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We extend our previous work �Phys. Rev. Lett. 100, 183602 �2008�� on the generalization of the Casimir-
Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and mag-
netodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these
forces. We present results for metamaterials including structures with uniaxial and biaxial magnetodielectric
anisotropies, as well as for structures with isolated metallic or dielectric properties that we describe in terms of
filling factors and a Maxwell Garnett approximation. The elimination or reduction of Casimir “stiction” by
appropriate engineering of metallic-based metamaterials, or the indirect detection of magnetic contributions,
appear from the examples considered to be very challenging, as small background Drude contributions to the
permittivity act to enhance attraction over repulsion, as does magnetic dissipation. In dielectric-based metama-
terials the magnetic properties of polaritonic crystals, for instance, appear to be too weak for repulsion to
overcome attraction. We also discuss Casimir-Polder experiments, that might provide another possibility for the
detection of magnetic effects.
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I. INTRODUCTION

The last decade has witnessed a huge activity in the de-
velopment of metamaterials �MMs� �1�, boosted by the pos-
sibility that such engineered media may give rise to novel
optical properties at selected frequency ranges, including
negative refraction �2�, perfect lensing �3�, and cloaking �4�,
among others. Such striking phenomena, inaccessible with
natural materials, are all possible due to the significant mag-
netic activity built into metamaterials, starting at microwave
frequencies and going all the way up to the optical range.
Generally speaking, metamaterials are made of microstruc-
tures and nanostructures carefully designed to collectively
endow them with a particular electromagnetic property. It is
generally desirable that these structures should be smaller
than the wavelength of the incident radiation, so that they are
seen by the incoming waves as artificial “atoms.” This fact
often allows the use of an effective medium approximation
to describe metamaterials in terms of an effective electric
permittivitiy tensor ���� and an effective magnetic perme-
ability tensor ����, which incorporate the typical optical an-
isotropy of metamaterials.

Recent years have also witnessed an increased interest in
Casimir physics �5,6� thanks to improved precision measure-
ments �7� of the force between material objects separated by
micron and submicron gaps. Quantum vacuum fluctuations
are modified by the presence of material boundaries, and this
typically results in an attractive Casimir force that depends
sensitively on the shape and the optical properties of the
boundaries. While the Casimir force offers new possibilities
for nanotechnology, such as actuation mediated by the quan-
tum vacuum, it also presents some challenges, as microelec-
tromechanical and nanoelectromechanical systems �MEMS
and NEMS� may stick together and cease to work due to the
attractive nature of van der Waals and Casimir forces. A
strongly suppressed Casimir attraction, or even repulsive Ca-
simir forces, would provide an “antistiction” effect. Repul-
sive Casimir forces between two objects 1 and 2, immersed

in a background medium 3, may come in a variety of ways.
One possibility involves nonmagnetic media only, for which
repulsion happens when the electric permittivities evaluated
at imaginary frequencies satisfy the relation �1�i����3�i��
��2�i�� �8�. Another possibility, first predicted by Boyer �9�,
involves magnetodielectric media: there is a repulsive force
when a perfectly conducting plate is placed near a perfectly
permeable one with vacuum in between. Some years later it
was shown that Casimir repulsion can also occur between
real �i.e., nonideal� magnetodielectric media, as long as one
medium is mainly electric and the other one is mainly mag-
netic �10�. However, this possibility has been considered un-
physical �11�, as naturally occurring materials, even strong
magnets at low frequencies �12�, do not show significant
magnetic response at near-infrared and optical frequencies,
which has been assumed as a prerequisite for repulsion be-
tween Casimir plates separated by typical experimentally rel-
evant distances of d=0.1–1 �m. On the other hand, recent
developments in nanofabrication have resulted in metamate-
rials with magnetic response in the visible range of the elec-
tromagnetic spectrum �13–15�, fueling the hope for Casimir
repulsion �16–19�. The expectation is that, by tuning this
magnetic response to the right frequency range and making it
strong enough, one could produce an experimentally measur-
able Casimir repulsion between, say, a MM slab and a thin
metallic plate, or at least a significantly reduced attraction.

Unfortunately, this is easier said than done. The major
issue is that the Casimir force between real dispersive mate-
rials is a broadband frequency phenomenon, as shown by the
Lifshitz formula expressing the force between two semis-
paces as an integral over all �imaginary� frequencies with an
exponential cutoff c /d �20�. For Casimir repulsion purposes,
this requires a magnetic response strong enough to dominate
the electric response of the material in a broad range of fre-
quencies, which typically is not the case for the magnetic
resonances present in metamaterials. In addition, several
metamaterials have metallic inclusions that produce a low-
frequency Drude-like behavior in ����, whose contribution
to the Liftshitz formula dominates over any possible mag-
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netic response that the metamaterial may have, making at-
tractive a Casimir force that would otherwise be predicted to
be repulsive.

We have recently addressed many of these issues in the
context of the Casimir-Lishitz theory and metamaterials �21�.
The purpose of the present work is to further investigate the
physics of Casimir interactions between metamaterials, fo-
cusing on effects not previously considered in depth in the
Casimir literature, such as optical anisotropy in magnetodi-
electrics and the feasibility of the crossover from attractive to
repulsive Casimir forces with realistic metallic-based and
dielectric-based metamaterials.

II. CASIMIR-LIFSHITZ FORCE BETWEEN ANISOTROPIC
MAGNETODIELECTRIC MATERIALS

A. The scattering approach

Techniques for the evaluation of the Casimir force have
evolved very quickly in the last few years, paving the way
for precise analytical �22� and numerical �23� calculations in
nontrivial geometries. A particularly appealing method is the
so-called scattering approach, pioneered in Casimir physics
by Balian and Duplantier to compute the free energy of the
electromagnetic field in regions bounded by material bound-
aries of arbitrary smooth shape �24�. The free energy is ex-
pressed as a convergent multiple scattering expansion of ray
trajectories propagating between the material boundaries.
This method, first used for perfect conductors, was extended
to real materials in recent works �25,26�, allowing, in prin-
ciple, the computation of the Casimir interaction between
arbitrarily shaped material scatterers.

Since a thorough discussion of the scattering approach
would take us too far afield, we simply present the formula
for the zero-temperature Casimir energy per unit area A be-
tween two parallel plates separated by a vacuum gap of
width d:

E�d�
A

= ��
0

� d�

2	
ln det�1 − R1e−KdR2e−Kd� , �1�

where R j =R j�k� ,k�� , p , p� ,�= i�� is the reflection operator
associated with reflection on the jth plate �j=1,2�. Here k�

and k�� are the transverse wave vectors �i.e., projected onto
the planar interfaces� for incident and reflected waves, re-
spectively, and p and p� are their respective polarizations
�transverse electric �TE� or transverse magnetic �TM��. The
operator exp�−Kd� represents one-way propagation between
the two plates, and has matrix elements

�k��e−Kd�k��	 = exp�− d
k�
2 + �2/c2�
�2��k� − k��� . �2�

When both plates present homogeneity in the plane of the
interface, only specular reflection takes place, and R j is also
diagonal in the transverse momentum basis. This means that

�k��R j�k��	 = R j

�2��k� − k��� , �3�

where R j is the 2�2 reflection matrix on the jth plate. Note
that the reflection matrices here are evaluated at imaginary
frequencies �= i�, and this requires the well-known analytic

properties of the permittivities and permeabilities in the com-
plex frequency plane. For general anisotropic media these
reflection matrices are defined as

R j = � rj
TE,TE�i�,k�� rj

TE,TM�i�,k��
rj

TM,TE�i�,k�� rj
TM,TM�i�,k��

� , �4�

where rj
p,p� is the ratio of the amplitudes of a reflected field

with p� polarization and an incoming field with p polariza-
tion.

