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Continuous quantum measurement of a Bose-Einstein condensate:
A stochastic Gross-Pitaevskii equation
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We analyze the dynamics of a Bose-Einstein condensate undergoing a continuous dispersive imaging by
using a Lindblad operator formalism. Continuous strong measurements drive the condensate out of the
coherent-state description assumed within the Gross-Pitaevskii mean-field approach. Continuous weak mea-
surements allow us instead to replace, for time scales short enough, the exact problem with its mean-field
approximation through a stochastic analog of the Gross-Pitaevskii equation. The latter is used to show the
unwinding of a dark soliton undergoing a continuous imaging.
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[. INTRODUCTION sity), i.e., the condensate density integrated along the line of
sight of the impinging beam. The absorption of the photons
The interplay between quantum and classical descriptioneads to a recoil of the atoms, which strongly perturbs the
of the physical world and the role of the measurement procondensate. For typical values of intensity and duration of
cess are still at the heart of the understanding of quanturifie probe light, the condensate is strongly heated and a new
mechanics[1]. The related theoretical debate has beerfeplica has to be produced to further study its dynamics.
greatly enriched in recent decades by the realization of ney"om the viewpoint of quantum measurement theory, this
experimental techniques aimed at producing quantum staté@éasurement is of type Il since it destroys the state of the
without classical analog, such as entangled or squeezéPServed system and forbids the study of the dynamics of a

states, or exploring phenomena which are intrinsicaIIySi_ngle quantum_systerﬁﬁ]. An alternative technique, called
guantum-mechanical, such as quantum jumps. All this OCglspers!ve imaging, allows for repeated measurements on a
L T AT Bose-Einstein condensate and, as an extreme case, its con-
curred also keeping in mind practical implications, such as,[. L ) )
the improvement of the sensitivity of various devices oper-Inuous monitoring. In this measurement scheme, off
) . resonance light is scattered by the condensate, thereby lo-
ating at or near the gquantum limi2, 3]. cally inducing optical phase shifts which can be converted
_Recently, the production of a novel state of matter—B0Se;y1 jight intensity modulations by homodyne or heterodyne
Einstein condensates of dilute r?\tomlc gases—has Ope”e_dt@chniques, for instance by using phase confrastmodu-
new road to explore macroscopic quantum phenomena Witfyiion spectroscopy8,d], and interferencé10] techniques
the precision characteristic of atomic physig$|. Bose-  (for a similar nondestructive imaging technique based upon
Einstein condensates are naturally produced by cooling dOWﬁoIarimetry, sed11]). Since the laser beam is off-resonant,
atomic gases at ultralow temperature with the phase transthe absorption rate is small and the heating of the condensate
tion occurring in the 100 nK-1uK temperature range, i.e., is accordingly small. Thus, multiple shots of the same con-
when the thermal de Broglie wavelength becomes compadensate can be taken—a type-I measurement in the quantum
rable to the average spacing between the atoms of a diluimeasurement theory language—allowing the study of the dy-
(peak density 15—10" atoms/crd) trapped gas. Usually namics on the same sample. This has allowed us to overcome
samples of Bose-Einstein condensates are made By 1€he unavoidable shot-to-shot fluctuations always present in
—10° atoms in the case of alkali-metal specid$ and 18  the production of different samples of Bose-Einstein conden-
or more in the case of hydrogé¢h]. Their intrinsically small  sates. Several phenomena whose observations are based
heat capacity does not allow for a direct manipulation andupon imaging the condensate at high accuracy, such as its
probing with material samples, such as microtips or nanoformation in nonadiabatic conditiofd2], short-[13] and
structures, since the thermal contact with the latter will in-long- [14] wavelength collective excitations, superfluid dy-
duce a sudden evaporation of the Bose sample. Thus, maamics[15], and vortices formation and decf¥6,17], can
nipulation and probing of Bose-Einstein condensates habe successfully studied with this technique.
been achieved so far only by using light beams. These probes The repeated nondestructive monitoring lends itself to an-
can be classified according to the resonant or nonresonaother questionis the measurement process influencing the
nature of their interaction with the measured atomic sampledynamics of the condensaté&hswers to this question are
In the former case, the condensate interacts with a laser beaimportant also for disentangling the intrinsic condensate dy-
resonanior close to resonantith a selected atomic transi- namics from the artifacts induced by the underlying mea-
tion. The output beam is attenuated proportionally to the opsurement process. As we will see in this paper, the effect of
tical thickness of the condensatalso called column den- the measurement can also be intentionally amplified to allow
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for unusual manipulation of the condensate itself. Dispersive €0Xo [ s )

imaging, in its more idealized form, is preserving the number Hint:TJ' d°x n(x):E~:, 1)

of atoms and therefore represents a particular example of

guantum nondemolitiotQND) measuremenit2,18,19. We

know that even quantum nondemolition measurements affestheren is the density operator of the atomic vapor d@hds

the state of the observed system, their unique feature beirifje electric field due to the intensityof the incoming light.
that the nondemolitive observable maintains the sawe-  The coefficienty, represents the effective electric suscepti-
age value, albeit the probability distribution of its outcome bility of the atoms defined ag,=\35/27%(1+ 5%, where
can be affected as well as the average values of all the coite have introduced the light wavelength and the light
jugate observables. Thus, we do expect that during the no,qietuning measured in half-linewidth32 of the atomic tran-
demolitive measurement of the condensate atom numbéition, 6=(w—wy)/(I'/2). _

there will be a measurement-induced nontrivial dynamics for _ We express the electric field in terms of creation and an-
both the variance of the monitored observable and the aveRihilation operators. In the Coulomb gauge, it takes the form
age values of all conjugate observables. Besides gaining in-

sight into the dynamics of the measurement process, our P
model allows for a description of thereversibledriving of E(x,t)=i>, / K [aexp(—iwgt+ik-X)
the condensate toward nonclassical states. k 2¢€0L?

