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We calculate the dispersive force between a ground-state atom and a nonplanar surface. We present explicit
results for a corrugated surface, derived from the scattering approach at first order in the corrugation amplitude.
A variety of analytical results in different limiting cases, including the van der Waals and Casimir-Polder
regimes, is derived. We compute numerically the exact first-order dispersive potential for arbitrary separation
distances and corrugation wavelengths for a rubidium atom on top of a silicon or gold corrugated surface. We
discuss in detail the inadequacy of the proximity force approximation, and present a simple but adequate
approximation for computing the potential.
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I. INTRODUCTION

Quantum and thermal fluctuations of the electromagnetic
field in the presence of material boundaries generate fluctu-
ating spatial gradients of the field intensity and fluctuating
induced electric dipoles in ground-state atoms close to those
surfaces, resulting in an atom-surface interaction via the op-
tical dipole force. These dispersive forces have considerable
importance in fundamental physics, including deflection of
atomic beams close to surfaces �1�, classical �2� and quantum
reflections of cold atoms �3,4� and Bose-Einstein conden-
sates �BECs� �5� from surfaces, dipole oscillations of BECs
above dielectric surfaces �6,7�, and in possible future appli-
cations of single-atom manipulation in atom chips �8,9�. At
the limit of large separation distances �Casimir-Polder �CP�
limit �10��, the interaction show universal features since it
depends only on the zero-frequency atom and surface optical
responses.

Dispersive forces can be tailored in different ways, either
by engineering the optical properties of the surfaces �11–13�,
by biasing the temperatures of the surfaces and their thermal
environment �7,14,15�, or by suitably changing their geom-
etry. Given the complexity of these quantum forces, which
arise from fluctuations at all frequency and length scales,
calculations beyond planar geometries are exceedingly in-
volved. Until recently, approximate methods have been used
to deal with nonplanar setups, including the proximity force
approximation �PFA� �16� and the pairwise summation ap-
proach �PWS� �17�. However, these approximate methods
drastically fail when the surface is not sufficiently smooth on
the length scale of the atom-surface separation since they do
not properly take into account the nonadditivity of dispersion
forces �18�. These large deviations from PFA or PWS could
be probed by using present-day technology, for example,
with a Bose-Einstein condensate above a microfabricated
corrugated surface �19�. Similar deviations have been re-
cently measured for the Casimir force between a metallic
sphere and a nanostructured silicon rectangular grating
�20,21�.

A number of methods are available for computing the
dispersive atom-surface forces �see, for example,
�10,22–25��. These methods allow the exact computation of
the force for very simple geometries, such as an atom above
a single �possibly multilayered� plane, sphere, or cylinder, or
an atom inside a plane Fabry-Perot cavity. Toy models with
scalar fields with ideal �Dirichlet� boundary conditions have
also been considered in computing the “scalar Casimir-
Polder” force for a small sphere above a uniaxial corrugated
surface �26�.

Similar problems have been discussed for the Casimir in-
teraction between two macroscopic bodies �see, for example,
�27–29��, and the scattering approach has been shown to be a
very efficient tool for analyzing the case of nontrivial geom-
etries �30�. For parallel plates, the Casimir force may be
written in terms of the reflection coefficients seen from the
region in between the plates �31,32�. A similar expression
also holds for nonplanar surfaces, with the specular reflection
coefficients replaced by more general reflection operators
that describe nonspecular diffraction by the surfaces. This
allows for the computation of the Casimir force between
rough �33� or corrugated �34� surfaces. Similar methods have
been employed to compute the force between a plane and a
sphere �35–38�, and between two spheres �39,40�.

In this paper we develop the scattering approach for
studying the dispersive interaction between ground-state
atoms and arbitrarily shaped surfaces characterized by
frequency-dependent reflection operators. This approach pro-
vides an exact analytical expression for the two-body inter-
action energy, which can be written in terms of the scattering
matrices defined for each individual one-body scatterer. Al-
though this is a simpler problem than solving for the many-
body Green function, it is still very difficult to find the exact
scattering matrices for the problem of a electromagnetic field
impinging on a given nonplanar geometry. In order to illus-
trate the method, we write the two-body interaction energy in
a perturbative expansion in terms of the deviation of the
surface profile from the planar case �19�. Apart from this
perturbative approximation, the approach is valid for any
value of the corrugation wavelength, and includes the full
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electromagnetic fluctuations and the real material properties
of the boundaries. We compute the perturbative dispersive
interaction potential to first order in the surface profile both
for ideal and real materials, and discuss the prospects of
measuring nontrivial �beyond-PFA� geometrical effects with
a uniaxial corrugated surface interacting with a Bose-
Einstein condensate used as a vacuum field sensor.

The paper is organized in the following way. In Sec. II,
we develop the scattering formalism for the atom-surface
interaction. The resulting general formula is then applied to
calculate the potential to first order in the surface corrugation
amplitude in Sec. III. We compare our results with PFA in
Sec. IV and discuss experimental prospects in Sec. V. Con-
cluding remarks are presented in Sec. VI.

