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Measurement-induced squeezing of a Bose-Einstein condensate
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We discuss the dynamics of a Bose-Einstein condensate during its nondestructive imaging. A generalized
Lindblad superoperator in the condensate master equation is used to include the effect of the measurement. A
continuous imaging with a sufficiently high laser intensity progressively drives the quantum state of the
condensate into number squeezed states. Observable consequences of such a measurement-induced squeezing
are discussed.
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Since its birth, quantum mechanics has led to an interpreinclude the atom-photon interaction process present in dis-
tational debate on the role played by the measurement prgersive imaging into the intrinsic dynamics of the conden-
cess in its structure and its relationship to classical mecharsate. We show that the measurement process induces number
ics developed for macroscopic systefig This debate has squeezing of the quantum state of the condensate, and we
been enriched by the realization of new experimental techProvide realistic estimates that suggest that the phenomenon
niques spanning from quantum jumps in single-ion traps t¢ould be observed with current experimental techniques.
macroscopic entangled states in various quantum systems. Let us start the analysis with the effective interaction
Recently, the production of atomic Bose-Einstein condenHamiltonian between the off-resonant photons and the at-
sates of dilute atomic gases has also paved the way to tH¥MS, written as
study of dynamical phenomena of macroscopic quantum sys-
tems with the precision characteristic of atomic phy$iis N _€oXo 5o~ o

Two optical techniques, absorption and dispersive imag- m="5— | d°xn(x):E7,
ings, have been used to monitor the dynamics of a Bose-

Einstein condensatie?]. In the former the condensate inter-

acts with a light-beam resonaftr close to resonangevith ) s X . . X .
9 (d ’ 'f_|eld due to the intensity of the incoming light. The coeffi-

an atomic transition. The output beam is attenuated propo : : -
tionally to the column density of the condensate—the conCient xo represents the effective electric susceptibility of the

: —\3 2 2 H
densate density integrated along the line of sight of the im@oMs defined ago=A\"6/2m*(1+ %), where we have in-

aging beam. The absorption of photons heats the condensdf@duced the light wavelength and the light-detuning mea-
then strongly perturbing it, and in general, a replica of theSUred in half linewidthd'/2 of the atomic transitions= (w
condensate has to be produced to further study its dynamics, @a)/(I'/2). Equation(1) allows us to write the reduced
This measurement is, in the language of quantum measur8}aSter equation for the atomic degrees of freedom by a stan-
ment theory, of type-Il since it destroys the state of the obdard technique, i.e., by tracing out the photon degrees of
served system and forbids the study of the dynamics of 4€€dom[10]. The photons are assumed to be in a plane-
single quantum systerf3]. Repeated measurements on aWave state with momentum along trle impinging direction,
Bose-Einstein condensate or, at the limit, its continuougorresponding to a wave vectér=kqz orthogonal to the
monitoring are instead possible using its dispersive featuresmagingx-y plane. Unless tomographic techniques are used,
for instance through phase contrgdi or interferencef5]  the image results from a projection of the condensate onto
imaging techniques. Off-resonance light is scattered by th#éhe x-y plane, by integrating along thedirection. This de-
condensate that induces phase shifts thereby converted int@ands to project the dynamics of the condensate into the
light-intensity modulations by homodyne or heterodyne deimaging plane. In order to write a closed two-dimensional
tection. The off-resonant nature of the atom-photon interact2D) master equation to describe tkey dynamics we as-
tion allows for a very low absorption rate and therefore lowsume the condensate wave function to be factorizable as
heating of the condensate. Thus, multiple shots of the samg(X,y,z) = ¢(X,y)A(z). Such factorization holds if the con-
condensate can be taken—a type-l measurement that alloisement in thez direction is strong enough to make the
to study with high accuracy several phenomena, such as igorresponding mean-field energy negligible with respect to
formation in nonadiabatic conditionk6], short and long the energy quanta of the confinement, iZew,>Ng, as re-
wavelength collective excitatiorig], and vortices and super- cently demonstrated if11], whereg=4x#2a/m, with a the

fluid dynamicg[8]. The effect of the measurement process iss-wave scattering length, anal, the angular frequency of the
typically neglected in these analysis. An attempt to includeconfinement harmonic potential along tkelirection. The

the measurement process in a two-mode configuration for theesulting reduced master equation in the imaging plane is
condensate has been discussed9h Our main goal is to  written as[12]

()

wheren is the condensate density operator, &nthe electric

1050-2947/2002/683)/03362@4)/$20.00 65 033620-1 ©2002 The American Physical Society