In this paper, we try to answer the question formulated

above by building a realistic model for dispersive measure-
ments of the condensate, extending the results reported in
[20] to the weak measurement regime. The plan of the pap&gherew,=c|k|, [a ,alr]z S«x:» andL? is the quantization

is as follows. In Sec. .II, we mtrod_uce the dispersive couplingy,q|yme. Equation(1) allows us to write the reduced master
between atoms and light and derive the reduced master equgquation for the atomic degrees of freedom by a standard
tion for the Bose condensate tracing out the variables of theachnique, i.e., by tracing out the photon degrees of freedom
electromagnetic field degrees of freedom. Under controllabl¢23]. The decoupling between the two relevant time scales
approximations, we obtain a Lindblad equation which allowsfor the photongsettled by the lifetime of spontaneous emis-
us to estabilish the rates for phase diffusion and depletion adion, of order of tens nsand for the atomsrelated to the
the condensate during the dispersive imaging. In Sec. lll, wescillation period in the trapping potential, of the order of
unravel the Lindblad equation by neglecting the depletiorms), allows us to use the Born-Markov approximation. Thus
term, obtaining a stochastic differential equation that, in theve get the master equation for the reduced density matrix
unmeasured case, corresponds to the description of a singdé the condensate that, in the interaction picture, is written as
N-body wave function. A solution of the stochashkbody

equation is discussed in the limit of strong continuous mea- q i 1

surement, leading to the squeezing of number fluctuations; 9P _ ! =

the main result is described [20]. In the opposite limit of dt ﬁTrR[p(t)@)pR(t)'H'm] ﬁzTrR

weak measurement and for an initial mean-field state, this

stochastic equation becomes the stochastic counterpart of the %
Gross-Pitaevskii equation, as discussed in Sec. IV. Its limit of

validity is discussed in Sec. V by comparing its evolution for

various parameters versus the exact evolution in the simple . , . )
situation of a two-mode system schematizing a condensate ih€ 1ast term on the right-hand side contains two different
a double well potential. This allows us to analyze, in Sec. vi.contributions both of Lindblad type.,p andLop. As we
the effect of the measurement on the evolution of a conden¥ill see soon, the former preserves the number of atoms in
sate initially prepared in a soliton state. More general conthe condensate and is responsible for phase-diffusion phe-

siderations on the potentiality of such an approach and it§omena, while the latter changes the number of atoms lead-

consequences are finally outlined in the conclusions. ing to its depletion. o o
Let us first concentrate on phase diffusion, which is a

number-conserving mechanism. To calculate it, we insert the
interaction Hamiltonian into the last term of E@), with n
the condensate density operator. By introducing the Fourier
transform of the density operator such that

Our main goal in this section is to include the atom-
photon interaction present in the dispersive imaging of a

—ajexpiogt—ik-x)], 2

)]

t
Hint(t):[ fﬁmdt' Hind(t"),p(t) ® pgr(t)

Il. MASTER EQUATION FOR DISPERSIVE IMAGING
OF A BOSE CONDENSATE

Bose-Einstein condensate into its intrinsic dynamics. First nx)="S n(q) exlig-X) @
attempts in this direction have been discussed in the proto- T L3 q-%),

typical situation of a two-mode condensatg 21,27. Let us
start the analysis with the effective interaction Hamiltonian
between the off-resonant photons and the atoms, written asve obtain
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2 _ above-mentioned approximation. The effective 2D nonlinear
Lip= 30 > VJorwpdk—p) X Vo w, et P) coupling strength isg,p=g/dZA(z)|*=g\/@/& Conse-

2Lc kp K'.p’ quently,

e Wxglko( : )zf o2k, [A(—k, ), [A(k,) ]]( L)

- - 1P~ oz |52 LINC=K )Nk ), pll| 5~
~T(k —p)pR(k—p)(afagalay) 2hc \2m 2m
—N(k—p)pn(k’—p')(a},ayalap) dekzﬁz(kz)§(|k+k0|_k0)- C)

-~ Lt ’ T t
+pn(k—p)n(k’ —p’)(axapay ap)], ) By assuming that the typical length of the BEC in the

_ . direction is much larger than the wavelength of the incoming
where()=Trg[pg- - -]. The photons are assumed to be in &ja5er je. £\, we can calculate the value of the last inte-

.coher.ent plane—wave stateT with momentum along tkle impinggraL and it is equal to exp(§2k1/4k(2)). our final result for
ing direction, corresponding to a wave vector-koz O~ the phase-diffusion contribution to the reduced master equa-
thogonal to the imaging planey. Hence tion in the imaging plane is written as
T L3I 2 2
<ak’ap>zczﬁk_5k’,p5p,kov (6) Lip= | dry | doroK(ry—rp)[n(rq),[n(rz),pll,
0
(10

where we have written the mean numbers of photons in ot , . .
mode kq in terms of the intensity of the incoming beam. wheren(r) = W(r) is the 2D density operator aiis the

. . : ; éneasurement kernel,
Expressing the expectation values in normal ordering an

using the fact that phase-diffusion processes conserve the 7T)(zk |
number of bosons in the condensate, it is possible to show K(r)= 070 f d?k exq—§2k4/4k§+ik-r). (12)
that all normal ordered expectation values involving four op- 2he

erators cancel exactly, obtaining Equation(10) preserves the total number of atoms and cor-

WX%”(O L )3 responds to a quantum nondemolition coupling between the

1= r atom and the optical fieldg21,22,26—-28 If the measure-
c

ment kernel were a local on&(r;—r,)=4(r{—r,), Eq.

