antiparallel) but will unlikely
describe the random potentials on sputtered surfaces.

As already stated, the strict relation between patch sizes and
grain sizes, assumed in the analysis of [9], has also to be ques-
tioned. The adsorption of contaminants on the surfaces alters
patch sizes which, as a result, do not necessarily correspond
to the grain sizes [32]. We expect that contamination leads to

an effective smearing of the patch layout, so that patch sizes
will be larger than grain sizes while the voltage variance will
be less than the value obtained for a clean sample from the
assumption (e) discussed above.

B. The quasilocal correlation model

We now propose another patch model which we think to be
a better-motivated description of the patch correlation function
for the surfaces used in the experiments.

To model the layout of crystallites on a plate, we choose a
random patch layout and afterward assign a random potential
to each patch. For a given microrealization of patches, we write
the voltage over the whole surface as

V (x) =
∑

a

va�a(x). (10)

The sum is over all patches, va is a random variable describing
the voltage on patch a, and the function �a(x) is defined to be
1 for x on the ath patch, and 0 otherwise.

We now obtain the two-point voltage correlation function
by performing ensemble averages over all microrealizations
of the patch voltages and layouts. Physically, the voltage on
each site is determined by the crystallite face exposed to the
surface. As we assume that each crystallite is deposited with a
random crystallographic orientation and that each deposition
is statistically independent, we can infer that

〈vavb〉v = δabV
2

rms, (11)

where the expectation value 〈...〉v averages over the voltage
fluctuations only and δab is the Kronecker delta. Also, note that
we are implicitly assuming that there are no cross correlations
between the patches on different plates, C12 = 0. Using (10)
and (11) we construct the two-point voltage correlation for a
single microrealization of the patch layout:

〈V (x)V (x′)〉v = V 2
rms

∑
a

�a(x)�a(x′). (12)

The final step in constructing the ensemble-averaged
voltage correlation function is to average over all patch layouts.
We carry this out by exploiting several symmetries:

(1) We assume that the patches are distributed uniformly and
isotropically, which implies that the average patch associated
with any given point on the surface is circular with a radius
determined from a distribution of patch sizes. In reality, no
patch is circular and this notion of patch radius should only
be taken in a statistical sense.

(2) For any two points on the sample surface, the voltage
correlation function C(x,x′) is proportional to the number of
patches which contain both points (among all microrealiza-
tions). By employing the statistical description of patches, as
described above in 1, the correlation will be computed by
summing over all circular patch centers and sizes as depicted
in Fig. 2.

(3) As a check one can verify that the correlation at
coincidence is the constant V 2

rms. Moreover, translational and
rotational invariance implies that C(x,x′) depends only on
r = |x − x′|.
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FIG. 2. The voltage correlation function, C(x,x′), is constructed
by summing over all circular patches which contain both x and x′.
This is undertaken by integrating over patch centers y and accounting
for the distribution in patch sizes with the distribution 	(�).

Given these considerations, we find the following form for
the correlation function:

C(x,x′) =
∫ ∞

0
d� 	(�) (13)

×4V 2
rms

π�2

∫
d2y θ (�/2 − |x − y|)θ (�/2 − |x′ − y|),

where the integral over y, constrained by the θ functions,
sums over all patches of size � which contain both points.
The final integral over � averages over patch sizes where
	(�) is the distribution of patch diameters. Note, in particular,
that the translational invariance of the correlation function
is made apparent by the change of variables x′ − y → z.
Subsequently, performing the integration over y reveals the
rotational invariance of the final result:

C(r) ≡ Cii(r) = 2V 2
rms

π

∫ ∞

r

d� 	(�)

×
[

cos−1
( r

�

)
− r

�

√
1 −

( r

�

)2
]
. (14)

The patch power spectrum can then be obtained through the
Fourier transform (3). Some interesting properties can be given
at this point. First, the integration of the correlation function
over all space is simply

C[k = 0] = 1
4π�2V 2

rms, (15)

with �2 the variance of the distribution 	(�). Second, the
integral of C[k] over wave vectors is just the variance of the
potential