Using Eqs. �3� and �2� in Eq. �1�, we get after some ma-
nipulations

E�d�
A

= ��
0

� d�

2	
� d2k�

�2	�2 ln det�1 − R1 · R2e−2K3d� , �5�

and the expression for the force per unit area follows:

F�d�
A

= 2��
0

� d�

2	
� d2k�

�2	�2K3Tr
R1 · R2e−2K3d

1 − R1 · R2e−2K3d , �6�

where K3=
k�
2+�2 /c2. A positive �negative� value of the

force corresponds to attraction �repulsion�. Despite the fact
that we have assumed homogeneity on each of the planar
interfaces �which is a reasonable assumption when describ-
ing metamaterials with an effective medium approach�, Eq.
�6� is still fairly general: it may be applied to dispersive,
dissipative, and anisotropic media; all that is needed are the
appropriate reflection matrices.

Let us consider the setup depicted in Fig. 1, in which we
have a metallic semispace occupying the region z�−d fac-
ing a magnetodielectric semispace z�0. The reflection ma-
trix R1 characterizing the metal-vacuum interface is given by
the standard Fresnel coefficients �27�

r1
TE,TE�i�,k�� =

K3 − 
k�
2 + �1�i���2/c2

K3 + 
k�
2 + �1�i���2/c2

,

r1
TM,TM�i�,k�� =

�1�i��K3 − 
k�
2 + �1�i���2/c2

� j�i��K3 + 
k�
2 + �1�i���2/c2

,

FIG. 1. Typical setup used throughout this paper to compute the
Casimir-Lifshitz force between a metal and a metamaterial.
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r1
TE,TM�i�,k�� = r1

TM,TE�i�,k�� = 0, �7�

where �1��� is the permittivity of the metal. The elements of
R2 are only given by Fresnel-like formulas when the MM is
isotropic, in which case

r2iso

TE,TE�i�,k�� =
�2�i��K3 − 
k�

2 + �2�i���2�i���2/c2

�2�i��K3 + 
k�
2 + �2�i���2�i���2/c2

,

r2iso

TM,TM�i�,k�� =
�2�i��K3 − 
k�

2 + �2�i���2�i���2/c2

�2�i��K3 + 
k�
2 + �2�i���2�i���2/c2

,

r2iso

TE,TM�i�,k�� = r2iso

TM,TE�i�,k�� = 0, �8�

where �2 ,�2 are, respectively, the permittivity and the per-
meability of the metamaterial.

However, as magnetodielectric MMs can generally be op-
tically anisotropic, the reflection matrix R2 for the MM-
vacuum interface is in general not given by the usual Fresnel
formulas �8�. In their most general form metamaterials can
be bianisotropic, meaning that the constitutive relations have
the form �28�

D = � · E + � · H , �9�

B = � · E + � · H . �10�

Here � and � are the magneto-optical permittivities, and they
describe magnetic-electric cross-coupling. There are indeed
some metamaterials in which the magneto-optical tensors �
and � are not negligible �29�, but since these properties can
be almost entirely suppressed by using a sufficiently sym-
metric unit cell �30�, we assume henceforth that D=� ·E and
B=� ·H. We also assume again that the material tensors �
and � are functions of frequency only, neglecting any pos-
sible spatial dispersion.

Even without bianisotropy the physics of �uni�anisotropic
materials is still very rich �31,32�. It is very common to
describe them according to their degree of symmetry; in
crystallographic theory this leads to Bravais lattices and their
associated point groups �33�. This classification is also very
useful for the study of metamaterials, since they may usually
be described in terms of unit cells �split-ring resonators �34�,
nanopillars �13�, nanorods �14�, nanospheres �35,36�, etc.�
arranged in a periodic lattice. The most extreme anisotropic
situation is when the only symmetry of the unit cell is inver-
sion with respect to the origin. In this case, known as the
triclinic system, both the permittivity and the permeability
tensors have nine nonzero components �32� in a given or-
thogonal coordinate system, making the formulation very
cumbersome. Although it is certainly possible to diagonalize
at least one of the tensors by choosing a suitable basis, the
angles formed by the eigenvectors depend upon frequency in
the triclinic system �27,37�. Since the force �6� is an integral
over all frequencies, this frequency-dependent diagonaliza-
tion is of little help for purposes of calculating Casimir
forces. Fortunately, it is still possible to investigate aniso-
tropic effects in the Casimir force without going into such an
involved case, so we restrict ourselves in the next two sub-
sections to basically two types of anisotropy.

B. Reflection matrices for uniaxial (out-of-plane)
planar metamaterials

In this subsection we calculate the reflection matrix R2 for
the case of a planar interface between vacuum and a uniaxial
magnetodielectric medium that is isotropic on the interface
plane, i.e., whose electric and magnetic anisotropic direc-
tions coincide and are perpendicular to the interface. In op-
tical terminology, this is an example of a uniaxial medium
�27� with the optic axis coinciding with the anisotropic di-
rection. It is known that for uniaxial lattices, that is, the ones
belonging either to the trigonal, tetragonal, and hexagonal
crystallographic systems �33�, the electromagnetic tensors
are diagonal in the coordinate system defined by any two
orthogonal directions in the symmetry plane and the optic
axis �37�. Therefore, choosing the interface as the xy plane
and the anisotropic medium to be the half-space defined by
z�0 �see Fig. 2�, the permittivity and permeability tensors
are given by

�ij = �xx 0 0

0 �xx 0

0 0 �zz
�, �ij = �xx 0 0

0 �xx 0

0 0 �zz
� , �11�

where we have used �yy =�xx and �yy =�xx, whose frequency
dependence is implicit. Although the calculation of the re-
flection matrix for a metamaterial with a single out-of-plane
anisotropic direction is relatively simple and akin to the iso-
tropic case, for the sake of completeness we briefly review
this calculation, which is relevant to several metamaterials
having such anisotropy �38�.

Let us assume that a plane wave with wave vector k and
polarization p impinges upon the interface from z�0 �region
3, vacuum� towards the metamaterial �region 2�. Given the
rotational symmetry about z, without loss of generality we
can choose our coordinate system so that the plane of inci-
dence �defined by k and z� coincides with the xz plane �see
Fig. 2�. In order to solve the reflection-refraction problem we
have to know how waves propagate in the anisotropic me-
dium. In this particular case of uniaxial anisotropy orthogo-
nal to the interface it may be shown by direct substitution
that TE waves

FIG. 2. An incident plane wave impinging on a uniaxial
metamaterial with its optic axis perpendicular to the z=0 plane.
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ETE = E0ŷei�kxx+kzz�e−i�t �12�

are solutions to Maxwell’s equations provided that

k2,x
2

�zz
+

k2,z
2

�xx
=

�2

c2 �xx �in the MM� , �13�

k1,x
2 + k1,z

2 =
�2

c2 �in vacuum� . �14�

In a similar fashion, TM waves

HTM = H0ŷei�kxx+kzz�e−i�t �15�

are solutions to Maxwell’s equations provided that

k2,x
2

�zz
+

k2,z
2

�xx
=

�2

c2 �xx �in the MM� , �16�

k1,x
2 + k1,z

2 =
�2

c2 �in vacuum� . �17�

Therefore there is no polarization-mixing, and consequently
the off-diagonal elements of the reflection matrix vanish:
r2

TE,TM�i� ,k��=r2
TM,TE�i� ,k��=0. This allows one to consider

separately the reflection of TE and TM waves.
Let Ein=E0yei�k1,xx+k1,zz� be a TE field incident from the

vacuum side. Given the translational invariance of the mate-
rial properties along the planar interface, only specular re-
flection occurs, which implies that both x and y components
of the wave vector k are continuous. Therefore, the reflected
TE field is Eref=r2E0yei�k1,xx−k1,zz�, and the transmitted TE
field is Et= t2E0yei�k1,xx+k2,zz�, with k2,z