2

~ 5 (10) would reduce to a Lindblad equation for the measure-
xj d3k 8(|k+ko| —ko)[Nn(—k),[n(k),p]], (7)  ment of an infinite number of densitiegr). This assumes

that no spatial correlation is established by the photon detec-

tion. However, the ultimate resolution limit in the imaging
system depends on the photon wavelength, regardless of the
pixel density of the detecting camera. The resolution length
scale follows from Eq(11) as a width of the kernel,

where we have used the continuum limi&,
—(L/27)3fd%k. Unless tomographic techniques are used
as, for instance if24], the image results from a projection of
the condensate onto tkxey plane, by integrating along the
direction. This requires us to project the dynamics of the _ 2 12_ 112

condensate into the imaging plane. In order to write a closed Ar=(2m¢lko) (meN)™ (12

2D master equation to describe thg dynamics, we assume  the geometrical average of the light wavelength and the con-

the condensate wave function to be factorizable agengate thickness. Equation(10) can then be rewritten as
Y(x,y,2) = ¢(X,y)A(z). Such factorization holds if the con- Lip=y4[n,[n,p]], where y, is the phase-diffusion rate,
finement in thez direction is strong enough to make the given by

corresponding mean-field energy negligible with respect to

the energy quanta of the confinement, ifew,>gp, where WX(Z)kol , , , 2|4
g=4xhi%a/m, with a the swave scattering lengthy the 1T R jd kl(K)[?|p(—Kk)|“ex ik
condensate density, amg, the angular frequency of the con- 0
finement harmonic potential along thelirection, as recently

demonstrated experimentally if25]. We write ﬁ(k) We estimate its magnitude assuming a Gaussian profile in the
=T(k,)n(k,) and we will use a Gaussian ansatz for thex-y plane, i.e.|$(k)|?=exp(-a??/2), obtaining

density profile along the direction, namely

, 775/2)((2)k(2)| '{ a4k(2)) {1 f( a2k0>
2Kk V1= ex —er
R(ky) = \/ZTWexp< -5 ) , ® o 2he & ¢

where¢ is the length scale of the condensate in #tdirec-  where the last step holds for a well-localized condensate, i.e.,
tion, which is the width of the Gaussian statéz) under the  a?kq/é>1.

(13

B 772X(2)k0|

2fica?
(14
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Let us now calculate the depletion contribution to theunbounded state. Let us expand both field operators in terms
master equation for the condensate. We split the field annief annihilation operators as
hilation operator into a term describing the condensate and
another associated to the noncondensed particles, i.e., Pe(X,t)=bchc(X,t),
=c+ hne. We shall assume that the noncondensed par-
ticles belong to the continuum, so that their spectrum is that 1
of a free par.ticlethzhqu/Zm. Indeed, photons have large Ine(X )= — 2 exp(—iQqt+ig-x)by, (15)
momenta with respect to the momenta of trapped atoms, so VL %
even if a small percentage of the photon momentum is ab-
sorbed by the atom, the atom is promoted into a high-energyyhere ¢ is the condensate wave function. We get

7TX ! ! ! ’
Lap= "% 2 Vo Wy E Vopopa(Qq —ck +cp')

8cL® kp
x{exqit<ﬂq—ck+cp)]?z>c<q+p—k)&é(q'+p'—k')TrR[a;akb;bc,[al,ap/bqué,p]]
+exp] —it(Qq—ck+cp)]dE(q+p—K) de(q' +p’ —k') Tralafabgbl [a) ay b/, be,p]T}- (16)

Here the trace is taken over the reservoir of the condensatdiffusion coefficients in the corresponding Lindblad master
which in this case consists of the noncondensed particles aratjuations present the same scaling on the common param-
the photons. The above expression contains depletion pr@ters, such as the light intensity and its detuning with respect
cesses, in which a photon interacts with a particle in theo the atomic transition. From Eg&l4) and(19), we see that
condensate and, as a result, that particle is kicked out of thine depletion rate is much bigger than the phase-diffusion
condensate. It also contains feeding processes, in which thatey,/y,= a?/ m\?=10?>1, in accordance with Ref28].
reverse mechanism may take place. When one assumes thde estimate the magnitude of both rates using the following
in the initial state of the noncondensate the plane waves aggarameters for the condensate and its imaging, relevant for
empty, only the depletion process is relevant. In this hypoththe case off’Rb: A=780 nm, x,=10 2> m?, laser inten-
esis, we find sity |=10"*% mW/cn?, and a typical size in they plane of
=10 um. Theny;=10¢ s tandy,=10"% s 1, corre-
f oot sponding to phase-diffusion and depletion timeg 6t y[l
L2p=7y2(—bcpbe+z{bcbe.p}), (17 =10° s andt,=y,'=10" s, respectively. Although the
depletion rate is larger than the phase-diffusion rate, this last
process can dominate because of their different scaling with
the total number of condensed particles in the master equa-
6 tion. Indeed, the first is linear ilN (as any single-particle
x| L) J’ Pod? De(q+p—ko)|2 scattering rate whereas the second one is quadrédice to
Ahcl3\ 27 Pdq wplde(a+p—ko) the double commutator fan present in the phase-diffusion
Lindblad term, so for a large number of particlédsuch as
X 8(Qq—ckotcp). (18  N=10'), phase diffusion occurs on a faster time scale than
) ] o 71 depletion. This also confirms the conventional wisdom that
We evaluatey, in the thick condensate limitée=ky ") by macroscopic coherent states are more fragile with respect to
approximating | pc(q+p—ko)|?~(27/L)38(q+p—ko), decoherence. Moreover, in various situations such as imag-
and then, by using the fact thét,<ck,, we obtain ing of condensates with nontrivial topological patterns,
depletion acts uniformly just scaling the atomic density
while phase diffusion can change the pattern, as we will see
21,3 . . .
Xokol soon. For these reasons, we will focus in the following on the
Y2T g ke (19 phase-diffusion contribution alone.

