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Anomalies in electrostatic calibrations for the measurement of the Casimir force
in a sphere-plane geometry
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We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anoma-
lous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller
than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance
dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis

of previous determinations of the Casimir force.

DOI: 10.1103/PhysRevA.78.020101

Over the last decades the Casimir force [1] has met in-
creasing popularity as a macroscopic manifestation of quan-
tum vacuum [2], with its relevance spanning from nanotech-
nology to cosmology [3]. With the claimed accuracy of
recent experiments ranging from 15% in the parallel plane
case [4] to 0.1%—5% in the sphere-plane case [5-8], it also
provides constraints on the existence of forces superimposed
to the Newtonian gravitational force and expected in various
unification attempts [9,10].

Concern has been raised that previous analyses in the
measurement of the Casimir force have overlooked possible
influence of residual electric effects (the so-called patch ef-
fects), which could mimic the Casimir force [11]. Residual
electric effects are known to play an important role in the
measurement of van der Waals force between macroscopic
bodies, where corrections based on a model for work func-
tion anisotropies and their associated patch charges have
been discussed [12]. Some of the early studies focusing on
various adhesion and friction surface forces can be found in
[13-15]. More recently, Stipe et al. [16] argue that the pres-
ence of an inhomogeneous tip-sample electric field in an
atomic force microscopy (AFM) type experiment is difficult
to avoid, thereby imposing a significant limitation to the ac-
curacy of force measurements. This issue indicates a com-
mon problem in electrostatic measurements over a range of
different experimental circumstances and distance scalings
and calls for more attention on calibration procedures, as the
accuracy claimed in Casimir force measurements inherently
depends on the quality of the corresponding electrostatic
calibrations.

We report here an electrostatic calibration procedure for a
sphere-plane geometry in which the electric signal is studied
at all explored distances. Our results are obtained in a range
of parameters that interpolates between the two previous sets
of sphere-plane measurements. We use a spherical lens with
a large radius of curvature, similar to the experiment per-
formed in [5], while at the same time exploring distances
down to few tens of nanometers from the point of contact
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between the sphere and the plane, similar to more micro-
scopic setups using microresonators [6—8]. The measure-
ments reveal anomalous behavior not reported to date.

Our experimental setup is an upgrade of the previous ar-
rangement for measuring the Casimir force in the cylinder-
plane configuration [17]. Force gradients between a spherical
lens and a silicon cantilever are detected by measuring the
shift in the mechanical oscillation frequency of the cantile-
ver. A schematic of the apparatus is shown in Fig. 1. The
cantilever is electrically isolated and thermally stabilized by
a Peltier cooler to within 50 mK. The motion of the cantile-
ver is monitored by a fiber optic interferometer [18] posi-
tioned a few tens of microns above the cantilever. The output
signal from the interferometer is put through a single refer-

Fiber position feedback H

Phase-
Fiber-optic interferometer Iﬁ Locked

Loop

Piezoelectric
transducer (PZT)

Calibration Spectrum

Voltage V analyzer
Actuator PC via
control GPIB

FIG. 1. Schematic of the experimental setup. The silicon reso-
nator, of length L=(22.56=0.01) mm, width w=(9.93+0.01) mm,
and thickness r=(330*10) um with the physical mass m,
=(1.72+0.05) X 107 kg, is opposed by a spherical mirror with
radius of curvature R=(30.9%+0.15) mm and diameter a
=(8.00 % 0.25) mm. The mirror is mounted on an aluminum frame
connected to two motorized actuators allowing for coarse transla-
tional motion, plus an additional piezoelectric transducer for fine
translational motion driven with a bias Vpyzr. Both the spherical
mirror and the surface of the cantilever are coated by thermal
evaporation with a 200 nm layer of gold with 1to 2 nm rms
roughness.
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ence mode lock-in amplifier and is fed back into the piezo-
electric actuator driving the cantilever motion, forming a
phase-locked loop (PLL) with an optimized phase angle
around 30°-40° [19]. The measured frequency at a typical
vacuum pressure of 1.6X 10~ Torr is consistent with the
predicted frequency of the fundamental flexural mode of the
cantilever, around 894 Hz. The stiffness k of the resonator is
estimated to be 5.4 X 10° N/m, 10* to 10° times higher than
that of typical cantilevers used in atomic force microscopy.
Our cantilever flexes at most 1 nm, allowing very small gaps
to be probed, at the cost of an overall lower force sensitivity
that limits the maximum explorable distance. No compensat-
ing external voltages are needed to prevent snapping.