2 = ��2 /c2��xx�xx
−k1,x

2 �xx /�zz. Imposing the boundary conditions on the TE
modes, we have

Ein,y + Eref,y = Et,y ⇒ 1 + r2 = t2,

Hin,x + Href,x = Ht,x ⇒ �− 1 + r2�k1,z = − t2
k2,z

�xx
,

from which it follows that r2= ��xxk1,z−k2,z� / ��xxk1,z+k2,z�.
Evaluating this expression along imaginary frequencies �
= i�, one obtains the TE-TE reflection amplitude on the
vacuum-MM interface �39�:

r2uni

TE,TE�i�,k�� =

�xxK3 −
�xx

�zz
k�

2 + �xx�xx
�2

c2

�xxK3 +
�xx

�zz
k�

2 + �xx�xx
�2

c2

, �18�

where, we recall, K3=
k�
2+�2 /c2 and k�

2=kx
2+ky

2. Following
similar steps, the TM reflection amplitude on the
vacuum-MM interface can also be derived:

r2uni

TM,TM�i�,k�� =

�xxK3 −
�xx

�zz
k�

2 + �xx�xx
�2

c2

�xxK3 +
�xx

�zz
k�

2 + �xx�xx
�2

c2

. �19�

C. Reflection matrices for biaxial,
anisotropic magnetodielectrics

In ascending order of symmetry, the crystals belonging to
the triclinic, monoclinic, and orthorhombic crystallographic
systems �33� are known as biaxial crystals, since they are
characterized by two optic axes. In this subsection we shall
restrict ourselves to the orthorhombic case �40�, which al-
lows simultaneous diagonalization of � and � in an ortho-
normal basis. The calculation of the reflection matrices for
the other two types of biaxial metamaterials is conceptually
equivalent but more cumbersome since the material tensors
cannot be brought to diagonal form in a frequency-
independent basis.

Let us then consider the system described in Fig. 3, which
is similar to Fig. 2 but with an orthorhombic metamaterial on
the right side. Assuming it is possible to prepare the MM in
such a way that one of the eigenvectors is perpendicular to
the interface, then the diagonal basis is just �x̂ , ŷ , ẑ� and the
electromagnetic tensors are given by

�ij = �xx 0 0

0 �yy 0

0 0 �zz
�, �ij = �xx 0 0

0 �yy 0

0 0 �zz
� . �20�

Several metamaterials can be described by material tensors
such as Eq. �20�; a good example is the fishnet design used in
Ref. �15�.

Metamaterials with two optic axes, even those with the
simplest orthorhombic symmetry, are much harder to treat
than those with an out-of-plane, uniaxial optic axis described
in the previous subsection. The reason is that Maxwell’s
equations do not support transverse waves for biaxial mate-
rials: neither TE nor TM waves are solutions inside the ma-
terial, and the off-diagonal elements of the reflection matrix
do not vanish. This also happens for uniaxial materials with
in-plane optic axes, whose reflection matrix can be obtained
as a particular case of orthorhombic materials with �yy =�zz
and �yy =�zz. The Casimir interaction between two dielectric
semi-spaces with one in-plane optic axis was treated in Ref.
�41� and used in the experimental proposal to measure the
Casimir torque between birefrigent plates �42�.

x

y

k

kref

x’

y’

Metamaterial

z = 0

FIG. 3. An incident plane wave impinging on a biaxial metama-
terial with orthorhombic symmetry �see text�.

ROSA, DALVIT, AND MILONNI PHYSICAL REVIEW A 78, 032117 �2008�

032117-4



The calculation of the plane-wave solutions to Maxwell’s
equations is simplified using a coordinate system attached to
an incident wave from the vacuum side. Let a plane wave
with incident wave vector k impinge on the interface form-
ing an angle in with the normal direction �see Fig. 3�. Let
�x� ,y� ,z�� be the coordinate system attached to the corre-
sponding plane of incidence, that forms an angle � with the
x axis. The optical tensors in this new coordinate system are

�i�j� = �xx cos2 � + �yy sin2 � ��xx − �yy�sin � cos � 0

��xx − �yy�sin � cos � �xx sin2 � + �yy cos2 � 0

0 0 �zz
�

and

�i�j�=�xx cos2 � + �yy sin2 � ��xx − �yy�sin � cos � 0

��xx − �yy�sin � cos � �xx sin2 � + �yy cos2 � 0

0 0 �zz
�.

The expressions for the incident fields are

Ein = �ein
TEŷ� + ein

TM c

�
�qinx̂� − kx�ẑ���ei�kx�x�+qinz�−�t�,

�21�

Hin = �ein
TMŷ� − ein

TE c

�
�qinx̂� − kx�ẑ���ei�kx�x�+qinz�−�t�,

�22�

where ein
TE, ein

TM are given amplitudes and we defined kx�
= �� /c�sin in and qin= �� /c�cos in. The reflected wave has a
similar expression:

Eref = �eref
TEŷ� − eref

TM c

�
�qinx̂� + kx�ẑ���ei�kx�x�−qinz�−�t�,

�23�

Href = �eref
TMŷ� + eref

TE c

�
�qinx̂� + kx�ẑ���ei�kx�x�−qinz�−�t�,

�24�

where we have used qref=−qin. Our problem now consists in
finding the amplitudes eref

TEeref
TM, so we can construct the re-

flection matrix �4�. In order to obtain the reflection ampli-
tudes, however, it is necessary find the transmitted fields as
well, which means that we have to solve Maxwell’s equa-
tions in the metamaterial.

Let us assume plane waves

E = e�z��ei�kx�x�−�t�, e = �ex�,ey�,ez�� ,

H = h�z��ei�kx�x�−�t�, h = �hx�,hy�,hz�� �25�

as solutions to Maxwell’s equations in medium 2, where we
have already deduced the x� dependence from the phase-
matching condition on the interface �kx� is conserved across
the interface�. By substituting Eq. �25� into the Faraday and
Ampère-Maxwell laws

� � E = −
1

c

�B

�t
, � � ��−1 · B� =

1

c

��� · E�
�t

, �26�

respectively, we see that the z� components can be eliminated
as

ez� = − ckx�hy�/��z�z�, hz� = ckx�ey�/��z�z�. �27�

In order to determine the remaining x� and y� components of
e and h it is convenient to introduce a vector u with compo-
nents u1=ex�, u2=ey�, u3=hx�, and u4=hy�. With the ansatz
uj =uj�0�eiqz� we obtain the following linear system of equa-
tions:

L · u = −
c

�
qu , �28�

where the nonzero elements of the matrix L are:

L13 = − L24 = − ��xx − �yy�sin � cos � ,

L14 =
kx�

2 c2

�2�zz
− �yy cos2 � − �xx sin2 � ,

L23 = �xx cos2 � + �yy sin2 � ,

L31 = − L42 = ��xx − �yy�sin � cos � ,

L32 = −
kx�

2 c2

�2�zz
+ �yy cos2 � + �xx sin2 � ,

L41 = − �xx cos2 � − �yy sin2 � . �29�

The condition for nontrivial solutions �det�L+�q /c�=0�
gives us the equation that determines the possible values of
q, namely,

� c2

�2q2 − A�� c2

�2q2 − B� = C , �30�

where

A = L13L31 + L14L41,

B = L23L32 + L24L42,

C1 = L13L32 + L14L42,

C2 = L23L31 + L24L41,

C = C1C2,

whose four solutions q�m� �m=1,2 ,3 ,4� are

q�m� = �
�

c

1

2


A + B � 
�A − B�2 + 4C . �31�

These solutions may be conveniently split into two pairs,
according to the sign of Re q�m�—solutions with Re q�m��0
�Re q�m��0� define positive �negative� propagating waves.
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If we denote the positive solutions by m=1,2, we may write
the general solution for u as

u�z�� = �
m=1,2

u�m��0�eiq�m�z� + �
m=3,4

u�m��0�e−iq�m−2�z�,

�32�

where we have used q�3�=−q�1� and q�4�=−q�2�. It is easy to
see that the refraction of a wave coming from z��0 can only
give rise to positive propagating waves �in the sense defined
above�, from which we conclude that u�3��0�=u�4��0�=0.
Therefore, the transmitted field into the anisotropic magne-
todielectric medium is