∫ ∞
0 dkkC[k] = 2πV 2

rms.
One can derive some universal scaling laws for the patch

contribution to the pressure in some limiting cases. When the
patches are much larger than the gap (D � �̄), the expression
(6) is obtained. This 1/D2 scaling law for the pressure (and
the corresponding 1/D for the energy per unit area for planar
plates) is universal for all patch power spectral densities
whenever the typical patch sizes are much larger than the gap.
In particular, this scaling was used in [11] to model the patch
effect [34]. In the opposite limit, where the typical patch sizes
are much smaller than the gap, one can obtain a simple scaling

law. In this case the spectrum C[k] is approximately constant
over the wave-vector range k <∼ 1/D, which provides the most
significant contribution to (5). We then find, when using (15),

P patch(D) � ε0

2π
C[0]

∫ ∞

0
dk

k3

sinh2(kD)

� 3ζ (3)

4

ε0V
2

rms�
2

D4
≈ 0.90

ε0V
2

rms�
2

D4
. (16)

We emphasize at this point that this 1/D4 scaling law is
generic for all spectra having a finite limit at k = 0 but does
not hold when C[k] vanishes at k = 0. In particular, in the
model discussed in Sec. II A, there is a sharp cutoff of the
power spectral density at kmin > 0. In this case, the pressure
(5) is exponentially small when kminD � 1, which is also
D � �max

patch. The leading-order contribution indeed comes from

the exponential tail of 1/ sinh2(kD) and is much smaller than
the result found in the generic case (16). This point will play a
crucial role in the comparison to experimental data discussed
in the next section.

Before entering this discussion, we choose a specific form
for the patch size distribution 	(�), which is similar in spirit
to the sharp-cutoff model discussed in Sec. II A. By assuming
the patch sizes are distributed uniformly within a finite interval
between a minimum �min

patch and maximum �max
patch value, the

probability distribution is

	(�) = θ
(
�max

patch − �
)
θ
(
� − �min

patch

)
�max

patch − �min
patch

, (17)

and has the following moments:

� = �max
patch + �min

patch

2
,

(18)

�2 =
(
�max

patch

)2 + (
�min

patch

)2 + �max
patch�

min
patch

3
.

Additionally, we would like to remark that we have also
considered other patch size distributions 	(�) (log-normal,
Gaussian, generalized γ , etc.) and have found similar results
for the pressure in all cases.

We emphasize that, despite some similarity in the con-
struction of the two models discussed in Secs. II A and
II B, they correspond to very different correlation properties,
the most striking difference resulting from a nonvanishing
value for C[k = 0] in the quasilocal model which gives a
distinct large distance behavior. In particular, a patch model
employing quasilocal correlations was recently adopted to
describe heating in ion traps and dissipation in cantilevers
[30]. There the observed large distance (D � �) scaling of
electric field noise (∝D−4) is linked with a nonvanishing value
of C[0].

To estimate the effects of contamination, we assume that the
patch power spectrum on a dirty surface takes the same form
as on a clean surface (i.e., also given by the quasilocal model),
with the exception that the parameters of the model are altered
by the contaminants. Let us stress that quasilocal correlations
may not be as accurate for contaminated surfaces as for clean
ones. We employ the above assumptions in a preliminary
manner to account for the properties of contaminated surfaces,
to be confirmed by dedicated studies in the future.
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III. COMPARISON WITH EXPERIMENTS

We now compare the theory and experiments by calculating
the Casimir force from the Drude model and the patch
pressure arising from the model with quasilocal correlations.
To make the comparison we first calculate the plane-plane
Casimir pressure Ppp(D) at temperature T using the Lifshitz
formula [35–37]. We use tabulated optical data for gold
[38], extrapolated to low frequencies with a Drude model to
describe the contribution of conduction electrons, εcond(ω) =
1 − 2

P /[ω(ω + iγ )], where P is the plasma frequency and
γ quantifies the damping rate. To account for roughness
corrections to the Casimir pressure, we adopt the simplest
formulation based on an additive scheme (Eq. (33) in [9]). We
call the resulting pressure the “Drude model” Casimir pressure
P Drude

pp (D).
As already stated, we use the PFA to relate the experimental

data corresponding to the sphere-plane geometry to the
predictions calculated in the plane-plane geometry, for the
Casimir and the patch effects. In the IUPUI experiments, the
sphere-plane force gradient Gsp is measured, which is related
to the equivalent plane-plane pressure as in (1). In the Yale
experiments the sphere-plane force Fsp is measured, which is
related similarly to the plane-plane energy per unit area.