II. ATOM-SURFACE INTERACTION FOR NONPLANAR
GEOMETRIES

We consider a ground-state atom at position RA= �rA ,zA�
on top of a nonplanar surface, as shown by Fig. 1. The sur-
face profile is defined by the function h�x ,y� representing the
local height with respect to the plane z=0. The atom is in
free space so that zA�h�rA�. The fluctuating electromagnetic
field propagating from the surface toward the atom is written
in the mixed Fourier representation �frequency �, two-
dimensional wave vector k�

E↑�k,z,�� = �
p=TE,TM

Ep
↑�k,���̂p

+�k,��eikzz, �1�

where p is the polarization index and kz is the longitudinal
wave vector �sgn denotes the sign function; k= �k��

kz = sgn���	�2/c2 − k2.

Similar expressions in terms of unit vectors �̂TE
− and �̂TM

− hold
for the field E↓�k ,z ,�� propagating toward the surface, with
the replacement kz→−kz. The complete wave vector is de-
noted as K�=k�kzẑ, and the unit vectors are given by �the
frequency dependence will be generally omitted�

�̂TE
+ �k� = �̂TE

− �k� = ẑ � k̂ ,

�̂TM
� �k� = �̂TE

� �k� � K̂�, �2�

corresponding to transverse electric �TE� and transverse
magnetic �TM� polarizations, respectively.

The reflection by the nonplanar surface modifies the wave
vector k and the polarization p=TE,TM, while conserving

the frequency � since the surface is assumed to be stationary

Ep
↑�k,�� =
 d2k�

�2��2�
p�

�k,p�RS����k�,p��Ep�
↓ �k�,�� . �3�

The reflection operator RS��� depends on the surface-profile
function h�x ,y�. Explicit results for its matrix elements are
presented in Sec. III to first order in h�x ,y�.

Let us assume for a moment that the z axis is taken along
the atom position �rA=0�. At zero temperature, the Casimir
atom-surface interaction energy is then given by the zero-
temperature scattering formula as an integral over the posi-
tive imaginary frequency axis ��→ i�� �see �30��

U�RA� = �

0

	 d�

2�
Tr log�1 − RSe−KzARAe−KzA� ,

K = diag�
�, 
 = 	�2/c2 + k2, �4�

with RA and RS representing the reflection operators for the
atom and the surface, respectively. K is a diagonal operator
in the basis of plane waves �k , p� with eigenvalues 
 so that
e−KzA represents the propagation between the two scatterers.
Alternatively, it may also be interpreted as the displacement
operator �39�: here RA is computed for a coordinate axis
centered at the atom center of mass, whereas e−KzARAe−KzA

corresponds to the “laboratory” axis. A similar expression
holds at finite temperature, replacing the integral over imagi-
nary frequencies � by a sum over Matsubara frequencies.

It is actually simple to calculate the atomic reflection op-
erator for an arbitrary position �rA ,zA� when taking the
plane-wave basis. The spherically symmetric ground-state
atom is described as an induced electric dipole, with a dipole
moment

d��� = ����E�RA,�� . �5�

Let us emphasize at this point that ���� is the dynamic po-
larizability defined according to SI unit system �41�. Induced
dipole �5� produces an electric field given by

E�dip��R,�� =
1

4��0
� � � � 
d���

exp�i
�

c
R��

R�
� , �6�

where R�=R−RA and � represents the spatial gradient. In
order to derive a representation of the outgoing field analo-
gous to Eq. �1�, we make use of Weyl’s plane-wave expan-
sion of a spherical wave �42�, considering only the field
propagating in the region z
zA, and projecting on the polar-
ization unit vectors defined by Eq. �2�, obtaining �43�

E�dip�p
↓ �k,�� =

i�2

2�0c2kz
�̂p

−�k� · d���e−ik·rAeikzzA. �7�

When replacing Eq. �5� into Eq. �7�, we find two separate
contributions associated to the field Fourier components
propagating upward or downward. To calculate the atom re-
flection operator, we take the upward components

FIG. 1. �Color online� Ground-state atom on top of a nonplanar
surface �profile function h�x ,y��.
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E�dip�p
↓ �k,�� =

i�2����
2�0c2kz


 d2k�

�2��2�
p�

�̂p
−�k� · �̂p�

+ �k��

� e−i�k−k��·rAei�kz+kz��zAEp�
↑ �k�,�� . �8�

This result can be cast into a form similar to Eq. �3�, with the
atomic reflection operator given by ��→ i� and kz→ i
�

�k,p�RA�k�,p�� = −
�2

2


��i��
�0c2 �̂p

−�k� · �̂p�
+ �k��

� e−i�k−k��·rAe−�
+
��zA. �9�

The dependence on rA and zA in this equation is exactly the
one expected from the matrix elements of the displacement
operator in the plane-wave basis. The displacement along the
z axis was already explicitly taken into account in scattering
formula �4� so we must take zA=0 when replacing Eq. �9�
into Eq. �4�.