�Et

Ht
� = ei�kx�x�−�t� �

m=1,2
u�m��0�eiq�m�z�. �33�

In order to find the amplitudes u�m��0� we have to impose
the proper boundary conditions on the fields. In this case
they just require the continuity of Ex� ,Ey� ,Hx� ,Hy� across the
interface. Using Eqs. �21�–�24� and �33�, one derives the
following boundary conditions:

qin�ein
TM − eref

TM� =
�

c
�

m=1,2
ex�

�m��0� ,

ein
TE + eref

TE = �
m=1,2

ey�
�m��0� ,

− qin�ein
TE − eref

TE� =
�

c
�

m=1,2
hx�

�m��0� ,

ein
TM + eref

TM = �
m=1,2

hy�
�m��0� . �34�

This system of equations is unsolvable as it stands, given the
large number of unknowns. It is possible, however, to use
Eq. �28� to express all the transmitted amplitudes in terms of
just one, say ex�

�m�:

��m� �
ey�

�m��0�

ex�
�m��0�

=
�q�m��2 − ��2/c2�A

��2/c2�C1
,

��m� �
hx�

�m��0�

ex�
�m��0�

= −
�

c

L31

q�m� −
�

c

L32

q�m��
�m�,

��m� �
hy�

�m��0�

ex�
�m��0�

= −
�

c

L41

q�m� −
�

c

L42

q�m��
�m�.

Using these definitions, we can rewrite Eq. �34� as


− 1 0 ��1� ��2�

cqin/� 0 − ��1� − ��2�

0 cqin/� 1 1

0 − 1 ��1� ��2�
�

eref
TE

eref
TM

ex�
�1��0�

ex�
�2��0�

� = 
ein

TE

cqin/�ein
TE

cqin/�ein
TM

ein
TM

� .

�35�

In order to find the reflection coefficients, we must solve
Eq. �35� for the reflected amplitudes. For the sake of clarity,
let us do this separately for ein

TM=0, ein
TE�0 and for ein

TM�0,
ein

TE=0. In the first case, Cramer’s rule immediately yields

r2
TE,TE�i�,k�� =

eref
TE

ein
TE = � det M1

det M
�

kx� → k�

�→i� , �36�

r2
TM,TE�i�,k�� =

eref
TM

ein
TE = � det M2

det M
�

kx� → k�

�→i� , �37�

and in the second case we have

r2
TE,TM�i�,k�� =

eref
TE

ein
TM = � det M3

det M
�

kx� → k�

�→i� , �38�

r2
TM,TM�i�,k�� =

eref
TM

ein
TM = � det M4

det M
�

kx� → k�

�→i� , �39�

where M is the 4�4 matrix in Eq. �35� and

M1 = 
1 0 ��1� ��2�

cqin/� 0 − ��1� − ��2�

0 cqin/� 1 1

0 − 1 ��1� ��2�
� ,

M2 = 
− 1 1 ��1� ��2�

cqin/� cqin/� − ��1� − ��2�

0 0 1 1

0 0 ��1� ��2�
� ,

M3 = 
0 0 ��1� ��2�

0 0 − ��1� − ��2�

cqin/� cqin/� 1 1

1 − 1 ��1� ��2�
� ,

M4 = 
− 1 0 ��1� ��2�

cqin/� 0 − ��1� − ��2�

0 cqin/� 1 1

0 1 ��1� ��2�
� . �40�

III. METALLIC-BASED METAMATERIALS
AND THE CASIMIR EFFECT

Metamaterials may be roughly divided into two classes.
The first class consists of MMs that are partially or totally
based on metallic structures. In this section we concentrate
on these metallic-based MMs, which were previously con-
sidered by us in Ref. �21�. We study in detail the effects of
optical anisotropy on the Casimir-Lifshitz interaction with
magnetodielectric media. The second class consists of MMs
based purely on dielectric materials, that we shall treat in the
next section.
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A. Isotropic metamaterials

Before going straight to the calculations, it is necessary to
point out that metallic MMs may be also divided into two
types, which we shall characterize as �i� connected and �ii�
nonconnected. As the name suggests, in the connected MMs
the metallic part is partially or totally interconnected
throughout the metamaterial �15�, while in the nonconnected
MMs it is not �13,14�. This distinction is important because
in connected MMs there is a net conductivity contribution to
the dielectric function due to the metallic part, while in the
nonconnected MMs the background is effectively noncon-
ducting.

Let us begin with the simple example of a metallic half-
space 1 in front of an isotropic, connected metallic-based
metamaterial 2. For the metal we assume the usual Drude
model

�1��� = 1 −
�1

2

��2 + i�1��
, �1��� = 1, �41�

where �1 is its plasma frequency and �1 the dissipation co-
efficient. For the second half-space we have to be more spe-
cific about the MM we want to consider. In the simplest
description isotropic, connected metallic metamaterials may
be described by a dielectric response accounting for both a
resonance and a Drude contribution

�2��� = 1 − �1 − f�
�e

2

�2 − �e
2 + i�e�

− f
�D

2

�2 + i�D
, �42�

where �e, �e, and �e are, respectively, the effective electric
oscillating strength, the resonance frequency, and the effec-
tive dissipation parameter of the resonant part, and �D and
�D are the Drude parameters of the metallic background of
the MM. The filling factor f roughly quantifies the fraction of
metallic structure present in the MM. The magnetic perme-
ability is given by a resonant part alone:

�2��� = 1 −
�m

2

�2 − �m
2 + i�m�

, �43�

where �m, �m, and �m are defined analogously to their elec-
tric counterparts. In Fig. 4 we plot the Casimir-Lifshitz force
between a metallic half-space and an isotropic metallic-based
planar metamaterial described by Eqs. �42� and �43� for dif-
ferent filling factors at zero temperature. We see that without
the Drude contribution �f =0� there is repulsion for a certain
range of distances, as long as the half-space 2 is mainly
magnetic ��2�i����2�i���. However, as we “turn on” a me-
tallic background �f �0�, the permittivity grows stronger and
reverts the previous relation for a larger and larger range of
frequencies, up to the point where the magnetic activity is no
longer able to produce repulsion.

An idealization carried throughout the paper is that both
the metal and the metamaterial are infinitely long in the z
direction. When we have slabs of finite thickness instead of
half-spaces, the reflection coefficients change to �16�

rjslab

p,p �i�� = rj
pp�i��

1 − e−2Kjdj

1 − rj
p,p2

�i��e−2Kjdj
, �44�

where Kj =
k�
2+� j�i��� j�i���2 /c2, dj is the thickness of the

jth slab, and we are assuming that both slabs are surrounded
by vacuum. From the previous expression we see that cor-
rections to the half-space reflection coefficients �at imaginary
frequencies� are exponentially small when both products
K1d1 and K2d2 are sufficiently large. This basically tells us
that estimates on lower bounds for d1 and d2 are actually
model dependent �given that Kj depends on the properties of
medium j�, so in order to discuss those estimates we have to
be more specific. For a metal described by Eq. �41� and a
wave arriving at normal incidence, we have