where vy, is the depletion rate,

Y2=

Similar relationships ha_ve been_ optalned in other contexts, || STRONG MEASUREMENT: MEASUREMENT-

namely the nondestructlve monitoring of two-mode systems INDUCED NUMBER SQUEEZING

with either an internaJ21] or external[22] degree of free-

dom, the dynamics of an atom laser subjected to feedback We will consider in the following the effect of strong
[29], and the multimode imaging analyzed [i28]. In all measurements on the quantum state of the condensate. This
these cases, despite the quite different physical setups, phases already been described in detail elsewfi20g thus here
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we only summarize the main results and their link to thenumber of atoms per site, and it scalesMagor an initial
following considerations. By neglecting the depletion term,coherent state. Thus, the measurement drives the quantum
the master equation for the condensate takes the form state of the condensate to a Fock state. When tunneling be-
(—i/h)[H,p]—L.p. This equation preserves the total num- tween different lattice sites is allowet ¢ 0), localization in

ber of atoms in the condensate and corresponds to a quantuinFock state is inhibited due to a competition between the
nondemolition measurement of the atomic density via théneasurement, which drives localization, and hopping, which
optical fields. In order to get an insight into the equation, wetries to drive the state of the condensate towards coherent

introduce a two-dimensional lattice with the lattice constantStates. When measurement outweighs hopping, the final state

set by the kernel resolutiofir. In this way, we get of the BEC is a number squeezed state. The time scale in
which squeezing is achieved is given by
dp i
—=—z| % VW +V,p| -S> [ny,[n.p]l:
dt % w(kz,l)kl P EI[I[IP]] t:i 23
sq (23
(20) n|S

Here ¥, is an annihilation operator ang,=W ¥, is the and the associated dispersion in the number of atoms per site

number operator at a lattice siteThe frequency of hopping for the asymptotic squeezed state is
between any nearest-neighbor sitgsl) is w~#%/2mAr?, B 14
which is 1 times the characteristic kinetic energy. The o= (o /S)75 (24

potential-energy operator is/=3,(Un, +Gnp), ) where |5 5 coherent state, the number fluctuations per site are Pois-
U, is the trapping potential and_G=gzD2/Ar : Thg: sonian, o;=n}2. The state is squeezed whemr(/S)*
effective measurement strength IS~JdrK(r)/Ar® 12 5 o - sup-Poissonian atomic number fluctuations. This
= (2m/Ar)*(mxgkol /2f1C). In order to solve this equation, .,,ition defines the strong measurement as
we use an unraveling in terms of pure stdtéy such that
p=|¥)(¥|, where the overline denotes the average over the nS
unraveling stochastic realizations. The pointer states of Eq. - L (25
(20) are not changed by the chosen unrave|i8@]. The pure
states can be expanded in a Fock basis per $#8,  Number squeezing of a Bose condensate has been experi-
=2 ¥y [INI}), and the amplitudegyy,, satisfy the fol-  mentally observed in an optical lattice [iB1]. Our situation
lowing stochastic Schobnger equatior(written in the Stra- has an important difference from the latter case: since the
tonovich convention squeezing is driven by thindblad) measurement term, the
. . evolution into such states is irreversible, even after removal
d _ | 2 h | v of the imaging photon field. From this viewpoint, our
gt =" 2 Mow ¥y = 7 Ving iy squeezing technique is similar to the spin squeezing through
N guantum nondemolition measurements proposg@zh and
demonstrated ifn33]. Of course, the system will eventually
+ lJf{Nl}E [—S(N;—n)?+Saf+(N;—n) 6], drift towards coherent, classical states due to the interaction
! with the external environment and the related decoherence
(21) [34], for instance due to the thermal component or residual
background gas in the trapping volume.

where the homodyne noises have averaggs)=0 and

0,(t1) 6, (t2) =258y 1, 8(t1—t5). Heren; =2 Ni| ¢yl IV. WEAK MEASUREMENT: STOCHASTIC GROSS-
o,zzE{Nl}(N|—n|)2|¢//{N|}|2, h is the matrix element of the PITAEVSKII EQUATION

; . _ 2y . . . . .
hopping Hamiltonian, ant¥y,=%,(U|N; +GNy) is the po- Unraveling the Lindblad equation derived above leads, in

tential energy. When there is no hopping term=0), an  the limit of weak measurements, to a stochastic equation for

exact solution to this equation as a product of Gaussian-likéhe condensate wave function. In the mean-field approxima-

wave functions is written as tion, this equation becomes the analog of tdeterministi¢
Gross-Pitaevskii equation for the unmeasured system. From