As we assume that the atom-surface separation distance is
much larger than the atomic dimensions, we may expand the
general scattering formula �4� to first order in ���� or,
equivalently, to first order in RA �44�

U�RA� = − �

0

	 d�

2�

 d2k

�2��2
 d2k�

�2��2e−�
+
��zA

��
p,p�

�k,p�RS�k�,p���k�,p��RA�k,p� . �10�

The zA dependence is already explicit in Eq. �10� because RA
in Eq. �4� was defined with respect to the reference axis such
that zA=0. Note that the resulting zA dependence coincides
with Eq. �9�, which was derived for an arbitrary position
with respect to the origin. From Eqs. �9� and �10�, we find

U�RA� =
�

�0c2

0

	 d�

2�
�2��i��
 d2k

�2��2
 d2k�

�2��2

�
ei�k−k��·rAe−�
+
��zA

2
�

� �
p,p�

�k,p�RS�k�,p���̂p
+�k� · �̂p�

− �k�� . �11�

Note that this general formula holds for magnetodielectric
media, including the anisotropic case �11�. The dispersive
potential for an atom with magnetic polarizability �45� can
also be derived from Eq. �4� along the lines presented above.
The corresponding atomic reflection operator is calculated in
Appendix A.

As a first application of Eq. �11�, we briefly consider the
case of a planar surface at z=0 �corresponding to a profile
function h�x ,y�=0� made of some isotropic material. In this
case, RS is diagonal, its matrix elements being

�k,p�RS�k�,p�� = �2��2��2��k − k���p,p�r
p�k,i�� , �12�

where rp�k , i�� are the specular reflection coefficients for the
plane surface. For instance, for a homogeneous nonmagnetic
bulk medium, they are given by the Fresnel formulas ���i��
=electric permittivity�

rTE�k,i�� =

 − 
t


 + 
t
, rTM�k,i�� =

��i��
 − 
t

��i��
 + 
t
,


t = 	k2 + ��i���2/c2. �13�

Equation �11� then yields the known interaction energy be-
tween a ground-state atom and a plane surface valid for ar-
bitrary separation distances �22–25,29�

U�0��zA� =
�

�0c2

0

	 d�

2�
�2��i��
 d2k

�2��2

e−2
zA

2


��rTE�k,i�� − �1 +
2c2k2

�2 �rTM�k,i��� . �14�

This expression can be simplified under the assumption of
small or large distances zA �with respect to some typical
atomic transition wavelength �A�. For zA��A and zA��A,
we get the van der Waals �vdW� and Casimir-Polder limits
that correspond, respectively, to Eqs. �24� and �22� in Ref.
�46�.

Equation �11� represents a general result for the dispersive
interaction between an atom and a body scatterer. The diffi-
culty, of course, lies in the explicit derivation of the matrix
elements of the corresponding operator RS. In the next sec-
tion, we apply this result to derive the lateral dispersive force
for an atom on top of a corrugated surface up to first order in
the corrugation profile h�r�. A second interesting application,
left for a future publication, would be to compute the rough-
ness correction to the normal dispersive force—in this case it
is necessary to compute RS up to second order in h�r� �see
�33��.

III. PERTURBATIVE INTERACTION POTENTIAL
WITHIN THE SCATTERING APPROACH

In order to compute the exact atom-surface interaction
potential it is necessary to find the reflection operators of the
surface, which is a highly nontrivial problem. For the sake of
illustration of the scattering formalism applied to the atom-
surface problem, we now compute those reflection operators
in a perturbative expansion in terms of the deviations h�r� of
the surface profile with respect to the planar configuration.
We will calculate the atom-surface interaction energy to first
order in h. This term gives rise both to a correction to the
normal force and to a lateral force on the atom, which does
not exist in the case of a planar surface. We start by expand-
ing the reflection operators in powers of h as R=R�0�

+R�1�+O�h2�. We model the optical response of the homo-
geneous isotropic material in terms of its frequency-
dependent electric permittivity ����. The zeroth-order term
R�0� is given by Eq. �12�, whereas the first-order reflection
matrix elements can be written as

�k,p�R�1��k�,p�� = Rpp�
�1� �k,k��H�k − k�� , �15�

where H�k� is the Fourier transform of the surface profile
h�r�. Therefore, the first-order atom-surface interaction po-
tential is
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U�1��RA� =
 d2k

�2��2eik·rAg�k,zA�H�k� , �16�

where g�k ,zA� is the response function

g�k,zA� =
�

�0c2

0

	 d�

2�
�2��i��
 d2k�

�2��2ak�,k�−k,

ak�,k� =
e−�
�+
��zA

2
�
� �

p�,p�

�̂p�
+ �k�� · �̂p�

− �k��Rp�p�
�1� �k�,k�� .