After subtracting from the experimental data the theoretical
predictions for the Casimir interaction, we find a residual signal

δP Drude(D) ≡ P experiment
pp (D) − P Drude

pp (D). (19)

The question we address in the following is whether or
not the residual δP Drude can be explained by a reasonable
modeling of patch effects. The criterium is then to minimize the
remaining difference between the residual signal and the patch
pressure δP Drude(D) − P patch(D). The residual is defined here
for the Drude model and may as well be defined for the
plasma model. The patch pressure P patch(D) is then defined
for a given patch model, say, in particular, the sharp-cutoff
(Sec. II A) or quasilocal (Sec. II B) models.

A. Data analysis for the IUPUI experiment

For the comparison with the IUPUI experiment we compute
the Casimir force at room temperature T = 295 K using
tabulated optical data extrapolated to low frequencies with
a Drude model with parameters P = 8.9 eV for the plasma
frequency and γ = 0.0357 eV for the damping rate. Root-
mean-square roughness heights for the plane and the sphere are
3.6 and 1.9 nm, respectively. These permittivity and roughness
parameters are the ones reported in [10].

We collect in Fig. 3 the information needed to compare
IUPUI experimental data with predictions from the Drude
model and modelings of the patch effect. We plot the residuals
δP Drude defined as in (19) as points with error bars and the
patch pressure Ppatch for different patch models as lines. The
error bars represent the total experimental error described in
Fig. 2 of [10] at 67% confidence. The theoretical predictions
for the Casimir pressure P Drude

pp are calculated for the Drude
model as described above and assumed to have no error. There
are four different patch models represented in Fig. 3:

(1) The solid curve is the estimation of the patch effect
using all the assumptions of Sec. II A. The patches are thus

FIG. 3. Comparison of the residual δP Drude between the experi-
mental pressure in [10] and the Drude prediction (points with error
bars at 67% confidence taken from Fig. 2 of [10]) with patch pressure
Ppatch for four different patch models (more details in the main text):
1. The solid curve is the result of the sharp-cutoff model (with
assumptions of Sec. II A); 2. The dotted curve corresponds to the
quasilocal patch correlation model, assuming that the patch sizes are
given by the grain sizes and that the rms voltage is given by the
variance of the work function over different crystallographic planes;
3. The long-dashed curve is the result of a best-fit of the parameters
(�max and Vrms) of the quasilocal patch correlation model; and 4.
The short-dashed curve (underneath the long-dashed curve) is a fit
of a phenomenological model proposed in [31]. The inset shows the
residual signal resulting from subtracting the fit of the quasilocal
model (long-dashed curve) from δP Drude.

described by the sharp-cutoff model (8) with the parameters
kmax = 251 μm−1, kmin = 20.9 μm−1, and Vrms = 80.8 mV
(these are the parameters used in [9]).

(2) The dotted curve is the result of the quasilocal correla-
tion model (14) with the patch size distribution (17) described
in Sec. II B. The parameters, �min

patch = 25 nm, �max
patch = 300 nm,

and Vrms = 80.8 mV, correspond to the assumptions that the
patch sizes are given by the grain sizes and the rms voltage
is determined by the variance of the work function over
the different crystallographic planes. (These are the same
parameters used in item 1 above.)

(3) The long-dashed curve is obtained from a least-squares
minimization of the difference δP Drude(D) − P patch(D), using
the quasilocal patch correlation model given by (14) and (17).
As �min

patch is found to have a small influence, we fix it to the
smallest grain size �min

patch = 25 nm as discussed above. The best
fit on the two remaining parameters gives �max