_ . _ '_ Egs.(10) and(11) and ignoring the depletion termL,p we
’/’{Nu}(t)_exq'¢{Nl})eXp( hv{'\‘l}t) obtain a continuum version of the master equation,
1 [N—ni()]? dp i
——exp ———|. —=——[H,p]—fd2r
" [2mal(t) ]V p( 402(1) dt '

(22) XJ d2r K (ry=ro)[n(ry),[n(ry),pll, (26)

The population mean value per sitg(t) does a random
walk, while its dispersion decreases a$(t)=o0?(0)/[1  whereH is the self-Hamiltonian of the system Bfatoms in
+407(0)St]. Here ¢2(0) is the initial dispersion in the a 2D trap,
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2
H:fd2r<‘§_mVWTVW+U<f>W*W Alatr) =2t awin) [ 6ot Fawer ) o2
2
+g%3‘lfT\lfT‘I”I’) (27) +[dW(r)_f d2r/|¢(rl)|2dw(r/)} |¢(r)|2
+[Co*(r)+c.c]

A nonlinear stochasti¢Ito) unraveling of the master equa-
fion (26715 =20 awin) [ g Zawe a2

(32

i
d[W)=— > dtH[W¥) where theC was used to cancel out the average of the sto-
chastic terms squared. The stochastic terms affect directly
only the modulus ofA(r), so Eq.(32) is all that one needs to
_dtf dzrlf d2roK (ry=ra)An(ry) An(ry)| W) implement them. Note also that E(32) manifestly con-
serves the norm.
+J d2r dW(r)An(r)|P). (28) Let us now analyze the case of an arbitrary number of
atoms. For a weak measurement, when the squeezing of the
quantum state is small, one can approximate the stochastic
Here An(r)=n(r)—(W¥|n(r)|¥) and the Gaussian noises conditional state oN atoms in Eq(28) by a product mean-
have correlators field state,

dW(r)=0, N
(29 (ro W) =11 ¢(ro), (33
with all the N atoms in the same condensate wave function

This unraveling corresponds to phase contrast measureme#it!,r). We assume that, under the evolution given by Eq.

of the density of the condensate. The evolution®j given  (28), the state of thé atoms remains in a product state Eqg.

by Eq. (28) describes a single realization of the experiment(33) with a time-dependeng(r,t). In order to derive a sto-

[23,35-317. chastic Gross-PitaevskiSGP equation for the condensate
For a single atomN=1, described by a wave function wave functiong(r), we study the different terms in E(28)

#(t,r)=(r|¥), the stochastic Schdinger equation takes separately. The stochastic term proportionaldiy on the
the form RHS of Eq.(28) involves only a one-body operator

i K2 N
- R v 2]
dé(r)= ﬁdt[ om" +U(”}¢“) An(r)=n(0) = (WIn()[¥)= 3, 5(r—r) ~Ng* ¢(r)

2,1 \|2 ’ (34)
+dW(r)— | d?r’|é(r")|*dW(r’) [¢(r)+C.
so the position representation of this term is the same as for
(30 theN=1 atom,

The second term in brackets follows from the last term in Eq.
(28), while the counterterrd comes from the second term on 2 2 ,
the right-hand sidéRHS) of Eq. (28). The latter is necessary {dW(r)—J' d*r'[¢(r")|"dW(r") | b(r), (35)
to conserve the nornfid?r|¢(r)|2=1, and it is given by
compare Eq(30).
The contribution arising from the second term on the RHS
C:dt[ — K(0)+2j d?r K(r—ry)|e(ry)|? of Eq. (28) for N>1 might be expected to be different from
that corresponding to thBl=1 case because the operator
An(rq)An(r,) contains a two-body operatoi(r,)n(r,), so
—f dzrlf d?rol p(ro)|PK(ri—r2)[é(ro)|?|(r). that one could think it scales &°. However, the operator
An(rq)An(r,) is in fact much more weakly dependentNn
(3D Indeed, in the weak measurement regime we are considering,
the state of the condensate is described by a coherent state
This counterterm is highly nonlocal i#p(r). Fortunately, to and therefore number fluctuations are well approximated by
implement the stochastic terms numerically one can use the Poissonian statistics. Hence, in the product staté33y.

053604-6



CONTINUOUS QUANTUM MEASUREMENT OF A BOSE. . . PHYSICAL REVIEW A 65 053604

(W|An(ry)An(r,)|¥)=0(N). The operatorAnAn scales Again, comparingL/N with R;,//N we get the interaction
with N like a one-body operator. Hence the contribution fromterm. R

this operator to the SGP equation is the same ad\ferl. The final expression for the It8GP equation reads

We can see this explicitly by calculating the position repre-
sentation of the second term on the RHS of &§). First we
ccompute the left-hand side of E@8) using the ansatz Eq. ] 9 2

(33). To orderO(dt), the change of the wave function is dd’(r)__%dt[_ﬁv FU(r)+(N=1)gz0/ (1) }b(r)
given by

2

N +[dW(r)—fd2r’|¢(r’)|2dW(r’)}¢(r)+C. (40)
d[p(ry)- --¢<rN>]=k§l d¢<rk>£[k A1 )

The only difference with respect to the caseNof 1, com-

+|§| dp(r)de(r) II ¢(rm). pare Eqg. (30), is the wusual interaction term N(
m#k,| 2
—1)gopl &(r)|.
(36) As a final remark, we mention that stochastic nonlinear

Schralinger equations have been proposed and studied for a

quite different goal, namely to describe single trajectories

through unraveling of the exad¥-body quantum evolution

of a boson systerfi38]. In the latter case, the interpretation

of the underlying stochasticity is obtained in terms of the
randomness attributable to each quantum trajectory, to be

L:Nf d?r ¢*(r)de(r). (37)  confronted with the stochasticity that in our case is instead

due to the opening of the condensate to a particular environ-

In a similar way, project the second term on the RHS of Eq/Ment, namely the measurement apparatus.