�17�

The first-order reflection matrix was calculated in �33� by
following the approach presented in �47� �see also �48��. It is
a nondiagonal matrix with nonspecular reflection coefficients
given by

Rpp�
�1� �k,k�� = upp��k,k�;i���pp�

�1� �k,k�;i�� , �18�

where we have defined

upp��k,k�;i�� =
rp�k,i��tp��k�,i��

tp�k,i��
. �19�

tp�k , i�� are the transmission Fresnel coefficients for the pla-
nar interface defined by

tTE�k,i�� =
2



 + 
t
, tTM�k,i�� =

2	��i��

��i��
 + 
t

. �20�

The matrix ��1� is expressed as ��1�=�+
�1�−�−

�1� with

��
�1��k,k�;i�� = �
t � 
�Bt

−1� C S

−
S

1 � ��t

C � ��t�

1 � ��t
�Bt�,

with

Bt = diag�1,c
t/	��i����, � = k/
, �t = k/
t,

C = cos�� − ���, S = sin�� − ��� . �21�

We have denoted with � ���� the angle between k �k�� and
an arbitrarily chosen axis on the surface plane. Starting from
these definitions and using the scalar product of polarization
vectors

�̂TE
+ �k� · �̂TE

− �k�� = C ,

�̂TE
+ �k� · �̂TM

− �k�� =
c
�S

�
,

�̂TM
+ �k� · �̂TE

− �k�� =
c
S

�
,

�̂TM
+ �k� · �̂TM

− �k�� = −
c2

�2 �kk� + 

�C� , �22�

we obtain for ak�,k� the following general expression

ak�,k� = e−�
�+
��zA

�


�
�C2uTE,TE +


�
t�S
2

	��i���2/c2
uTE,TM

+
	��i��
�
t�S

2

�2/c2 − �
��2���i�� + 1�
uTM,TE

+
�k�k� + 
�
�C����i��k�k� + 
t�
t�C�

��2/c2���2/c2 − �
��2���i�� + 1��
uTM,TM� .

�23�

By inspection of Eq. �23�, one shows that the response func-
tion g�k ,zA� depends only on the modulus k= �k� of the cor-
rugation wave vector, as expected: the information about the
direction associated to the surface profile is contained only in
H�k�, whereas the response function derived within the per-
turbative approach is based on the planar geometry and its
underlying symmetry.

The results presented above allow for the numerical cal-
culation of the first-order potential for arbitrary ground-state
atoms and material media by plugging the numerical data for
the corresponding polarizability and permittivity functions
into Eqs. �17� and �23�. As an illustration, we consider a
ground-state rubidium atom above a gold or a silicon sur-
face. The numerical data for the dynamical atomic polariz-
ability at imaginary frequencies, ��i��, were kindly provided
by Derevianko et al. �49� �these same data are plotted in Fig.
9 of �46��. The numerical values for the optical data at real
frequencies for gold and silicon were obtained from the
handbook of optical data �50�. For silicon the available data
cover the whole necessary frequency range while for gold
the data need to be completed at low frequencies, using a
standard Drude model with a dielectric permittivity ����
=1−�P

2 / ����+ i��� with a plasma frequency �P=9 eV and
a relaxation rate �=35 meV �51�. The values along the
imaginary frequency axis were then calculated with the help
of dispersion relations �52�.

In Fig. 2, we plot the response function after normalizing
it by

10�2

10�1

100

10�3 10�2 10�1 100 101

silicon 10 microns
silicon 100 nm
gold 10 microns
gold 100 nm

z
A
(µm)

µm

µm

g
(k
,z
A
)
/
F
(0
)

C
P

FIG. 2. �Color online� Dimensionless ratio g�k ,zA� /FCP
�0��zA� as a

function of separation distance zA �for a ground-state Rb atom�. For
the corrugation wavelength �=2� /k=10 �m, we show the values
for gold �black� and silicon �blue/gray� surfaces. We also show the
results for �=100 nm with gold �dotted� and silicon �dashed�
surfaces.
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FCP
�0��zA� = −

3�c��0�
8�2�0zA

5 , �24�

which is also the result derived by Casimir and Polder �10�
for the attractive force on an atom on top of a perfectly
reflecting plate at large separation distances. The horizontal
axis represents the atom-surface separation zA. We take two
different values of k, corresponding to corrugation wave-
lengths �=2� /k=10 �m and 100 nm.

The global shape of the curves can be discussed in a
qualitative manner, which will be made more quantitative
later on. At low values of kzA, PFA is expected to hold so that
the response is approximately independent of k. The ratio
thus grows linearly with z, showing the well-known power-
law change when sweeping from the unretarded van der
Waals to the retarded Casimir-Polder regime. As zA ap-
proaches 1 /k, PFA becomes gradually worse, and then a non-
trivial geometry effect reduces g�k ,zA� exponentially for zA
�1 /k. In the next section, we show that geometry and real
material effects can be disentangled in most cases of interest,
thus providing a simple manner to explain how they jointly
produce the results shown in Fig. 2.

