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The Casimir force is the ultimate background in ongoing searches for extragravitational forces in the
micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spu-
rious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact
Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and
study different limiting cases of relevance for Casimir force measurements, with potential implications for the
understanding of mechanical properties of nanotubes.
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As the size of physical systems is scaled down into the
micrometer and submicrometer scales, macroscopic quantum
effects become increasingly important. Forces attributable to
the reshaping of quantum vacuum fluctuations under changes
in geometrical boundary conditions, predicted almost 60
years ago by Casimir �1�, have been measured in recent years
with increasing accuracy �2–7�. The fact that the magnitude
and sign of the Casimir force depend on both the geometry
and material structure of the boundaries paves the way to
several opportunities and challenges for engineering me-
chanical structures above the nanoscale �8�.

The Casimir interaction for perfect metals has been ex-
actly evaluated only for a limited number of geometries,
starting from the original parallel-plate configuration �1�.
Until recently, for all nonplanar geometries the Casimir force
has been estimated using the so-called proximity-force ap-
proximation �PFA� �9�, semiclassical �10,11� and optical ap-
proximations �12�, and numerical path-integral methods �13�.
This has originated a debate on the assessment of the accu-
racy of the measurements, a crucial issue to establish reliable
limits on extragravitational forces in the micrometer range.
In recent months large violations of the PFA for corrugated
plates have been reported �14�, and the exact Casimir inter-
action between a sphere in front of a plane and a cylinder in
front of a plane has been computed �15–17�. As first dis-
cussed in �18�, the cylinder-plane configuration is intermedi-
ate between the plane-plane and sphere-plane geometries, of-
fering easier parallelization than the former and a larger
absolute signal than the latter, due to its extensivity in the
length of the cylinder. A related experimental attempt aiming
to measure temperature corrections to the Casimir force is
under development �19�.

In this Rapid Communication we present the exact evalu-
ation of the Casimir interaction for another geometry of ex-
perimental relevance consisting of two perfectly conducting
eccentric cylinders. Although parallelism is as difficult as for
the plane-plane geometry, this geometry offers several ex-
perimental advantages. First, Gauss’s law dictates that the
expected gravitational force is zero for any location of the
inner cylinder, which allows for a null experiment when
looking for intrinsically short-range extragravitational forces.

Second, the fact that the concentric configuration is an un-
stable equilibrium position �18� opens the possibility of mea-
suring the derivative of the force using closed-loop experi-
ments. Finally, residual electrostatic charges on the surfaces
can be exploited to maximize the parallelism between the
cylinders by looking at the minimum value of the resulting
Coulomb force.

Before embarking on the exact calculation of the Casimir
energy for this geometry, let us recall the result of the PFA.
This is a simple, though uncontrolled way, of treating non-
planar configurations, and is valid for surfaces whose sepa-
ration is much smaller than typical local curvatures. For two
very long eccentric cylinders of radii a�b, length L, and
eccentricity � �see Fig. 1�, the PFA approximation for the
nonconcentric Casimir energy reads EPFA=−�3�cL�2 /
120a4��−1�5, valid when ��b /a→1 and for small eccen-
tricity ��� /a�1. In the limit of large eccentricity ���b
−a� PFA predicts a behavior similar to that of a cylinder in
front of a plane �18�. The geometrical dimensionless param-
eters � and � fully characterize the eccentric cylinder con-
figuration.

In order to go beyond the PFA result, we start by express-
ing the Casimir energy as E= �� /2��p�	p− 	̃p�, where 	p are
the eigenfrequencies of the electromagnetic field satisfying
perfect conductor boundary conditions on the cylindrical sur-
faces, and 	̃p are the corresponding ones for the reference
vacuum �cylinders at infinite separation�. In cylindrical coor-
dinates, the eigenmodes are hn,kz

=Rn�r ,
�exp�−i�	n,kz
t

−kzz��, where 	p=	n,kz
=�kz

2+�n
2, and Rn ��n� are the eigen-

functions �eigenvalues� of the two-dimensional Helmholtz
equation. Using the argument theorem the sum over eigen-
modes can be written as an integral over the complex plane,
with an exponential cutoff for regularization. In order to de-
termine the part of the energy that depends on the separation
between the two cylinders it is convenient to subtract the
self-energies of the two isolated cylinders, E12�a ,b ,��=E
−E1�a�−E1�b�. Then the divergencies in E are canceled out
by those in E1�a� and E1�b�, and the final result for the in-
teraction energy is
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E12�a,b,�� =
�cL

4�
	

0

�

dy y ln M�iy� . �1�

Here M = �F /F�� / 
�F1��� /F1�a�� �F1��� /F1�b���. The func-
tion F is analytic and it vanishes at all the eigenvalues �n

�F�, at �̃n�, and, similarly, F1 vanishes for all eigenvalues for
the isolated cylinders. The function M is the ratio between a
function corresponding to the actual geometrical configura-
tion and one with the conducting cylinders far away from
each other. As this last configuration is not univocally de-
fined, we use this freedom to choose a particular one that
simplifies the calculation. It is convenient to subtract a con-
figuration of two cylinders with very large and very different
radii, while keeping the same eccentricity as the original
configuration. Equation �1� is valid for two perfect conduc-
tors of any shape, as long as there is translational invariance
along the z axis.