patch ≈ 2476 nm and
Vrms ≈ 9.2 mV and results in qualitative agreement between
the residual and the fitted patch pressure. The associated first
moments of the patch size distribution are � = 1251 nm and
�2 = (1437 nm)2. The reduced χ2 for this fit, calculated using
the total error bars from Fig. 2 of [10] at 67%, is 0.814. It
is important to note that the values of the fit parameters and
quality of the fit are very sensitive to the sample’s optical
parameters, in particular, to the plasma frequency used in the
extrapolation of optical data to low frequencies [39]. However,
one should avoid giving too much importance to any of these
values of reduced χ2 as a measure with statistical significance
of experiment-theory agreement. Indeed, the influence of
sample dependency of optical parameters, the use of a very
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crude description of roughness corrections to the Casimir
pressure, and, most importantly, the lack of precise information
on the patch correlation function in actual experimental
samples, all imply that the fits obtained with the quasilocal
model for patches have a qualitative nature; dedicated patch
effects measurements are required to make metrological claims
(see the Conclusion section for further discussions).

(4) The short-dashed curve (underneath the long-dashed
curve) is a fit of a phenomenological model proposed by Carter
and Martin [31]. The correlation function of this model, based
on a Monte Carlo simulation of patch layouts, can be expressed
in terms of a shifted Gaussian and is specified by the rms
voltage and the average patch area w2, related to our patch
radius via w ≈ √

π �/2. Our best-fit values are � ≈ 1229 nm
and Vrms = 8.6 mV with reduced χ2 of 0.812.

After this description of the information gathered in Fig. 3,
let us now comment on the significance of the various results:

(1) The solid curve reproduces and confirms the calculations
which were performed to quantify patch effects in [9,10].
With the assumptions described in Sec. II A, the calculated
patch pressure is indeed far too small to explain the difference
between experimental data and theoretical predictions using
the Drude model.

(2) The dotted curve gives the result of the quasilocal model
of patch correlations (17) with parameters determined as was
done in [9,10], but here for a different patch spectrum model.
As a striking illustration of the importance of this difference,
the calculated patch pressure is now larger than the difference
between experimental data and theoretical predictions using
the Drude model. This illustrates the highly model-dependent
nature of the computed patch pressure. Thus patches may be
an important systematic effect for which their contribution to
the measured signal should ideally be assessed independently
of any Casimir force measurement.

(3) The long-dashed curve corresponds to a least-squares fit
of the quasilocal correlation model to the residual δP Drude.
With the best-fit parameters �max

patch and Vrms, this model
qualitatively fits the difference between experimental data
and theoretical predictions using the Drude model. These
parameters have reasonable values: �max

patch is larger than the
maximum grain size on the samples, and Vrms smaller than
the rms voltage for a clean sample [9,10]. This suggests the
presence of contaminants on the sample surfaces [32].

(4) The best fit of the phenomenological model proposed in
[31] is essentially indistinguishable from that of the quasilocal
correlation model (long-dashed curve). The best-fit values for
� and Vrms are consistent with the average patch size and rms
voltage obtained from the best-fit parameters of the quasilocal
model.

At this point we also want to comment on the validity
requirement (7), which allows one to calculate the patch effect
in the sphere-plane geometry within the PFA. This requirement
ensures that the effective area of interaction between the sphere
and the plane, of the order of πRD for a sphere of radius R,
contains a large number of elementary patch areas, so that the
sum over the microrealization of patches on a given plate is a
good effective description of the statistical ensemble average
given by the power spectral density. With the numbers in [10],
that is, a radius of curvature of the sphere R = 151.3 μm
and a shortest distance Dmin = 160 nm, the interaction area

is πRD ≈ 76(μm)2. Meanwhile, the average patch area is
(π/4)�2 ≈ 1.6(μm)2. There are many elementary patch areas
(≈48) within the effective area of interaction, but it is possible
that one could expect a small correction to the patch pressure
at short distances when the ergodic hypothesis begins to break
down.