K1d1 � 1 ⇒ d1 �
�p

2	

�


�p
2 + �2�d/��d + ��

, �45�

where �p=2	c /�1, �d=2	c /�1, and �=2	c /�. For high
frequencies, we have ���d and then Eq. �45� becomes

d1 �
�p

2	

�


�p
2 + �2

⇒ d �
�p

2	
. �46�

For typical metals �p /2	 is around 10–20 nm, so, at least
for high frequencies, the contribution to the Casimir force of
a slab some tens of nanometers wide approaches the contri-
bution of a half-space. However, in the opposite limit ��
��d�, we have
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FIG. 4. The ratio F /FC for a gold half-space facing an isotropic,
interconnected, and silver-based metamaterial. F /A is the Casimir
force per unit area in this setup FC /A=�c	2 /240a4 is the Casimir
force per unit area between two perfect plane conductors and F
�0�F�0� corresponds to a repulsive �attractive� force. The fre-
quency scale �=2	c /� is chosen as the silver plasma frequency
�D=1.43�1016 rad /s. Parameters are for the metal, �1 /�=0.96,
�1 /�=0.004, and for the metamaterial, �D /�=1, �D /�=0.006,
�e /�=0.04, �m /�=0.1, �e /�=�m /�=0.1, �e /�=�m /�=0.005.
The inset shows the magnetic permeability �2�i�� and the electric
permittivity �2�i�� of the MM for the different filling factors.
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d1 �
�p

2	

 �

�d
=

c

4	�0�

= 
2
��� , �47�

where �0=�1
2 /� is the static conductivity and 
��� is the skin

depth of the metal at imaginary frequencies. Thus, for long
wavelengths we see that d scales with 
�, leading to the
conclusion that the half-space approximation is not good for
sufficiently low frequencies. Fortunately, for typical materi-
als this is no source of concern, since the integration range
where ���d holds is very small compared to the effective
integration range, allowing us to push the slab approximation
up to very small frequencies with almost no effect in the final
result. One might wonder what happens for oblique inci-
dence, but it is easy to see that the more oblique the incident
angle is the better the estimate for d1 holds, since K1 gets
larger and larger �this only means that reflection gets easier
as the incidence angle gets larger, as physically expected�.
The effect of finite thickness in the Casimir effect was the
object of several papers �43�, notably in Ref. �44�, where a
systematic procedure was developed to deal with any given
number of arbitrary slabs. The effect of finite thickness was
also studied in the specific context of Casimir force and
metamaterials �16,18,45�, where it was found that having a
layer of a MM instead of a half-space reduces the intensity of
the repulsion force and also the range of distances where it
occurs.

B. Uniaxial metamaterials

Electric anisotropic effects in the Casimir interaction have
been thoroughly studied in the literature �41,42,46–49�, but
until recently there was no compelling reason to study the
consequences of magnetic anisotropy. This changed with the
advent of metamaterials, and an investigation of magnetic
anisotropy is now in order. The best place to start is to con-
sider uniaxial out-of plane metamaterials, since they consti-
tute the simplest departure from the isotropic case. This type
of anisotropy is quite common since it arises naturally when
a material is built as a stack of different layers, as is the case
for several kinds of MMs �15,38,50,51�. We are particularly
interested in the case where the resulting medium is charac-
terized by different degrees of conductivity in the plane of
symmetry and in the perpendicular direction to it.

Let us begin by characterizing the electric and magnetic
properties of our uniaxial metamaterial:

�xx��� = �yy��� = 1 − �1 − fx�
�e,x

2

�2 − �e,x
2 + i�e,x�

− fx

�D,x
2

�2 + i�D,x�
,

�zz��� = 1 − �1 − fz�
�e,z

2

�2 − �e,z
2 + i�e,z�

− fz

�D,z
2

�2 + i�D,z�
,

�xx��� = �yy��� = 1 −
�m,x

2

�2 − �m,x
2 + i�m,x�

,

�zz��� = 1 −
�m,z

2

�2 − �m,z
2 + i�m,z�

, �48�

where the different filling factors fx and fz account for the
possible anisotropy in the metallic character of the MM. As
we have seen in Sec. II B, the reflection matrix for such a
metamaterial is diagonal and given by Eqs. �18� and �19�.

For metallic-based metamaterials with large in-plane elec-
tric response �xx�i���1 at low frequencies, it is clear from
Eqs. �18� and �19� that anisotropy plays a negligible role in
the determination of the reflection coefficients when there is
a dominant Drude background. In order to better appreciate
the effects of anisotropy we assume henceforth a small or
vanishing Drude contribution. In Fig. 5 we show the Casimir
force for a metamaterial that has only electric anisotropy
��xx=�zz�, which is completely coded in different filling fac-
tors �fx� fz, all other parameters being the same�. We see
that a repulsive force �F /FC�0� arises only for considerably
small values of both fx and fz, from which we conclude that
killing the Drude background in the z direction alone is not
enough to produce Casimir repulsion.

C. Biaxial metamaterials

Continuing our track towards more complicated media,
we now tackle the biaxial orthorhombic case. Let us consider
a metamaterial characterized by the following dielectric and
magnetic functions in the basis defined by its eigenvectors
�see Sec. II C�:

- 0.02
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FIG. 5. The effects of uniaxial anisotropy in the Casimir force
between a gold semispace and a metallic-based connected MM with
weak Drude background. The distance is fixed to d=� and repul-
sion corresponds to negative values of F /FC. All parameters are the
same as in Fig. 4 except for the filling factors fx and fz, which are
the variables in this plot.
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�xx��� = 1 − �1 − fx�
�e,x

2

�2 − �e,x
2 + i�e,x�

− fx

�D,x
2

�2 + i�D,x�
,

�yy��� = 1 − �1 − fy�
�e,y

2

�2 − �e,y
2 + i�e,y�

− fy

�D,y
2

�2 + i�D,y�
,

�zz��� = 1 −
�e,z

2

�2 − �e,z
2 + i�e,z�

−
�D,z

2

�2 + i�D,z�
,

�xx��� = �yy��� = 1 −
�m,x

2

�2 − �m,x
2 + i�m,x�

,

�zz��� = 1. �49�

We are particularly interested in the case where �xx is close to
�yy but in general significantly different from �zz. This means
basically that the MM is only slightly anisotropic in the
plane of incidence. Our motivation in studying this particular
limiting case is that it is a good approximation for certain
types of metamaterials, such as those based on fishnet de-
signs �15�. Note that we are already assuming magnetic in-
plane isotropy, which is consistent with a small electric in-
plane anisotropy. We may then rewrite the material tensors as

�ij = �xx 0 0

0 �xx�1 + 
� 0

0 0 �zz
� ,

�ij = �xx 0 0

0 �xx 0

0 0 1
� , �50�

where 
���= ��yy���−�xx���� /�xx����1, and perform the
calculations only up to first order in 
. The evaluation of the
determinants in Eqs. �36�–�39� requires the knowledge of
matrix elements of L defined by Eq. �29� and also of the
solutions of Eq. �30�. This last step is simplified at first order
in 
 because C /�xx

2 ���xx−�yy�2 /�xx
2 �
2. Therefore

q�1� =
�

c

A, q�2� =

�

c

B , �51�

and then the ��m� coefficients reduce to ��1�=0 and ��2�

= �B−A� /C1. Performing some straightforward calculations
now we get, up to O�
2�,

r2
TE,TE��� = r2uni

TE,TE��� + 
r2,1
TE,TE��� ,

r2
TM,TE��� = −


�xx�xxqtmqin sin 2�

�qtm + qte��qtm + �xxqin��qte + �xxqin�
,

r2
TE,TM��� = −


�xx�xxqin sin 2�

�qtm + �xxqin��qte + �xxqin�
,

r2
TM,TM��� = r2uni

TM,TM��� + 
r2,1
TM,TM��� , �52�

where r2uni

TE,TE, r2uni

TM,TM are given, respectively, by Eqs. �18� and
�19�, and we have also defined

qte �
�xx�xx
�2

c2 − �xxk
2,

qtm �
�xx�xx
�2

c2 −
�xx

�zz
k2,

r2,1
TE,TE � −

��2/2c2��xx�xx cos2 �

qte�qte + �xxqin�
�1 + r2uni

TE,TE� ,

r2,1
TM,TM �

�qin/2��xx sin2 �

qtm + �xxqin
�1 − r2uni

TM,TM� .