In general, the square of the measured frequency v,, of a
cantilever under the influence of generic forces is

v (d,V) = v(d — ) = Av(d,V) - Avi(d), (1)

where v, is the cantilever’s natural flexural frequency, AV? is
the frequency shift due to externally applied voltages V at
different gap separations d, and Avf is the frequency shift
subject to distance-dependent forces of nonelectrostatic na-
ture, for instance, the Casimir force. For the sphere-plane
configuration and for our choice of parameters, the proximity
force approximation (PFA) [20] holds, the electric force gra-
dient is F.;=—meyRV?/d*, and Eq. (1) can be parametrized in
the presence of a contact potential V. as V,2n= v%—kel(V
-V.)?, where 0=v12,—Avf, a parabola whose maximum is
reached when the applied voltage equals V.. The parabola
curvature k. =€,R/4mmed” reflects the cantilever response
to externally applied electric forces at a given distance. All
three parameters, v(z), k.1, and V. are simultaneously evaluated
for every step in a data sequence and so they can be plotted
as a function of gap separation. In what follows, we scruti-
nize these parameters and discuss the systematic issues that
must be addressed to validate a consistent analysis of the
Casimir force. The value of k, as a function of distance
directly characterizes the system’s response to an applied
bias and sets the basis for residual distance-dependent force
analysis. The gap distance cannot be known with sufficient
accuracy prior to a force measurement [10]. In a typical ex-
periment, the gap is varied by the voltage applied to the PZT
(Vpzr) and consequently k is a function of relative distance
(i.e., of the applied Vp,r). This requires an additional fitting
parameter Vb, which would cause contact and must be in-
ferred from fitting the function

kei(Vezr) = e(Vigp = Vizn) 2, (2)

where « is a calibration factor containing the effective mass
of the cantilever through a= eR/4mm 8% and B is the
conversion factor translating the PZT voltage to the actual
distance unit. This is common practice in most of the Ca-
simir force measurements in which the sensitivity of the ap-
paratus and the zero distance are extracted from an electro-
static calibration. Depending on apparatus type, extracted
quantities can be either spring constant [6], torsion constant
[5,7,8], or effective mass as in this case [4,17]. Note that the
absolute distance can be expressed in two ways: d(Vp,r)
=BV 0= Vezr) or d(Vezr)=Blal ky(Vezr) ]2 Therefore the
absolute distance can be inferred either from the asymptotic
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FIG. 2. (Color online) Curvature coefficients data k vs applied
voltage Vp r and best fit with Eq. (2), but leaving the exponent as a
free parameter for four different experimental runs. Given 4% un-
certainty in k,;, the reduced y? are 1.0, 0.8, 1.2, and 7.0 with the
exponent left as a free parameter for run 1, run 2, run 3, and run 4,
respectively. Fixing the exponent to be —2 increases these values to
be 16, 7.7, 6.9, and 37. The data follows a pure power law in all
explored distances. The absolute distances can be assessed from the
asymptotes of the curves VgZT, which are, in the progressive order
of run, 43.12*x0.01 V, 56.77x0.02 V, 56.99%0.02V, and
56.66+0.02 V. The different values of V3, in the four runs, taken
in different weeks, are due to the rearrangement of the sphere loca-
tion obtained using the actuator drivers.

limit Vp,; of the fit function or from the calibration factor «
of the same function, indicating an interdependency of the
two physical parameters appearing in Eq. (2).

The above procedure and all subsequent analysis are in-
applicable if the data fail to follow the inverse square law of
Eq. (2). Surprisingly, our experimental data from four sepa-
rate sequences follow a power law similar to Eq. (2), but
with exponents —1.70*0.01, —-1.77%=0.02, —-1.80*=0.01,
and —1.54 +0.02, far from the expected value of —2. Figure 2
shows plots of k. as a function of Vpyr, with the exponent
left as a free parameter.