For completeness we have also studied the residual
δP plasma(D), as defined in Eq. (19), with the exception that
we have compute the plane-plane Casimir pressure P

plasma
pp (D)

using the “plasma model” instead of the Drude model. More
precisely, we have computed the pressure using for the
permittivity ε(iξ ), the “generalized plasma model:”

εg.plasma(iξ ) = 1 + 2
P

ξ 2
+

6∑
j=1

fj

ω2
j + ξgj + ξ 2

, (20)

where the first two terms correspond to the permittivity for
the plasma model for conduction electrons (dissipation of
conduction electrons is set to zero ad hoc without physical
justification), and the second sum of terms accounts for the
interband transitions of gold [40]. To account for roughness
corrections to the Casimir pressure, we use the same additive
scheme employed above. Computing δP plasma(D) in this
way, we have confirmed the findings of [9,10], namely, that
a negligible contribution of the patch effect leads to an
agreement of data with theoretical predictions using the plasma
model. We note, however, that the patch pressure calculated
from the quasilocal model, with sizes and voltages used in [9],
is much larger than the difference between the measurements
and the plasma prediction, as shown in Fig. 4 [41]. We think
that this result constitutes a serious warning against the claims
according to which the plasma model would be confirmed with

FIG. 4. Comparison of the residual δP plasma (points with error
bars at 67% confidence taken from Fig. 2 of [10]) with patch pressures
given by the sharp-cutoff model and the quasilocal model: 1. The
solid curve is the result of the sharp-cutoff model (with assumptions
of Sec. II A). We find, consistently with the analysis in [9,10], that the
patch pressure from this model gives a negligible contribution to the
measured signal; 2. The dotted curve corresponds to the quasilocal
patch correlation model adopting the same parameters used in [9,10]
for the patch size and the rms voltage. In distinction from the sharp-
cutoff model, we find that the quasilocal model gives a large signal
as compared to the residual δP plasma.
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a high confidence level by Casimir experiments performed
with real metals [42].

B. Data analysis for the Yale experiment

In addition to analyzing the IUPUI experiment, we now
apply the same models to the recent experiment by the Yale
group [11]. A patch analysis was already carried out in [11] and
it led to a good agreement between experimental data and the
Drude model. This analysis considered only the asymptotic
form ∝1/D of the plane-plane energy due to patches (6).
Here we extend the analysis by using the more general
expression (5) for the patch pressure with the quasilocal patch
correlation function described in Sec. II B. Because we have
no information regarding grain or patch sizes in the Yale
experiment, we focus our attention on best-fit estimations
of the parameters �max

patch, �min
patch, and Vrms characterizing the

quasilocal patch correlation function (14),(17).
To analyze the Yale experimental data, we first compute the

Casimir force using tabulated optical data extrapolated to low
frequencies with the Drude model using the plasma frequency
P = 7.54 eV and the dissipation rate γ = 0.052 eV em-
ployed in [11]. We set the temperature to be T = 295 K. The
roughness correction to the Casimir force is ignored, as it gives
a negligible correction to the force at the distances considered
in the Yale experiment. Figure 5 shows the difference between
the Yale experimental force data and the Casimir force
prediction using the Drude model, δF Drude [defined by analogy
with (19)], depicted by points with error bars (we assume no
error for the theory). The solid curve shows the resulting patch
force for parameters arising from a least-squares minimization
of the quantity δF Drude − F patch using the quasilocal patch
correlation model (17) described in Sec. II B. The best-fit
parameters are given by �max

patch ≈ 614 μm, �min
patch ≈ 566 μm

(corresponding with � = 590 μm), and Vrms ≈ 3.9 mV. We
should point out, however, that the result of the best fit
is essentially insensitive to the details of the patch power

FIG. 5. Comparison of the residual δF Drude between the data of
[11] and the computed sphere-plane force with the associated patch
pressure F patch. The dots correspond to δF Drude, with the errors bars
including only the experimental error in the force determination. The
solid line is a best fit of the patch force within the quasilocal model
of Sec. II B. The inset shows the corresponding residual δF plasma with
the same convention employed in the main figure.

spectrum. Indeed, since the residual δP Drude in the Yale
experiment has an approximate 1/D power law, we can
infer, by using (6), that the typical patch size is much larger
than D for the whole range of distances explored in the
experiment (0.7–7.0 μm). By performing a constrained fitting
by requiring that �max

patch be less than some predetermined value
(e.g., 500 μm), yet still satisfying the constraint �̄ � D, we
were able to verify that a good fit can still be achieved over a
large range of patch sizes. In summary, we point out that the
result of our fitting using the more detailed quasilocal patch
model confirms the patch treatment in [11].