The solution of the Helmholtz equation in the annulus
region between eccentric cylinders has been considered in
the framework of classical electrodynamics and fluid dynam-
ics �20,21�. The eigenfrequencies for Dirichlet boundary
conditions �TM modes� and Neumann boundary conditions
�TE modes� are given by the zeros of the determinants of the
nondiagonal matrices

Qmn
TM = �Jn��a�Nm��b� − Jm��b�Nn��a��Jn−m���� ,

Qmn
TE = �Jn���a�Nm� ��b� − Jm� ��b�Nn���a��Jn−m���� ,

where Jn and Nn are Bessel functions of the first kind. The
function M can be written as M =MTEMTM, where MTM is
built with �R being a very large radius�

FTM = det�QTM�a,b,��QTM�b,R,0���
n

Jn��a� ,

F1
TM�a� = det�QTM�a,R,0���

n

Jn��a� , �2�

Similar expressions hold for MTE.
The Casimir energy can be decomposed as a sum of TE

and TM contributions:

E12 =
�cL

4�a2	
0

�

d ln MTE� i

a
� + ln MTM� i

a
�� �3�

with MTE,TM� i
a

�=det��np−Anp
TE,TM�. The nondiagonal matri-

ces Anp
TE and Anp

TM are

Anp
TM =

In��
Kn���m

Km���
Im���

Im−n���Im−p��� ,

Anp
TE =

In���
Kn����m

Km� ���
Im� ���

Im−n���Im−p��� .

Here In and Kn are modified Bessel functions of the first
kind. The determinants are taken with respect to the integer
indices n , p=−� , . . . ,�, and the integer index m runs from
−� to �. Equation �3� is the exact formula for the interaction
Casimir energy between eccentric cylinders. This formula
coincides with the known result for the Casimir energy for
concentric cylinders ��=0�. As In−m�0�=�nm, in this particu-
lar case the matrices Anp

TE,TM become diagonal �11,22�.
We can also obtain the exact Casimir interaction energy

for the cylinder-plane configuration �17� as a limiting case of
our exact results for eccentric cylinders, Eq. �3�. Indeed, the
eccentric cylinder configuration tends to the cylinder-plane
configuration for large values of both the eccentricity � and
the radius b of the outer cylinder, keeping the radius a of the
inner cylinder and the distance d between the cylinders fixed.
Using the addition theorem and uniform expansions for
Bessel functions it can be proved that, for x�h,

�
m

Km�x + h�
Im�x + h�

In−m�x�Ip−m�x� � Kn+p�2h� ,

�
m

Km� �x + h�
Im� �x + h�

In−m�x�Ip−m�x� � − Kn+p�2h� .

Using these equations �with x�� /a and h�H /a� in our
exact formula the known result for the Casimir energy in the
cylinder-plane configuration is obtained �17�

Anp
TM,c-p =

In��
Kn��

Kn+p�2H/a� ,

Anp
TE,c-p = −

In���
Kn���

Kn+p�2H/a� .

We now focus on quasiconcentric cylinders, when the ec-
centricity is small as compared to the radius of the inner
cylinder, i.e., ��1. The ratio between the radii, �=b /a,
need not be close to unity, so that the PFA is in general not
valid in this configuration—as only for �→1 do we expect
to recover the PFA. The zeroth-order �=0 corresponds to the
concentric case, where the matrices Anp

TE,TM are diagonal. This
case was studied in �11� by means of exact and semiclassical
treatments, and it was shown that the PFA concentric energy
varies as E12

cc =−�c�3L /360a2��−1�3. Obviously, symmetry
arguments imply that there is no net Casimir force between
the cylinders in the concentric configuration. To next order

FIG. 1. Geometrical configuration studied in this paper. Two
perfectly conducting eccentric cylinders of radii a�b, length L, and
eccentricity � interact via the Casimir force. The equilibrium posi-
tion at �=0 is unstable—any small perturbation will make the cyl-
inders snap into each other.
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the correction to the energy, �E=E12−E12
cc, depends on �2,

leading to an unstable equilibrium position for the concentric
geometry. The behavior of the Bessel functions for small
eccentricity, Im−n�z���z�n−m, suggests that one should use the
tridiagonal version of the matrices Anp

TE,TM considering only
elements with p=n and p=n±1. Expanding the determinants
to order O��2�, one can write the TM contribution as

�ETM = −
�cL�2

4�a4 �
n=−�

� 	
0

�

d 3 1

1 − Dn
cc�Dn +

Nn

1 − Dn+1
cc � ,

�4�

where Dn
cc= In��Kn��� /Kn��In��� is the �=0, diagonal

TM contribution, and Dn and Nn are the O��2� diagonal and
nondiagonal TM contributions, respectively. They read

Dn =
Dn

cc

2
+

In��
4Kn��

�Kn−1���
In−1���

+
Kn+1���
In+1���

� ,

Nn =
In��In+1��

4Kn��Kn+1��
�Kn���

In���
+

Kn+1���
In+1���

�2

.