The error on k,; has been evaluated by keeping the appa-
ratus stationary, i.e., without nominally changing the gap dis-
tance at constant Vpr and continuously measuring k. versus
time, in a dedicated run of duration of about 12 h. On this
long time scale (larger than the duration of 4 h for a typical
run) we observe a drift that may be translated into a system-
atic, thermally induced change in gap size up to =200 nm.
The short term fluctuation of &, i.e., the relevant quantity to
determine its random error in each individual measurement,
is obtained by subtracting from each data point the long term
drift through a moving average of window equal to four data
points, corresponding to a time scale of about 32—40 min as
each determination of k, requires 8—10 min depending on
the number of values used for the voltage V. This results in a
random measurement uncertainty for k. of 4%. The data
analysis then proceeds using standard fitting and error propa-
gation algorithms. The reduced y? is near one when the ex-
ponent is fit in the —1.7 to —1.8 range compared to around 10
for fixed —2.0 exponent. Adherence of our data to a strict
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FIG. 3. (Color online) Stability test of fit parameters in Eq. (2)
for Run 1 with the exponent taken to be —1.7 (black, circles) and -2
(red, diamonds). Both calibration factor « (top plot) with units of
Hz> V2m!7 for the —1.7 exponent, and Hz> V-2 m? for the —2.0
exponent, and the zero distance bias V3, (bottom plot) remain
stable within 3% in the flat region at the closest separation for the
exponent —1.7, while a large spreading in the two parameters is
evident for the exponent —2. Note also the correlation between the
fit parameters reflecting their interdependency as discussed in the
text.

power law from the farthest to the closest approach in all
four cases implies the drift was not severe during our data
runs, except possibly in the case of run 4. To check the
stability of the electrostatic result ruled by the unexpected
power law, the following test has been conducted. We repeat
fitting the data, k| vs Vpy, starting with a few points at the
largest distances and by progressively including the data
point corresponding to the closer distances. In this way the
intrinsic instability of the fit will manifest itself through a
systematic variation in the fit parameters subject to a choice
of data points included. Figure 3 shows the result of the
stability test for run 1. The electrostatic fit with the exponent
of —1.7 displays a stable region at the shortest separation gap
corresponding to the inclusion of most data points. Exclud-
ing data points simply makes the error bar larger, while the
fit parameters remain stable. Forcing the exponent to be -2,
on the other hand, leads to unsatisfactory calibration results,
as the parameters start to drift immediately from the outset
and do not display any stable region. More than 40% varia-
tions in both the calibration factor and the zero distance are
found in this case. The instability is already present at the
largest distances, indicating that the source of deviation from
pure Coulombian behavior, for instance, due to patch poten-
tials, is still effective. Runs 2—4 exhibit similar behavior. In
order to further test the consistency of the electrostatic cali-
bration, we have compared the absolute distances obtained
from the two methods outlined above, getting a mutual
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agreement within 2% for the fit with the —1.7 exponent at all
distances, and deviations of 20% if the fitting exponent is
instead fixed to be —2.

The unexpected power law poses a significant limit on the
validity of our electrostatic calibration. Here, we briefly ex-
amine some hypotheses which could potentially explain a
deviation from the expected power law.

Static deflection of cantilever. The spring constant of our
cantilever is extremely stiff (about 5400 N/m). Using
Hooke’s law, a deflection experienced by the cantilever due
to an electrostatic force at 100 nm with an applied voltage of
100 mV is less than 0.2 A. Hence the static deflection should
play little role.

Thermal drift. Even though the temperature of the canti-
lever is actively stabilized by a Peltier cooler, the rest of the
system is still subject to global thermal variation. In order to
see this, we have measured k. with respect to time at a
nominally fixed distance. In the worst circumstance, the gap
separation during the course of measurements can drift as
much as 200 nm in either direction. Although such a drift
could in principle affect the inferred exponent, a highly un-
likely nonlinear monotonic drift would be necessary to ac-
count for the consistently observed anomaly in each indepen-
dent run.