(28) onto ¢*(r4) - - - p*(rn). We callR the result,

We use Eq(35) and the correlator of the noises HE9) to
evaluate the noise averages in E8f), and then we project
the result ontap* (ry) - - - * (ry). We define as the result-
ing projection, which reads

V. SGP EQUATION VERSUS EXACT QUANTUM
R:—dtf rod* b(ry) - J’ At b+ S(r) EVOLUTION: MEASUREMENTS IN A DOUBLE WELL
In this section, we want to test the validity of the SGP
N equation in a significant but simple situation. To this end, we
X J d2r’J d%”K(r’—r”){E S(re—r") consider the double-well problem in the two-mode approxi-
k=1 mation, and compare the quantum dynamics including the

N measurement backaction with the dynamics given by the
—Ng¢* ¢(r)HE 8(r—r")—Ng* ¢(r)} SGP equation. The Hamiltonian of the model is
=1
=—Ndt K(O)f d?r ¢* (r)p(r) H=e(ala;+ala,) —fw(ala,+aja;)
G
_ 2,42 2,2
_’_thf d2r/f d2r”p(r’)K(r’—r”)p(r”), (38) + 2 [(al) a1+(a2) az]v (41)

wherep(r) = ¢* (r)é(r). As we can seeR=O(N) just like wheree is the mode frequenciassumed to be the same for

L=0(N), and there are no two-body ter@N2). Compar- both mode}  is the tunneling angular frequency, aGds

ing L/N with R/N, we see thatl(r) is given by an expres- the two-particle interaction strength. We perform phase-

sion that does not depend dh Hence, as we have already contrast imaging on each site, and we assume that the kernel

mentioned. the measurement terms in the stochastic Grost€solution is much shorter than the distance between sites, so

Pitaevskii equation are the same as in the stochastic'Schri'at there is no cross term due to the measurement. The Ito

dinger equation foN=1. version of the stochastic Schiimger equation for the state
Finally, we derive this interaction term in the same way as<€t reads

we derived the measurement term. In the position represen- | s s

tation, we project the interaction terrg{/2) ¥ "W "W w|¥) AT S =dtl — —H = — (2= (e (na)2| [

contained inH|¥) in Eq. (28) onto ¢* (ry)- - - ¢* (ry) and Vo) 72 (M ()™= 5 (N =(n2))” o)

obtain
+dWy(n;—(n1))[ W) +dWo(na—(n)) [ W),
. (42
i
—_ _ 2 * % — 2 R R
Rin= ﬁgZDN(N 1)f dr ¢ ¢* pp=0O(N"). where the noise satisfiebW,=0 anddW,dW;=2K,,4dt,

(39  with @,=1,2, andK ,;=Sé,; is the measurement kernel.
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FIG. 1. Comparison between the SGP and the exact quantum evolution for weak measurements on a noninteracting Bose condensate. The
populationn(t) in a given well is plotted as a function of time for a single stochastic realization, expressed in units of cycles of the Rabi
oscillations. The total number of particlesNs=100. (a) The SGP evolution and the quantum one coincide for an effective measurement
strengthn S w=10"1 even for times much greater tham®= 10/w. (b) The departure of the SGP dynamics from the exact one at the time
1/nS=1/w is evident for a stronger measurement couplr®o=1.

By assuming a total o atoms, distributed between the two time evolution of the quantum and SGP mean populations in
sites,N=N;+ N,, we can expand the state in terms of Fockone well. In these simulations, the total number of particles
states at each well, wasN=100, and the nonlinear self-coupling w&s=0. In
N this case, the Hamiltonian involves only one-body terms, so
the mean-field evolutiofbased on coherent stateaust ex-
WQ)Z,ZO (BIkN=k). (43 actly coincide with the quantum one for the case of zero
measurement §=0). For small measurement strengths,
We solve numerically the corresponding equation for thenS w<1 (heren denotes the average number of particles per
coefficientsy, (t) starting from a mean-field state with equal site), the quantum state of the condensate is still, to a high
mean populations in each well),_,=(1/y/N!)[(1//2)a]  degree of accuracy, a coherent state, so the SGP evolution
+(1/y2)alN|0). The equation provides us with the full and the quantum one coincide.. In Figall we see that the
quantum evolution including the measurement backactiordgreement is good even for times much larger tharS1/
We want to compare it with the one that results from theThis time scale is relevant for the strong measurement case

stochastic GP equation. The GP state is of the previous section, since it sets the time after which an
asymptotic number squeezed state is reached. As we increase
1 the measurement strength and rea&w=1 [see Fig. )],
|V ep) = \/ﬁ[%(t)alﬂL $o(Hag]No), (44  the mean number of particles per well given by the SGP and

the quantum evolution depart appreciably. This is not sur-
prising since such strong measurements squeeze the quantum
state of the condensate, driving it outside the description in
terms of coherent states, i.e., the associated basis for the
Gross-Pitaevskii equation.