Finally, we also report, for the sake of completeness, some
supplementary tests we performed for comparing the data in
[11] with the predictions of the plasma model described by
Eq. (20) (see the inset of Fig. 5). The good agreement obtained
for the Drude model is dramatically degraded. Therefore we
confirm the result obtained in [11] that patches cannot explain
the difference between the experimental data and the plasma
model in Yale data.

IV. CONCLUDING REMARKS

In this paper, we have analyzed the patch contribution to
Casimir experiments with a model featuring quasilocal voltage
correlations. Our model is derived from well-motivated phys-
ical principles and shares key features with experimentally
verified patch models used to describe ion trap heating and
cantilever damping [30]. Thus, for the description of the
surfaces used in the experiments discussed in this paper,
we believe that this model is more appropriate than the
sharp-cutoff model which has been used to the same aim in
previous publications [9,10].

Due to the large difference in the patch power spectrum,
particularly for small wave vectors, the quasilocal model
gives a larger contribution than the sharp-cutoff model. As
a striking consequence, when the patch sizes are deduced
from the grain sizes (as was done in [9,10]), the quasilocal
model produces a patch pressure larger than the difference
between the experimental data and the Drude (and plasma)
Casimir prediction, whereas the sharp-cutoff model produces
a negligible patch pressure. Therefore it is important to
emphasize that because of the combination of (a) the highly
model-dependent nature of the computed patch pressure and
(b) the potentially large patch contribution to the measured
signal, patches may lead to non-negligible systematic effects.
This necessitates an independent measurement of patch effects
in order to meet metrological standards for Casimir force
measurements.

We have also used our quasilocal patch model to fit the
difference between experimental data of the IUPUI experiment
[9,10] and the theoretical prediction for the Casimir pressure.
The latter was computed taking into account (a) tabulated
optical data extrapolated to low frequencies by means of the
Drude model and (b) roughness effects modeled by a simple
additive technique. We have found best-fit parameters for the
average patch size and for the rms voltage that are consistent
with a contamination of the metallic surfaces, which is
expected to enlarge the patch sizes (with respect to grain sizes)
and smear the patch voltage (with respect to those of a surface
of bare crystallites) [32]. Indeed, surface contamination is

012504-7



BEHUNIN, INTRAVAIA, DALVIT, NETO, AND REYNAUD PHYSICAL REVIEW A 85, 012504 (2012)

expected, and we believe that preferential adsorption [32]
and saturation of contaminants may be compatible with the
observation of reproducible results in experiments repeated
several times with different samples [43].

Taken together, our results constitute a warning against
the previously published findings of an agreement of Casimir
experiments with the plasma model, and an elimination of the
Drude model [42]. However, we want to emphasize that they
do not yet constitute a proof of agreement of experimental data
with our proposed model. The parameters of the patch model
have been fitted and it is still possible that the qualitative
agreement thus obtained is a fortunate output of the fitting
procedure rather than an explanation of the experimental data.

In this paper we have focused our attention on only the
IUPUI and Yale experiments, but of course the analysis can
be repeated for other Casimir measurements between metallic
plates as well [44–53].

A better characterization of the surfaces used in the exper-
iments is now key to reaching firmer conclusions. The patch
distributions can be measured with appropriate technologies
such as Kelvin probe force microscopy, which can achieve
the necessary size and voltage resolutions [54,55]. In addition,
the study of cold atoms and cold ions trapped in the vicinity
of metallic surfaces [22] or the role of patch effects in other
precision measurements [24–26] are other ways for accessing
information of interest for our problem. Let us repeat at this
point that our quasilocal model is similar to recent proposals
for patch physics used to achieve a better understanding of
atomic and ionic traps [30,31].

The challenges of forthcoming studies may be stated as
follows. First, it is important to confirm the hypothesis that
the patch voltages show quasilocal correlations and to better
specify the power spectrum which quantitatively describes

these correlations. Second, it would also be interesting to study
how the patch power spectrum depends on contamination, in
particular, fabrication, treatment, history of the samples, and
on temperature. Finally, an independent determination of the
patch power spectrum could lead either to a confirmation of
the best-fit analysis presented in this paper or to new questions.
This study is important, not only for the test of the Casimir
effect, a central prediction of quantum field theory, but also for
searches of the hypothetical new short-range forces predicted
by unification models [5–8].
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