Now let us return to the general structure of the Lifshitz
formula. Since R2 is not diagonal we should expect contri-
butions coming from the nondiagonal terms in Eq. �5�, but it
can be shown that they are all O�
2�, and therefore can be
dropped. After a few rearrangements we arrive at our final
expression for the Casimir pressure

F

A
= 2��

0

� d�

2	
� d2k�

�2	�2K3

� �
p=TE,TM

�Iuni + 

r1

p,pr2,1
p,pe−2K3d

1 − r1
p,pr2uni

p,p e−2K3d �1 + Iuni� + O�
2�� ,

�53�

where

Iuni =
r1

p,pr2uni

p,p e−2K3d

1 − r1
p,pr2uni

p,p e−2K3d . �54�

An easy consistency check of this result is to take the zero-
anisotropy limit, which reduces immediately to the uniaxial
result, as it should. A less trivial result is to obtain the non-
retarded limit of expression �53�, which can be shown to be
consistent at first order with other results in the literature
�41,46,49�.

Let us now assume that all the in-plane anisotropy is
coded in the filling factors, just as the out-of-plane aniso-
tropy was in the uniaxial case. In Fig. 6 we show the effects
of a slight in-plane anisotropy on the Casimir force. Each
band in the plot corresponds to a different value of fx, and its
width is given by a �20% variation of fy around fx. We see
that the anisotropy effect is more pronounced at small dis-
tances, because in the nonretarded limit the contribution of
the electric response to the Casimir force is maximized.

D. Dissipation effects

Let us now turn from considerations of anisotropy to
other practical issues for MMs and Casimir interactions. It is
known that dissipation plays an important role in metallic-
based metamaterials, especially those operating at high fre-
quencies. In Fig. 7 we show the effect of a simultaneous
modification in the electric and magnetic dissipation coeffi-
cients; it may be clearly seen that an equal change in the
rates �e /�e and �m /�m favors attraction. In the insets �a�
and �b� we show, respectively, the effects of changing only
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the electric and magnetic dissipation, that may be straightfor-
wardly interpreted in light of the discussion presented in Ref.
�10�. From Eq. �42� we see that an increase in �e makes �
smaller, pushing the metamaterial slightly closer to the Boyer
limit �that is, �1→�, �1=1, �2=1, �2→��. We should thus
expect an increase in the Casimir repulsion as we make �e
larger, and that is exactly what is observed in the inset �a�. A
similar reasoning may be applied to inset �b�, but since this
time we are going away from the Boyer limit, repulsion di-
minishes as we increase �m.

E. Temperature effects

During the past decade there has been a lively controversy
about the thermal Casimir force �52�. In order to briefly il-
lustrate it, let us write the Lifshitz formula at finite tempera-
ture for two half-spaces separated by a vacuum gap d:

F�d,��
A

=
�

�
�
n=0

��
�

p=TE,TM
� d2k�

�2	�2K3

�
r1

p,p��n�r2
p,p��n�e−2K3d

1 − r1
p,p��n�r2

p,p��n�e−2K3d , �55�

where the prime in the summation means that the n=0 term
is multiplied by 1 /2, �=1 /kBT, K3=
k�

2+�n
2 /c2, �n

=2	n /�� are the Matsubara frequencies, and the reflection
coefficients are given by Eqs. �7� and �8� with �n instead of �.
As the key issue in the whole controversy is related to the
behavior of the reflection coefficients in the n=0 term of Eq.
�55�, let us write them explicitly:

rj
TM,TM�0,k�� = lim

�n→0

� j�i�n�k − 
k�
2 + � j�i�n��n

2/c2

� j�i�n�k + 
k�
2 + � j�i�n��n

2/c2
,

rj
TE,TE�0,k�� = lim

�n→0

� j�i�n�k − 
k�
2 + � j�i�n��n

2/c2

� j�i�n�k + 
k�
2 + � j�i�n��n

2/c2
, �56�

where k= �k�� and j=1,2 refer to the metal and the metama-
terial, respectively. It is clear that in order to evaluate
rj

TM,TM�0,k�� and rj
TE,TE�0,k�� we need the behavior of both

permittivities at zero frequency, which is generally unavail-
able for most materials of interest. We must then resort to
extrapolations of theoretical models, and the first natural at-
tempt for metals would be to use the Drude model �41�, due
to its simplicity and the fact that it describes metals consid-
erably well in part of the frequency range where data is
available �53�. In this case, we have

lim
�n→0

�1�i�n��n
2 = 0, �57�

implying

r1
TE,TE�0,k�� =

k − k

k + k
= 0 �58�

for any values �1 and �1. In particular, we may go to the
perfect conductor limit ��1→�� and r1

TE,TE�0,k�� still van-
ishes, in contradiction to the textbook value for TE reflection
coefficient of an ideal metal

rideal
TE,TE = − 1 ∀ � . �59�

We would conclude then that the Lifshitz force in the
perfect-conductor limit of a Drude metal is different from the
force that would be obtained if an ideal metal were assumed
right from the start. This fact has led some authors to cast
doubt on the accuracy of the Drude model for Casimir cal-
culations �54�, while others have held to it �55�, with inter-
esting and compelling arguments coming from both sides.
Recent experiments supporting the exclusion of the Drude
behavior �56� should in principle settle the issue, but as there

Fd
3 Λ
/h
cA

d / Λ

fx= 0.2

fx= 0.5

fx= 0.8

0.1 1 10 100

0.005

0.010

0.015

0.020

0.025

0.030

FIG. 6. The Casimir force between a gold half-space and an
orthorhombic, slightly in-plane anisotropic MM for different values
of the filling factors fx and fy. The bands are characterized by a
certain value of fx, as shown in the legend, and a continuum of
values of fy, from fy =0.8fx to fy =1.2fx. All the other parameters
involved are exactly the same as those used in Fig. 4.
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FIG. 7. The ratio F /FC between a gold half-space and an iso-
tropic silver-based metamaterial for different values of the dissipa-
tion parameters. The main plot shows the effect of the simultaneous
modification of electric and magnetic dissipation. Inset �a� shows
the effect of electric dissipation alone for different values of the
ratio �e /�e=0.1 �solid�, 0.5 �dashed�, 2.5 �dotted�. Inset �b�s shows
the effect of magnetic dissipation alone for different values of the
ratio �m /�m=0.1 �solid�, 0.5 �dashed�, 2.5 �dotted�. The filling fac-
tor is f =10−4 in all three plots, and all other parameters except the
dissipation coefficients are the same as in Fig. 4.
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is no fundamental model that gives the correct results �only
phenomenological ones, such as the plasma model�, the con-
troversy lingers. In this section, we wish to discuss how the
Casimir force between a metallic half-space and a metama-
terial is affected by temperature and compare the situations
where the metal is modeled by either Drude or plasma per-
mittivities. This parallels the work presented in Ref. �16�,
where the temperature dependence of the Casimir force be-
tween metamaterials and dielectrics was thoroughly dis-
cussed.