IV. DISENTANGLING GEOMETRY AND REAL
MATERIAL EFFECTS

As discussed in Sec. I, the most commonly used approxi-
mation methods to compute atom-surface interactions are the
PFA and PWS. In �18� we compared these approximate
methods with our exact scattering approach to first-order in
the surface profile for the case of perfect reflectors, and
showed that PFA overestimates and PWS underestimates the
lateral atom-surface force. In this section we want to expand
upon these considerations and consider in further detail the
corrections to the PFA approximation beyond the case of
perfect reflection. This will allow us to disentangle the ef-
fects of geometry and real materials, thus leading to a very
simple rule for the evaluation of g�k ,zA�.

In the atom-surface context, the proximity force approxi-
mation amounts to computing the atom-surface potential U
for a given geometry from the potential for the planar geom-
etry U�0� taken at the local atom-surface distance

U � U�0��zA − h�rA�� � U�0� − h�rA��zU
�0�.

The PFA holds when the surface is very smooth in the scale
of the separation distance, which corresponds to the limit
kzA→0. From our expression for the first-order potential
�16� one can indeed prove that for any material the response
function satisfies the “proximity force theorem�

g�k = 0,zA� = − �zU
�0��zA� . �25�

This follows from the fact that the response function at zero
transverse momentum is given by the specular limit of the
nonspecular coefficients ak�,k�, which corresponds to k�=k�.
In this case we have Rp�,p�

�1� �k� ,k��=2
�rp��k� ; i���p�,p�, and

ak�,k�=e−2
zA�p��̂p�
+ �k�� · �̂p�

− �k��rp��k� ; i��. From Eq. �17�,
the zero-momentum response function is then

g�k = 0,zA� =
�

�0c2

0

	 d�

2�
�2��i��
 d2k

�2��2e−2
zA

��
p

�̂p
+�k� · �̂p

−�k�rp�k;i�� . �26�

Comparing with expression �14� for U�0�, we immediately
prove the proximity force theorem �25�.

As a consequence of this discussion, we recover Eq. �25�
from our more general result �Eq. �16�� when replacing
g�k ,zA� by g�0,zA�. Now the value of g�k ,zA� differs from
g�0,zA� for any finite value of k and it is worth quantifying
deviations from PFA by introducing the function

��k,zA� =
g�k,zA�
g�0,zA�

. �27�

Deviations from PFA can first be discussed in the vicinity of
k=0 where PFA is recovered ��→1 for k→0�. It is possible
to deduce from Eqs. �17�–�23� that the first-order derivative
of � with respect to k is identically zero, for any atomic
polarizability and surface permittivity. It follows that devia-
tions from PFA appear only at order k2 in a Taylor expansion
around k=0

��k,zA� = 1 +
k2

2
�k

2��0,zA� + O�k3� . �28�

For perfect reflectors, we can also prove that the second-
order derivative in Eq. �28� is negative so that ��k ,zA� is
concave near k=0.

When going far beyond PFA �arbitrary values of kzA�, we
have to compute ��k ,zA� numerically. The result of this cal-
culation is plotted on Fig. 3, with � shown as a function of
kzA for three different values of zA in the case of an Rb atom
on top of a Si surface. We notice that these curves are quite
close to one another. In order to obtain an estimate of their
values, we also show the curve corresponding to the Casimir-
Polder limit for perfect reflectors, which is derived from Eq.
�27� and the calculations of Appendix B

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

CP - perf. mirrors

100 nm

1 micron

10 microns

�

k z
A

µm

µm

FIG. 3. �Color online� Geometry correction factor � as a func-
tion of kzA for a silicon surface, and zA=100 nm �light blue/gray�,
1 �m �dashed�, and 10 �m �dotted�. The black line corresponds to
the CP result given by Eq. �29�.
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�CP
perf�k,zA� = e−kzA�1 + kzA +

16�kzA�2

45
+

�kzA�3

45
� . �29�

For this limiting case, � depends only on the dimensionless
variable Z=kzA. We may thus conclude that this variable
captures most of the geometry correction since � depends
very little on zA for a given Z. For distances larger than
1 �m, � may be well approximated by the CP formula �Eq.
�29��. This statement holds for the case of silicon but the
results for gold surfaces �not shown� are even closer to the
CP curve shown in Fig. 3.

Of course, finite conductivity corrections are very impor-
tant for the evaluation of the force between an atom and a
planar plate, and the full response function g has to be writ-
ten as

g�k,z� = ��k,z��FFCP
�0�. �30�

In this formula, FCP
�0� is Casimir-Polder force �24�, �F

=F�0� /FCP
�0� represents the reduction in the dispersive force

due to material properties of atom and surface �calculated for
a plane geometry�, and � describes the effect of geometry.