where the wave function$,; and ¢, satisfy the following set
of Ito SGP equations, which follow from Eg&1) and (40):

i
d¢pr=— 2 dt{[e+(N-1)G| $11?]1p1— w by} The Gross-Pitaevskii evolution can depart from the quan-
tum one not only due to the measurement backaction but also
+dW;(1—1]¢4]?) due to the nonlinearity of the interactions. In FigaR we
5 4 4 show the SGP and quantum evolutions & =102 and
+Sd{ —1+2|¢q|?— (| o) *+ | 2|1, G/w=10"3, corresponding to the same initial state as in
: (45  previous figures. We see that the inclusion of the nonlinearity
- _ _ 214 causes the SGP evolution to depart from the quantum one. To
dé h di[et(N=1)G|¢al"1¢2~ 0} gain further insight, we introduce a quantity which measures

the depleted fraction of atoms from thestmean-field state,

_ 2
+ AW (1-[ o) i.e., a mean-field state that is the closest to the exact quantum

+Sd{—1+2[¢,*— (| ga]*+ ]2 D], state. Its definition is
and we take the same initial state as in the quantum evolu- 1
tion, namely a coherent stadig (0)= ¢,(0)=1/\/2 with bal- D=min| 1— —(¥ |CTc|\II ) (46)
. _ . N Q Q/ |»
anced populationa;(0)=n,(0). In Fig. 1, we compare the {A, ¢}
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FIG. 2. Comparison between the SGP and the exact quantum evolution for a weakly inter@¢ting0~ %) Bose condensate subjected
to a weak measurementS/w=>510 2. (a) The population differenc&n(t)=n,(t)—n4(t) is plotted for a single stochastic realization.
Initially the condensate is in a coherent state with equal populations in each m¢@gs=n,(0)=50. (b) Depletion from a mean-field state
for the same realization as {@).

where the operatoc is c=\Aa;+e'*\1—AZ%a,. In Fig. As we can see in Figs. 2 and 3, both the SGP and GP
2(b), we plot this depletion for the same simulation of Fig. evolutions depart from the exact evolution even in the weak
2(a). The depletion in Fig. @) is small(less than one atom measurement and interaction limits when the depletion from
is depleted from the condensptbut, as we see in Fig(&, the condensate is small. The derivation of the backaction
the SGP evolution departs from the exact evolution. Thigerms in the SGP equation requires only one assumption,
departure is attributable to the inclusion of the nonz&ro namely that all the atoms are in the condensate. In contrast,
In Fig. 3(@), we show the GP and quantum evolution for the derivation of the interaction ternflsoth for SGP and GP
S=0 and G/w=10 3. Since no measurements are per-equationg not only assumes that all the atoms are in the
formed, an initial balanced populatiopn;(0)=n,(0)] condensate but also makes further approximations to de-
would remain balanced for all times, both at the GP andscribe the evolution of the condensate wave functor his
guantum level. For this reason, we take an initial unbalance@és why G#0 causes both the SGP and GP evolutions to
population,n;(0)/n,(0)= 2, which due to the hopping term depart from the exact quantum evolution even for negligible
triggers Rabi oscillations between the two wellsst as the depletion. However, even after the departure, the SGP and
measurement did when we took initial balanced populaGP evolutions remain qualitatively similar to the exact evo-
tions). It follows from the figure that the GP dynamics de- lution, see Figs. @ and 3a).
parts from the quantum one. We plot in FighBthe deple- To summarize, the accuracy of the SGP equation is lim-
tion corresponding to Fig.(8). Again, this depletion remains ited by the weak measurement conditior§ w<<1, and by
small (less than one atom is depleted from the condehsate the nonlinear interaction. For a weak measurement, the ac-

30 T T T T T T T 4x10° T T T T T T T
' - ®)
20 f O FO
BT 3x10°F !
10
8§
e B s
g 0 =2x10°
L
)
-10
1x10°
20
.30 L | L | ' | | | | 0 | L A | L | 1 | !
0 10 20 30 40 50 0 10 20 30 40 50
ot mt

FIG. 3. Comparison between the standard GP and the exact quantum evolution for a weakly inteGlating ¢ %) unmeasured Bose
condensatda) The population differencAn(t) =n,(t) —n,(t) is plotted as a function of time. Initially the condensate is in a coherent state
with unbalanced populationg;(0)=60, n,(0)=40. (b) Depletion from a mean field state for the same realization da)in
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curacy of the SGP equation is the same as that of the GR/ith N=5x10°, we get a 2D Thomas-Fermi radius of 31
equation. In the next section, we apply the SGP equation tam. We also assume a laser intensityl 610" * mW/cn?.
show how the measurement can trigger the unwinding of a The former parameters give a weak measurement strength

dark soliton[39,4Q in a realistic experimental setup. in the sense discussed in Secs. lll and IV, so that the use of
the SGP equation is justified. Indeed, this continuous prob-

VI. MEASUREMENT-INDUCED UNWINDING lem can be mapped on the lattice model, &), where the

OF A DARK SOLITON lattice constant is the kernel resolutioir. Given the

Thomas-Fermi radius of 3&km, andAr =5 um, we estimate
the lattice to be composed of 100 sites with an average of
=5000 atoms per site. The measurement strength is equal