Nonlinearity of the PZT translation. The linearity of the
PZT translation has been tested under a number of different
circumstances. Notice that the translation intervals between
the data points in each of the runs shown in Fig. 2 are com-
pletely random. Yet all of the runs obey a specific power law
in all distances. The PZT was also independently calibrated
by a fiber optic interferometer with a consistent, linear actua-
tion coefficient factor f=87+2 nm/V.

Nonlinear oscillation of cantilever. The cantilever is
driven at resonance in a phase-locked loop, a routine tech-
nique adopted by many groups [8,19,21,22]. Higher order
terms in the force expansion should produce higher harmon-
ics of the drive frequency. Then the assumption that the fre-
quency shift is simply proportional to the gradient of the
external force F'(d) could lead to erroneous assessments of
k., eventually affecting the exponent. We have not observed
higher harmonics in the frequency spectrum of the resonator.

Surface roughness. The deviation from geometrical ideal-
ity and its influence on the local capacitances [23] could in
principle play a role especially at the smallest distances.
However, with the measured rms values of roughness for the
two surfaces we find the corrections negligible, as we discuss
in detail elsewhere [24].

After discarding the hypotheses above, we may consider
the effect of the patch surface potentials. Patch effects are
expected to induce deviations from the Coulombian scaling
with distance [11], and we have found another anomaly cor-
roborating this hypothesis. Indeed, our technique for obtain-
ing the parabola curvatures at all distances reveals that the
contact potential depends on distance, as shown in Fig. 4 in
the range between 20 nm and 110 nm. In runs 1 and 2, the
contact potentials appear to be distance-dependent. This find-
ing calls for a more careful analysis of previous experiments
in which the determinations of the contact potential have
been performed at relatively large distances, typically above
1 pwm. To see this more clearly, we evaluate the equivalent
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FIG. 4. Dependence of the contact potential vs sphere-plane
separation. Two noticeable behaviors are a linear dependence on the
separation (runs 1 and 2) and a settlement to a constant contact
potential at the smallest explored distances (runs 3 and 4). In run 1
the uppermost point of the sphere is different from the other, suc-
cessive three runs as the latter were taken after having tilted the
sphere by 0.05 rad, to check the sensitivity to local surface details.
Note that in run 1, V, is positive while it is negative and converges
to V.=-150 mV at the smallest separations for other runs.

voltage V,=(m/d)\hc/360€, necessary to mimic the Ca-
simir force at a given distance, as first discussed in [25]. At
I um, the magnitude of the Casimir force is equivalent to
that from an uncompensated voltage of 10 mV between the
two surfaces, which should be compared to variations of 90
and 50 mV of the measured contact potentials in runs 1 and
2, respectively. The determination of the contact potential at
large distances, as usually performed in various experiments,
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may therefore lead to a spurious signal of electrostatic origin
if the contact potential at smaller distances is only partly
compensated by an external counterbias.

Once the anomalous scaling exponent and the distance-
dependent residual voltage are taken into account, one can
look for the distance dependence of v%. A distant-dependent
frequency should signal forces such as the Casimir force
and/or forces due to surface potentials related with patch
effects [11]. Disentangling forces of different origins be-
comes exceedingly complex with the unexpected power law
found in the electrostatic analysis. Preliminary residual fit-
ting indicates that the exponents obtained for runs 1 and 3
are —2.12*+0.16 and —3.64 =0.25, respectively, systemati-
cally smaller than —4 expected for the Casimir force [24].

Finally, we emphasize that the study of the Casimir force
should be regarded as an extension of previous van der
Waals force measurements with AFM techniques, since the
underlying physics governing the short range forces between
closely spaced bodies should be the same. Some of the sys-
tematic effects discussed here have been extensively dis-
cussed in the AFM literature [22,26,27]. Although we cannot
draw substantial conclusions about the observation of the
Casimir force itself from our data, the experimental proce-
dure outlined in this Rapid Communication should provide
an optimal strategy to handle contact potentials at all dis-
tances. Apart from looking for confirmation of the observed
anomalies in other experimental setups, we believe that our
findings call for a reanalysis of previous Casimir force ex-
periments in the sphere-plane geometry, a check of the
claimed accuracy, and for the systematic control of the effect
of uncompensated patch potentials.
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