In Fig. 8�a� we show the Casimir force for different tem-
peratures between a Drude metal and an isotropic MM with
no Drude background. In this case we see that temperature
works against repulsion, but in such a way that keeps the
repulsion window quite open for temperatures as high as T
=600 K, allowing for repulsion at room temperature, at least
in principle �for MMs facing dielectrics this window typi-
cally closes at much lower temperatures; see Ref. �16��.
Something even more interesting happens when we change
the Drude metal by a plasma metal �i.e., vanishing relaxation
parameter �1=0 in Eq. �41��, as shown in Fig. 8�b�. In this
case, we see that not only a temperature increase does not

switch back the force into attraction for large distances, but it
actually increases repulsion in that regime. It is possible to
explain this phenomenon in simple terms using the Lifshitz
formula �55�, from which we see that for large distances
�provided that kBTd /�c�1� the n=0 term dominates all the
others, and we may approximate the Casimir force by

F�d,��
A

=
�

4	�
�

p=TE,TM
�

0

�

dkk2 r1
p,p�0,k�r2

p,p�0,k�e−2kd

1 − r1
p,p�0,k�r2

p,p�0,k�e−2kd ,

�60�

where the reflection coefficients are evaluated at the zeroth
Matsubara frequency �0=0. The key difference from the set-
ups using dielectrics or Drude metals to the one with plasma
metals is that in the former cases we have, as we saw previ-
ously, r1

TE,TE�0,k�=0, while in the latter we have

r1
TE,TE�0,k� =

k − 
k2 + �1
2

k + 
k2 + �1
2

� 0. �61�

This means that for dielectrics or Drude metals facing
a MM, the only contribution to Eq. �60� comes from the
TM zero mode, which is always positive �given that
r1

TM,TM�0,k�r2
TM,TM�0,k��0�. Since this term dominates for

large distances, we conclude then that the force is attractive
in this regime. However, for plasma metals facing a MM we
see that both TE and TM zero modes contribute, and while
r1

TM,TM�0,k�r2
TM,TM�0,k� is positive the product

r1
TE,TE�0,k�r2

TE,TE�0,k� is not, due to the different signs of
r1

TE,TE�0,k��0 and of r2
TE,TE�0,k�:

r2
TE,TE�0,k� =

�2�0� − 1

�2�0� + 1
� 0. �62�

We see then that the sign of the force depends on a delicate
balance between the TE and TM contributions, and it so
happens that for our chosen parameters the TE term over-
whelms the TM term and repulsion is sustained for all dis-
tances above the crossover from attraction. The fact that re-
pulsion is enhanced is also easily explained, since a simple
analysis shows that for large distances �60� may be put in the
form C /�d3, where C is a constant depending on the mate-
rials used. It is clear then that if C is negative, a temperature
increase can only enhance repulsion. Our findings for tem-
perature effects using either Drude or plasma models for the
metallic plate are consistent with the conclusions of Ref.
�57�.

F. Metamaterials based on isolated metallic structures

There are several examples of metamaterials where the
metallic part is distributed in a nonconnected way. In Ref.
�13�, for instance, the authors put forward a MM consisting
of pairs of metallic nanopillars, regularly distributed on top
of a dielectric substrate. The pairing of pillars is necessary to
create an antisymmetric resonance �when the currents in each
pillar are running in opposite directions� at a certain fre-
quency, where the electric dipole contributions of both pillars
are nearly canceled out and the effective current loops pro-
duced by the pairs give rise to magnetic dipole contributions,
resulting in a nontrivial magnetic activity.
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FIG. 8. Temperature dependence of the Casimir force between a
metallic plate and a metamaterial. We plot the Casimir force be-
tween a metamaterial and a Drude metal �a� or a plasma metal �b�
for different temperatures. We stress that negative values of the
force characterize repulsion, and that all parameters are the same as
the ones used in the f =0 curve of Fig. 4.
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Unfortunately, a detailed treatment of the metamaterial
previously described is beyond the scope of the present pa-
per. It is still possible, however, to capture some effects of
metallic nonconnectedness and geometrically built-in reso-
nances through the use of an appropriate toy model. In order
to address the first issue, we consider a simple MM model
consisting of identical, small metallic spheres of radius a
regularly distributed in a host dielectric �nonmagnetic� me-
dium. Assuming that the metal and the dielectric are charac-
terized, respectively, by the permittivities

�2,met��� = 1 −
�2,met

2

�2 + i�2,met�
,

�2,d��� = 1 − �
i=1

N
�2,i

2

�2 − �2,i
2 + i�2,i�

, �63�

and that the metallic spheres can be considered in a first
approximation as electric dipoles, one can connect the me-
dium effective permittivity �2,nc��� to the electric polariz-
ability ���� of a given sphere through the Clausius-Mossotti
formula �58�

f

a3� =
�2,nc − �2,d

�2,nc + 2�2,d
, �64�

where f is the metallic filling factor and we have suppressed
the �-dependence for simplicity. It is also possible to show
that when �� /c�a�1 �the spheres are much smaller than the
radiation wavelength�, the electric polarizability may be
given in terms of the dielectric function of the metal by the
similar relation

�

a3 =
�2,met − �2,d

�2,met + 2�2,d
, �65�

and by eliminating � in Eq. �64� we get

�2,nc��� = �2,d
�1 + 2f��2,met + 2�1 − f��2,d

�1 − f��2,met + �2 + f��2,d
. �66�

This result is known as the Maxwell Garnett approximation
for the permittivity �35,58�, after the physicist who derived it
in the early 1900s �59�. A brief analysis shows the main
effect of having isolated metallic pieces: the previous for-
mula tends to a finite value in the zero frequency limit, un-
like Eq. �42�, which describes a connected metallic MM. The
effective permeability can be dealt in a similar way, and it is
possible to show that in this approximation we have simply
�2,nc���=1.

As noted earlier, formula �66� accounts only for effects of
metallic nonconnectedness. In order to include the built-in
electric and magnetic resonances �60�, we simply assume
their existence in an ad hoc manner and add their contribu-
tion to �2,nc��� and �2,nc���, respectively. Assuming those
resonances can be modeled by Drude-Lorentz formulas, we
have, finally,

�2��� = �2,b��� + �2,res���

=
�1 + 2f��2,met + 2�1 − f��2,d

�1 − f��2,met + �2 + f��2,d
+

�e
2

�2 − �e
2 + i�e�

,

�2��� = 1 −
�m

2

�2 − �m
2 + i�m�

. �67�

The results for the Casimir force are shown in Fig. 9. The
parameters for the resonant parts �2,res��� and �2,res��� are
roughly based on the experimental results given in Ref. �13�
for a MM consisting of metallic nanopillars covered with a
thin layer of glycerine. As indicated earlier, our intention
here is not to provide a precise description of such experi-
ments, but only to estimate how this type of metamaterial
affects the Casimir force. The embedding dielectric, glass
BK7, is quite well described by Eq. �63� with the parameters
N=3, �2,1 /�=1.84, �2,1 /�=1.81, �2,2 /�=0.47, �2,2 /�
=0.28, �2,3 /�=�2,3 /�=0.014, �2,1 /�=�2,2 /�=�2,3 /�=0.
It is clearly seen that no repulsion is achieved, and the reason
is that the magnetic resonance created by the MM geometry
is too weak to overwhelm the electric background. In other
words, the MM is mainly dielectric, leading to an attractive
force.

IV. DIELECTRIC-BASED METAMATERIALS
AND THE CASIMIR EFFECT

Metamaterials based exclusively on dielectrics �36,61,62�
are an interesting alternative to metallic MMs. For one thing,
they provide new possibilities for the construction of nega-
tive index materials �63�, since they allow for both the per-
mittivity and the permeability to assume negative values in
bandwidths that may be out of reach with metallic-based
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FIG. 9. The ratio F /FC for a gold half-space facing an isotropic,
nonconnected, and gold-based metamaterial. The parameters for the
metal are �2,met /�=0.96, �2,met /�=0.004, and for the metamate-
rial we have �e /�=0.34, �m /�=0.064, �e /�=0.2, �m /�=0.15,
�e /�=0.04, �m /�=0.02, f =0.1. The inset shows the permittivity
and permeability inside the MM, as given by Eq. �67�, but as func-
tions of imaginary frequencies �.
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MMs. In addition, dielectric-based MMs might be interesting
for Casimir force studies for the same reason that noncon-
nected metallic MMs might be: they do not present a Drude
background at low frequencies, and this is advantageous for
the observation of magnetic effects in the Casimir force.