In Fig. 4, we plot �F as a function of zA for a Rb atom on
top of a silicon or gold surface. As expected, the CP result
for perfect reflectors is recovered at large distances in the
case of gold, whereas for silicon we find a reduction in �F
�2 /3 due to the finite value of the zero-frequency permit-
tivity in this case. These results coincide with those obtained
in �46�. For both gold and silicon surfaces, the reduction gets
stronger as the separation distance is decreased, as expected
since shorter distances correspond to larger frequencies, for
which the optical responses of both atom and surface are
smaller. For very short distances, �F is linear ��F
�5.8z ��m� for gold and 5.1z ��m� for silicon�, in agree-
ment with the power-law modification expected in the van
der Waals unretarded regime.

Since � is well approximated by the Casimir-Polder result
for perfect reflectors �Eq. �29��, the real material and beyond-
PFA geometry corrections are approximately uncorrelated.
One may compute the former effect for the simple plane
geometry ��F�zA��, the latter for “perfect” atom and surface

��CP
perf�kzA��, and finally combine the two effects with the help

of Eq. �30�. The simple analytical formula �29� is thus of
great practical relevance since it allows for an easy evalua-
tion of the response function g�k ,zA�. For a given corrugation
wavelength, as was discussed in connection with Fig. 2, the
two effects are more relevant at different separation ranges:
�F is mainly affected for small zA �producing the linear in-
crease in all curves on the left part of Fig. 2�, whereas ��k ,z�
differs for large kzA �leading to the exponential decay appar-
ent on the right part of Fig. 2�. When k is small enough �as in
the example with �=10 �m on Fig. 2�, the two regions do
not overlap, explaining why the maximum can approach
unity. Otherwise �as in the example with �=100 nm on Fig.
2�, they do overlap and the maximum value of the curve
remains well below unity.

Only for very short separation distances �or very short
corrugation wavelengths for a given kzA� ��k ,zA� starts to
deviate slightly from �CP

perf�kzA�, as illustrated by the light
blue/gray curve in Fig. 3 for z=100 nm, resulting in some
entanglement between real material and geometry correc-
tions. In this case, � is well approximated by the van der
Waals analytical formula derived in Appendix C.

V. EXPERIMENTAL PROSPECTS

There are several possible experimental scenarios where
nontrivial geometrical effects of atom-surface forces could
be probed. In particular, Bose-Einstein condensates represent
an ideal sensor of quantum vacuum forces since they are
well controlled and characterized. One possible experiment
is to use a BEC as a sensitive oscillator, whose center-of-
mass frequency is modified when the BEC is close to a
surface �14�. This idea was recently used to measure the
normal component of the Casimir-Polder force between a
Rb condensate oscillating along the perpendicular direction
to a planar dielectric surface �7�. Lateral Casimir-Polder
forces could be measured in a similar fashion with an
elongated BEC oscillating parallel to the surface, with its
long axis parallel to the corrugation axis of a uniaxial
corrugated surface �18,19�. We have shown in these refer-
ences that nontrivial geometrical quantum vacuum effects,
beyond the usual proximity force and pairwise summation
approximations, could be measured using present-day cold-
atom technology. We shall not further discuss this proposal
here.

Rather, let us comment briefly on another possible sce-
nario, which, although less sensitive, has the nice feature of
measuring directly the atom-surface interaction potential in-
stead of its second derivative, as in the BEC oscillator. The
idea is to use a quasi-one-dimensional �1D� BEC to locally
probe potential variations via imaging the local one-
dimensional density. Small electric and magnetic fields of
BECs in atom chips have been recently probed using this
technique �54�. Lateral Casimir-Polder forces could be mea-
sured with a cigar-shaped BEC placed parallel to the surface
and with its long axis perpendicular to the uniaxial corruga-
tion lines. The potential along the quasi-one-dimensional
BEC is related to the one-dimensional particle density n1D�x�
as

10�1

100

10�2 10�1 100 101

silicon

gold

�
F

z
A
(µm)

FIG. 4. �Color online� Correction �F=F�0� /FCP
�0� of the normal

dispersive force between a Rb ground-state atom and a plane gold
�solid� or silicon �dashed� surface as a function of the separation
distance zA.
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Vho�x� + VCP�x� = − ��tr
	1 + 4ascatn1D�x� , �31�

where Vho�x� is the external harmonic trapping potential,
VCP�x� is the lateral Casimir-Polder potential, �tr is the trans-
verse �strong� trapping frequency, and ascat is the s -wave
scattering length. In �54� the optimal potential single-shot
sensitivity �V is estimated as �V=��N /�0

2x0, where �
=2�2ascat /m. Here m is the mass of Rb atoms, �N is the
detection imaging noise, x0 is the longitudinal spatial reso-
lution, and �0 is the transverse spatial resolution. In the ex-
periment �54�, �tr=2��300 Hz, �N�4 atoms per pixel in
a charge-coupled device camera, leading to a single-shot
single-point sensitivity to potential variations in �V
�10−13–10−14 eV.