A similar expression holds for the TE contribution, with the
Bessel functions replaced by their derivatives. Equation �4�
and the corresponding TE one are exact expressions for the
Casimir energy difference between eccentric and concentric
cases in the limit ��a.

The PFA limit �EPFA
TE =�EPFA

TM =�EPFA
EM /2=−�3�cL�2 /

240a4��−1�5 can be obtained from Eq. �4� considering �
→1. In this limit the leading contribution arises from large
values of the summation index n, for which the use of
asymptotic uniform expansions of the Bessel functions is in
order. Figure 2 depicts the ratio of the exact Casimir energy
�E and the PFA limit for the almost concentric cylinders
configuration. As evident from the figure, PFA agrees with
the exact result at a few percent level only for � very close to
unity, and then it noticeably departs from the PFA prediction.
In the opposite limit, �→�, the Dirichlet contribution is

much larger than the Neumann one, and the integral and sum
in Eq. �4� is dominated by the n=0 term. The asymptotic
result for the energy is

�E� = −
�cL�2

8�a4�4ln �
	

0

�

d 3�K0��
I0��

+
K1��
I1��

�
� −

3.3348 � cL�2

8�a4�4ln �
. �5�

This equation is valid when ln ��1. From Eq. �5� we see
that the force between cylinders in the limit a ,��b is pro-
portional to L� /b4ln�b /a�. The weak logarithmic dependence
on � is characteristic of the cylindrical geometry. A similar
weak decay at large distances has been found for the
cylinder-plane geometry �17�.

Next we consider arbitrary values of the eccentricity. In
this case we need to perform a numerical evaluation of the
determinants in Eq. �3�. We find that as � approaches smaller
values, larger matrices are needed for ensuring convergence.
Moreover, for increasing values of � it is necessary to in-
clude more terms in the series defining the coefficients
Anp

TE,TM. In Fig. 3 we plot the interaction energy difference
��E� as a function of � for different values of �. These nu-
merical results interpolate between the PFA and the
asymptotic behavior for large �, beyond the quasiconcentric
limit. Figure 4 shows the complementary information, with
the Casimir energy as a function of � for various values of �,
showing explicitly the instability of the concentric equilib-
rium position.

The exact evaluation of the Casimir force between paral-
lel eccentric cylinders obtained here lends itself to a variety
of applications for experiments implementing this geometry
in the micrometer and the nanometer scales. First, the accu-
rate knowledge of the Casimir force in this configuration
allows one to look for extragravitational forces while the
usual gravitational force, apart from border effects, is can-
celed. The cancellation of the Newtonian gravitational force
is also common to the parallel-plate geometry if a dynamical

FIG. 2. Ratio of the exact and PFA Casimir interaction energy
differences �E=E12−E12

cc between eccentric �E12� and concentric
�E12

cc� cylinders in the limit of small eccentricity ��a. The curve
EM denotes the full electromagnetic Casimir energy.

FIG. 3. Exact interaction energy difference ��E� as a function of
� for different values of �. Energies are measured in units of
�cL /4�a2. These results interpolate between the ��−1�−5 behavior
for �→1, and the ��4 ln ��−1 behavior for ��1.
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measurement technique is adopted for the latter configura-
tion; however, in addition the concentric cylinder case has
better shielding from the electrostatic force due to spurious
charges, allowing for a null experiment with respect to both
Newtonian and Coulombian background forces even with a
static measurement technique. This suggests a micrometer
version of experiments performed using the concentric cyl-

inder configuration and a torsional balance to test the
inverse-square gravitational law in the centimeter range �23�.
In particular, in the case of a repulsive Yukawian force, one
can envisage a situation where the unstable equilibrium due
to the Casimir force is balanced or overcome by the former,
and even the qualitative observation of mechanical stability
in the concentric configuration will establish the existence of
a new force. Second, the measurement of the Casimir force
in various configurations involving cylinders �with the first
example provided in �4� for crossed cylinders� is interesting
in itself as one can make reliable tests of the PFA versus both
the exact solution and the actual experimental outcome. We
expect that the case of two parallel cylinders with distance
larger than the sum of their radii will experience stronger
deviations between the PFA and the exact solution. This case
could be analyzed using the approach presented here. Third,
our results could lead to a quantitative explanation, once fi-
nite conductivity and temperature effects are taken into ac-
count, for the observed ease of lateral bending of multiwall
nanotubes. The Casimir force and its nonretarded counterpart
�24� provide a natural mechanism to allow for instability in
the perfectly concentric situation of nanotubes, and could
also play a role in the observed decrease of the effective
bending modulus of nanotubes with large �tens to hundreds
of nanometers� radii �25�, and their fragmentation �26�.
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