The dielectrics most commonly used in the construction
of MMs are “polaritonic” crystals �64� characterized by the
dielectric function

�pol��� = ���1 +
�pol

2 − �pol
2

− �2 + �pol
2 + i�pol�

� , �68�

where �pol is a characteristic resonance of the system, ��

is the permittivity at very high frequencies, and �pol
=�pol


��0� /��. In order to fix ideas, let us consider a MM
made of a regular array of polaritonic nanospheres of radius
a embedded in an isotropic dielectric and nonmagnetic host
characterized by a dielectric function �h. For sufficiently long
wavelengths and sparse arrays, meaning x��R /c�1, it is
possible to use the so-called extended Maxwell-Garnett
theory �35� to evaluate the dielectric and magnetic properties
of the metamaterial, giving �35,36�

�emg��� = �h
x3 − 3ifa1

x3 +
3

2
ifa1

, �emg��� =
x3 − 3ifb1

x3 +
3

2
ifb1

, �69�

where f is the array filling factor and a1, b1 are, respectively,
the electric and magnetic dipole coefficients of the scattering
matrix of a single sphere, given by �27,65�

a1 =
j1�xpol��xj1�x����pol − j1�x��xpolj1�xpol����h

h1
�+��x��xpolj1�xpol����h − j1�xpol��xh1

�+��x����pol
,

b1 =
j1�xpol��xj1�x��� − j1�x��xpolj1�xpol���

h1
�+��x��xpolj1�xpol��� − j1�xpol��xh1

�+��x���
, �70�

where j1�h1
+� is the spherical Bessel function �Hankel func-

tion of the first kind� of order one, xpol=
�polx and the prime
has the usual meaning of a derivative with respect to the
function argument. The important thing to notice here is the
fact that �emg may present several resonances even when the
nanospheres are purely dielectric, from which we conclude
that in this framework we do not have to assume an ad hoc
resonant behavior; it is already built into the theory.

The usual procedure at this point would be to rotate ex-
pressions �69� to the imaginary frequency axis and substitute
them into the appropriate reflections coefficients, but in this
case things are not so straightforward. Implicit in the Lifshitz
formula for imaginary frequencies it is the assumption of
analyticity of ���� and ���� in the upper half-plane, a con-
dition that �emg��� and �emg��� do not satisfy. In order to
overcome this obstacle we have to remind ourselves that ex-
pressions �69� were derived as approximations to the true
permittivity ���� and permeability ���� only for a given
range of real frequencies, namely, for � such as �R /c�1.
This means that while ���� and ���� must be analytic in the
upper half-plane due to causality requirements �emg��� and
�emg��� are not necessarily bound to causal behavior. In
other words, it means that the analytical continuations of

�emg��� and �emg��� into the complex plane are not neces-
sarily close to the continuations of ���� and ����, and in this
case they happen to be quite different.

A possible way to proceed is to rely on the analytic prop-
erties of ���� and write the Kramers-Kronig relation �37�

���� = 1 +
1

i	
P�

0

�

dy
��y� − 1

y − �
, �71�

where P stands for the Cauchy principal value, and consider
also the analogous relation for ����. Taking the real part and
evaluating it at an imaginary frequency i�, we obtain

��i�� = 1 +
2

	
�

0

�

dyy
Im ��y�
�2 + y2 �72�

and, using the fact that ������emg��� �66�, we have

��i�� � 1 +
2

	
�

0

�

dyy
Im �emg�y�

�2 + y2 ,

��i�� � 1 +
2

	
�

0

�

dyy
Im �emg�y�

�2 + y2 . �73�

In Fig. 10 we plot ��i�� and ��i�� using approximate values
for TlCl polaritonic spheres �61� embedded in vacuum. We
see that ��i�� is overwhelmingly dominant over ��i��, which
in fact is hardly different from unity. As the insets show, this
is basically due to a single strong resonance, around �
=0.3 �, that appears in �emg��� but not in �emg���. From
these results we conclude that, despite the fact that some
magnetic activity is created by an array of polaritonic
spheres, the Casimir force in this case is dictated by the
electric part alone and therefore no repulsion seems possible.

V. DISCUSSION

A striking confirmation of the magnetic influence on the
Casimir force would be a measurement of repulsion between
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a metallic plate and a magnetodielectric one. This seems un-
likely in light of the examples presented here, but a measured
reduction in the attractive force might nevertheless be traced
back to the magnetic properties of a metamaterial.

Let P�1� be the Casimir pressure between a gold half-
space and a given metamaterial. If the magnetic properties of
the MM are “turned off,” keeping all other parameters the
same, the pressure will change to some new value P�2�. In
order to check whether the difference �P= P�1�− P�2� should
be observable, we plot its computed value in Fig. 11 for zero
and room temperatures, using both Drude and plasma models
for the metal. The sensitivity of current experiments lies
around 1 mPa, from which we conclude that detection of
magnetic effects in our setup is currently possible up to d
�0.4 �m. While this suggests a considerably large window
for measurement, given that many experiments probe the
150−350 nm range quite accurately, several things must be
dealt with. First and foremost, we see that the difference
between the Drude and plasma predictions are considerably
large �as compared to the magnetic effect� above 0.6 �m.
This means that in order to ascribe changes in the Casimir
force ambiguously to magnetic effects one has to know how
to model metallic materials properly. In addition, at close
distances such as d�0.4 �m, the effective medium approxi-
mation probably no longer holds, since the very structures
that produce magnetic activity �the metallic spheres in this
example� are built on the scale of hundreds of nanometers or
larger. These finite-size effects should bring significant cor-
rections to the Casimir force, and must be considered in a
more sophisticated analysis. Finally, there are the imperfec-
tions of the materials themselves, such as roughness, that at

those distances play a non-negligible role. We conclude then
that despite the fact that current experiments have in prin-
ciple the sensitivity necessary to detect magnetic effects, an
actual measurement of such effects remains a challenging
task.

Casimir-Polder experiments �67,68� also provide possi-
bilities for the detection of magnetic effects. These experi-
ments are able to probe larger distances than the typical bulk-
bulk measurements, which is desirable from the point of
view of an effective medium approximation. The zero tem-
perature Casimir-Polder potential between a ground state
atom and a material half-space is �69�

UCP�z� =
�

2	c2�
0

�

d��2��i���
0

�

dkk
e−2zK3

K3
�rTE,TE�i�,k�

− �1 +
2k2c2

�2 �rTM,TM�i�,k�� , �74�

where z is the distance between the atom and the half-space,
K3 is defined just below Eq. �6�, and rTE,TE and rTM,TM are
given by Eq. �7�. ��i�� is the dynamic atomic polarizability,
which we assume is described reasonably well by the single-
resonance expression

��i�� =
�0

1 + �2/�0
2 , �75�

where �0 is the static polarizability and �0 is the dominant
atomic transition. In one type of experiment �68� the directly
measured quantity is the frequency shift in the center of mass
oscillation of a Bose-Einstein condensate

��z� =
1

2m�z
2 ��z�

2 UCP�z���z�=z, �76�

where m is the atomic mass and �z is the unperturbed �i.e.,
without Casimir-Polder forces� oscillation frequency. The re-
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ported sensitivity for � lies between 10−5 and 10−4, setting
the lower bound for the detection of magnetic effects in the
Casimir force. Let us then consider a Rb atom in front of the
same MM used in the previous example, and compare the
frequency shifts when its magnetic part is “turned on” and
“off.” In Fig. 12 we plot the difference ���z�=�nm�z�
−�m�z�, where �m�z� and �nm�z� are, respectively, the fre-
quency shifts when the magnetic activity is present and ab-
sent. We see that in the best case scenario �sensitivity equal
to 10−5� the magnetic influence would be detectable up to
around 2.5 �m; for larger distances the force is just too
weak.

As a final remark we note that, while Casimir repulsion
will likely be very difficult to observe with existing metama-
terials, the detection of magnetic effects through a slight re-
duction in the Casimir attraction is definitely possible. There

are still some issues to be dealt with, such as the assurance
that magnetic activity is the main cause of force reduction,
rather than some trivial effect such as a reduced filling factor.
With the consistent development of both Casimir measure-
ments and MMs manufactured in the recent years, it is very
reasonable to expect that a Casimir measurement of mag-
netic effects will be feasible in the near future.
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