For the sake of estimating the order of magnitude of the
lateral Casimir-Polder force, let us consider a uniaxial corru-
gated perfectly reflecting surface. We now use our perturba-
tive expansion of the potential in powers of the corrugation
profile. In the retarded regime �zA��A�, the zeroth-order po-
tential is U�0��zA�=−3�c��0� /32�2�0zA

4 , where ��0� /4��0
=47.3�10−30 m3 for 87Rb atoms. For a corrugation ampli-
tude h=100 nm, wavelength �=10 �m, and an atom-plate
distance zA=2 �m, the correction is U�1�=1.13�10−14 eV,
which is on the border of the experimental sensitivity re-
ported in �54�. The experimental signal of the lateral
Casimir-Polder force would consist of a density modulation
of 1D BEC density following the law n1D�x���Vho�x�
+VCP�x��2.

Other possible experiments to probe lateral Casimir-
Polder forces could involve spin-echo techniques for atomic
beams flying above corrugated surfaces �4�, a two-
component phase-separated BEC �level� �55� used as a cold-
atom analog of an atomic-force microscope �AFM� to map
the corrugated surface potential, or two-photon Bragg spec-
troscopy of the Casimir-modified Bogoliubov spectrum of an
elongated BEC above the surface �56�.

VI. CONCLUSIONS

We have developed a scattering approach to the dispersive
force between a ground-state atom and a material body. We
have focused on the case of a corrugated surface, and derived
explicit results to first order in the corrugation amplitude.
Exact numerical calculation of the dispersive first-order po-
tential has been presented in terms of the response function
g�k ,zA�, calculated for arbitrary values of the separation dis-
tance zA and corrugation wavelength �=2� /k, as long as the
corrugation amplitude remains much smaller than both
length scales. Different atomic species and materials can be
considered within our formalism. Here we have illustrated
our method by taking Rb atoms on top of gold or silicon
surfaces.

For separation distances larger than 1 �m, the response
function g�k ,z� can be easily obtained from the very simple
CP result �Eq. �29�� for the beyond-PFA geometry correction
factor �, together with the numerical values for the real ma-
terial reduction factor �F calculated for the plane geometry.

The position dependence of the resulting potential leads to
a lateral dispersive force. We have discussed a variety of

possible experiments with Bose-Einstein condensates that
would allow for the verification of nontrivial beyond-PFA
effects with current state-of-the-art techniques.
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APPENDIX A: SCATTERING MATRIX FOR AN ATOMIC
MAGNETIC-DIPOLE MOMENT

Equation �9� gives the expression of the atomic reflection
matrix elements under the assumption that the atom is char-
acterized by an electrical polarizability ����. The expression
of the matrix elements of the operator RA was found starting
from the linear relation �5� between the induced atomic elec-
tric dipole and the external �incoming� electric field calcu-
lated in the position RA, and writing down the electric field
produced by the induced dipole moment d���. In particular,
we were interested in the field going toward the surface �↓ �
as a function of the field coming from it �↑ �.

A completely analogous calculation can be performed as-
suming that the fluctuating magnetic field H induces a
magnetic-dipole moment m on the atom given by

m��� = ����H�RA,�� , �A1�

where ���� is the magnetic polarizability. For the field gen-
erated by the magnetic dipole in the region z
zA we find the
Fourier component

E�mdip�p
↓ �k,�� = −

i�

2�0c2kz
e−ik·rAeikzzA � �̂p

−�k� · �K− � m���� .

�A2�

Using the following expression for the magnetic field com-
ing upward from the surface

H↑�k,z,�� =
1

�0�
�

p

Ep
↑�k,���K+ � �̂p

+�k,���eikzz,

�A3�

and replacing Eq. �A1� into expression �A2� we find

�k,p�RA
m�k�,p�� = −

��i��
2


e−i�k−k��·rAe−�
+
��zA

� �̂p
−�k,i�� · �K− � �K�+ � �̂p�

+ �k�,i���� .

�A4�

As a consequence, if we want to include both contributions
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�electric- and magnetic-dipole moments�, the atomic reflec-
tion operator is simply given by the sum of the operators RA
and RA

M, given by Eqs. �9� and �A4�, respectively. It is pos-
sible to check, for example, that for two atoms the scattering
formula �4� gives back the known result for the interatomic
potential energy in the Casimir-Polder regime �45�.

APPENDIX B: CASIMIR-POLDER REGIME

Simple closed forms for the first-order response function
can be derived in some limiting cases. In fact, g�k ,zA� is
given by the integral over the positive imaginary frequency
axis of a function involving three quantities that decay to
zero: the atomic polarizability ��i��, the round-trip propaga-
tion factor exp�−�
�+
��zA�, and the reflection amplitudes
rp�k , i�� �due to the frequency dependence of the permittivity
function�. These functions decay on different frequency
scales: c /�A, c /zA, and �P �a typical frequency associated to
the surface optical response, for example, the plasma fre-
quency for metallic media�, respectively. As a consequence,
the significant range of frequencies giving the main contri-
bution to the integral in Eq. �17� will be determined by the
smallest of these frequency scales. One can then expect that
the integral �17� can be considerably simplified for some
particular relations between these frequency scales.