Once we delimit the validity of the stochastic Gross-
Pitaevskii equation in the simple situation of a two-mode
system, we can apply it to the more complex case of imagin T T . .
of a condensate s[,)tgte with a nontrivial pphase such as a sol@ S=7%10 °st and the effegtlwe hopping frequency for
ton. Even in the limit of weak measurement, with the solu-t1€ If;‘tt'ce model isw=14 s°. Therefore, nSw~2
tion still approximable in terms of Gross-Pitaevskii coherent> 10" “<1, thus confirming a weak measurement regime.
states, the effect of the measurement is present and affects T0 simulate the continuum SGP equatittD), we dis-
the observable conjugate to the atom number, i.e., the phasgetized it using a lattice constantr2imes smaller than the
of the condensate. As an example of application of thekernel resolutiomAr. The program uses a split-step method:
SGPE, let us consider an isotropic harmonic 2D trappinghe fast Fourier transform was used to carry out the time
potential V(r)=(mQ?/2)(x?>+y?). The condensate is as- integration of the kinetic term and of the nonlocal terms
sumed to be in the Thomas-Fermi limit of strong repulsiveinvolving the kernel, and the potential and nonlinear cou-
interaction, where the ground-state wave function can beling terms were integrated in time in the position represen-

well approximated by tation. A cross section along theaxis through the probabil-
ity density of the initial stat€48) is shown in(a) of Fig. 4.
[u—=V(r) Cross sections through probability densities at later times
$adr)= Ng,p 47 after the probe light beam has been sent on the condensate

are shown in casd¥) and(c) of Fig. 4. For comparison, the
The constantu=Q+Ng,pm/7, the chemical potential, is time evolution without the measurement does not result in
chosen so that the wave function is normalized to 1. Let usiny soliton unwinding.
use as the initial state a dark solitp89] imprinted on the The soliton unwinds after roughly 50 ms. This time is
Thomas-Fermi ground state, much shorter than the depletion tirhe=10" s discussed at
the end of Sec. Il. The measurement induces soliton unwind-
X m'=V(r) ing much earlier than any detectable depletion of atoms oc-
gb(t:O,r):tank(T) V" Ngop 48 cyrs. Figure 4 suggests that the unwinding will manifest it-
self by filling up the soliton core with atoms. Such a graying
Herel is the healing length at the peak density in the grounddf the dark soliton can also occur through a different mecha-
state(47). nism that involves collisions between condensate atoms. In
In our numerical simulations, we assume the followingRef.[41], it was demonstrated that the dark soliton can gray
parameters relevant f6Rb: massm=1.4x10 *°kg, scat- on a time scale of tens of ms because its core fills up with
tering lengtha="5.8 nm, x,=10 22 m®, and wavelengtih.  noncondensed atonfsjuantum depleted from the conden-
=780 nm. The width of the Gaussian(z) is assumed to be sate as a result of atomic collisions between condensed at-
£=10 um and the healing length=0.6 um. With these oms. This is supported by recent results showing that the
parameters, the resolution of the kernelAis=5 um. We  depleted atoms are strongly concentrated in the soliton core
assume a 2D harmonic trap frequen@=27x10 s!.  [42]. This quantum depletion process does not unwind the

7x10* 7x10* T T T T T T T T
6x10* 6x10*

~ 50t ~ sx10”t

 axa0? < ax0*

> r >y

X 3x10” w 3x10°

P =S

= 2a0? = 20*
1x10* 1x10™

n Il 1 n
% 20 10 0 10 20 30 ° B - b E -
X (Um) X (Lm) X (um)

FIG. 4. Soliton unwinding during a continuous imaging. The figures show the cross section of the 2D probability |demsity|? of
the Bose condensate along thexis att=0 ms(a), t=50 ms(b), andt=200 ms(c) since the beginning of the continuous imaging for
a single realization solved through the SGP. The dark soliton is graying progressively and in the third profile there is no trace of the initially
imprinted pattern. The laser intensitylis 10°* mW/cn?, and the condensate wave function is normalized to unity in 2D.
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soliton: the condensate remains in the soliton state with ¢ 150 T |
phase jump ofr. The phase jump or its unwinding could be
detected by interference between two condensates, one ¢ {
them in a ground state and the other with a solifé8]. A

simpler way to verify that the observed graying is due to the 100} E I
measurement-induced unwinding is to change the measure— I E

ment strength in a certain range and see if the graying time§ i I E
depends on the imaging laser intensity. We simulated thew E I

soliton unwinding for a range of measurement strengths. Fig- 5, [ _
ure 5 shows the unwinding timeversus the laser intensity [

The timer is defined as that for which the densityxat 0 in | LAY

Fig. 4 achieves 10% of the maximal density. Similar consid-
erations can also be applied to the phase scrambling of : , , | |
vortex state. Thus, analogous to finite-temperature effects ol (1)0-6 107 10% 1073 102 10"

the vortex lifetime studied if17], one could study zero- I(mW/ 2)
temperature vortex lifetimes due to the continuous measure- m cm
ment process. FIG. 5. Average unwinding time- as a function of the laser
intensityl. Each point is an average over ten single stochastic real-
VIlI. CONCLUSIONS izations. The point corresponding to the highest value for the inten-

. Sity is still within the weak measurement limit.
Quantum measurement theory has been applied to the dls-y

persive imaging of a Bose-Einstein condensate. In the stror:a et Id also lead b q di ¢
measurement limit, the condensate is irreversibly driven int epletion, could also lead to a better understanding of quan-

nonclassical states with reduced number fluctuations. In thi¥M Phase transitionist4,45 in Bose condensatdd6,47.

opposite limit of weak measurement, the condensate can be
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