In this appendix, we consider the case zA��P ,�A, usually
referred to as Casimir-Polder regime �note that we assume
zA��c / �kBT� so as to neglect thermal corrections�. Since the
smallest frequency scale is c /zA, we can replace the dynami-
cal polarizability ��i�� and the permittivity ��i�� by their
zero-frequency values. For the metallic case, we can take
��0�→	 and then derive remarkably simple expressions
from Eq. �23�:

ak�,k� =
1

2
e−�
�+
��zA� 1


�
�
�k2 + �
� − 
��2� +

c2

�2 �k2 − �
�

+ 
��2�� . �B1�

This expression could also have been obtained by taking the
usual perfectly reflecting boundary conditions on the corru-
gated surface.

After replacing Eq. �B1� into

gCP�k,zA� =
���0�
�0c2 


0

	 d�

2�
�2
 d2k�

�2��2ak�,k��zA,�� ,

we change the integration variables from �� ,k� ,���
to �
� ,
� ,��, taking k��
� ,
� ,��= ��
��2− �
��2

+k2� / �2k cos ��� and ��
� ,
� ,���=c��
��2

− �k��2�
� ,
� ,����1/2. The Jacobian of the transformation is
�J�=2c
�
� / �4k2�
��2cos2 ��− ��
��2− �
��2+k2�2�1/2. We
first use the property �0

2�d��� . . . �=2�0
�d��� . . . �. Then we

write the integral as a sum of two contributions:



0

	

d
�

�
�−k�

	�
��2+k2

d
�

0

�m

d��,

and



0

	

d
�
	�
��2+k2


�+k

d
�

�m

�

d��,

with cos �m= ��
��2− �
��2+k2� /2
�k, and introduce further
auxiliary integration variables u=
�+
� and v=
�−
� to
obtain the final analytical result

gCP
perf�k,zA� = FCP

�0��zA�e−Z�1 + Z +
16Z2

45
+

Z3

45
� , �B2�

where Z�kzA.

APPENDIX C: VAN DER WAALS REGIME

In this appendix, we assume that zA��A. In this van der
Waals regime, one can neglect retardation effects and assume
an instantaneous atom-surface interaction �limit c→	�.

In order to extract some simple expressions for the vdW
response function, we have first to choose a specific expres-
sion for the atomic polarizability ��i��. We will use the fol-
lowing model function suitable for a multilevel isotropic
atom having transition frequencies �n0 from the nth excited
state to the ground-state and electric-dipole matrix elements
dn0 on these transitions

��i�� =
2

3�
�

n

�n0dn0
2

�n0
2 + �2 , �C1�

Then we have to specify the transmission and reflection am-
plitude functions. Here we take Fresnel formulas with two
different models for the permittivity ��i��.

1. Plasma metals

We first take the plasma model for metallic materials,

��i�� = 1 +
�P

2

�2 . �C2�

In this case we obtain from Eqs. �17�–�23�

gvdW�k,zA� = − �
n

kdn0
2 xn

192	2��0zA
3�xn

2 + 2	2xn + 2�
�6	2Z�xn

+ 	2�K0�Z� + �	2�Z2 + 12�xn + Z2

+ 24�K1�Z�� , �C3�

where xn=�P /�n0 and Z=kzA, and K0 and K1 are the modi-
fied Bessel functions �53�. If we let all the xn go to infinity,
we get the result for a perfect conductor �19�

gvdW
perf �k,zA� = − �

n

kdn0
2

192��0zA
3 �6ZK0�Z� + �Z2 + 12�K1�Z�� .

�C4�

In the opposite limit, with �P��n0 for all n, we derive from
Eq. �C3� the plasmon van der Waals limit
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gvdW
plas �k,zA� = − �

n

kdn0
2 xn

384	2��0zA
3 �12ZK0�Z� + �Z2

+ 24�K1�Z�� . �C5�

This result is, as expected, proportional to the plasma fre-
quency �P.

2. Semiconductors

In order to treat the case of semiconductors, we assume
that the material can be described by the Drude-Lorentz
model function

��i�� = 1 +
�DL

2 ���0� − 1�
�DL

2 + �2 . �C6�

In this case we get

gvdW�k,zA� = − �
n

�kdn0
2 xn

384���0zA
3�� + 2�3/2��� + 2�xn

2 − 2�2

��12A0ZK0�Z� + A1�Z�K1�Z�� ,

A0 = �� + 2��	� + 2xn − 	2���� + 2�xn
2 − 2� ,

A1 = 2�� + 2�3/2��Z2 + 12�� + 24�xn
3

− 3	2�� + 2���Z2 + 8�� + 16�xn
2

− 48�� + 2�3/2xn + 2	2��Z2 + 24�� + 48� , �C7�

where �=��0�−1 and xn=�DL /�n0.
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