DALVIT, DZIARMAGA, AND ONOFRIO

dp i ..
a=—g[H2D,p]—Jd2r1

XJ d’roK(ri=ra)[n(ry),[n(ra),p1l (@
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Eq. (2) introducing a 2D lattice with the natural choice for
the lattice constant set by the resolution length séale
dp i cieaa ..
= —he > U+ 05| ST [ [0l
dt h & T

4

wheren(r)="¥"¥ (r) is the 2D density operator. The effect Here ¥, is an annihilation operator angy=¥ ¥, is the

term in the right-hand side of Ed2). This equation pre-

between any nearest-neighbor sitésl) is w~#%/2mAr?,

serves the total number of atoms, and corresponds to a quaihich is #~* times the characteristic kinetic energy. The

tum nondemolition{ 13] coupling between the atom and the
optical fields[9,14—16. The measurement kernkl has the
expression

7TX(2)k0|
2hic

K(r)= szk exp( — £2kY4ak3)expik-r), (3)

where¢ is the length scale of the condensate in ttairec-
tion, the width of the Gaussian statgz) under the above-
mentioned approximation. Equatid8) holds for a conden-
sate having thickness in tlrdirection &> \.. If the measure-
ment kernel were a local onK(r;—r,)=45(r;—r>,), Eq.(2)
would reduce to a Lindblad equation for the measurement

an infinite number of densitie&(r). This assumes that no
spatial correlation is established by the photon detectio

However, the ultimate resolution limit in the imaging system
depends on the photon wavelength, regardless of the pix
density of the detecting camera. The resolution length scaIS

follows from Eg. (3) as a width of the kernelAr
=(272¢&lko) Y?=(wéN) Y2, the geometrical average of the
light wavelength and the condensate thicknéss

When the measurement outweighs the self-dynamics, thle0
wave function of the condensate is driven towards an eigens
state of the measurement apparatus. In that case the master
equation (2) is solved by the eigenstates of the density

operator n(r), which are then pointer state$17],

Wi(ry) ... ¥T(ry)|0). This state describes a “gas” of at-
oms localized at the points . . .ry. These states are mani-

festly not mean-field states so they cannot be described by
any generalization of the Gross-Pitaevskii equation. A mea-

surement, strong in comparison to the Hamiltoritg, will

project an initial mean-field condensate state onto one of th& 0

pointer states with a probability distribution for differeris
given by the initial mean-field wave functiorp(r)

= ¢*¢(r). However, this dramatic change of the condensate_
state will not directly affect the condensate image since th%

homodyne current is given by the convolutioh(r)
~[d?r’K(r—r"){(n(r")), which coarse grains the density
distribution over the resolution of the kern&t?. The only

potential-energy operator isV=3,U;n,+Gn?, where
U, is the trapping potential andG=g/éAr?. The
effective measurement strength i~ [d?rK(r)/Ar?
= (2w Ar)2(mx3kol 12hC).

The Lindblad term in Eq(4) is a sum of Lindblad terms
for different lattice sites. Its pointer states are the Fock states
{N;})=|Ny,N,, .. .) with definite occupation numbers,
at every sitel. An initial pure mean-field state can be ex-
panded in the Fock basi$g/;(0)>=E{N|}¢{NI}(O)|{N,}). If

the initial mean-field wave function of the condensatejs
then the initial expectation value of the number of atoms at a

opitelis n(0)=N¢[ ¢, . Each site has a finite dispersion in

the number of atomsr,(0)=[n,(0)]"2 For largen;(0) the
distribution of N; can be approximated by a Gaussian. If

"there were no self-Hamiltonian the Lindblad term would
%rive the state of the system into a mixed state of different

ock state${N,}). The mixed state describes an ensemble of
utcomes of different realizations of the experiment. In a
given realization the outcome would be a definite Fock state
[{N;}) with randomN; in the rangen;(0)+ o(0). To de-
scribe a single realization of the experiment we ugStaa-
novich unraveling of the master equation by a stochastic
chralinger equatior{SSB [19]

i i
FTELL i {%} hiny s = 7 Ving g + iy
|

XZ [—S(N;—n)2+Sa+(N—n) g1, (5

the homodyne noises have averagégt)
and 0|1(t1) 0|2(t2):285|1'|25(t1_t2). Here n
:E{N|}NI|‘IJ{N|}|210'|2:E{N|}(NI_nl)2|l//{N|}|2vh is the ma-
trix element of the hopping Hamiltonian, anGV{Nl}
=,(UN,+GN?) is the potential energy. The unraveling
oes not change the pointer staf2g)].

Equation(5) can be solved provided that we neglect the
hopping termh=0. In this case Fock states are fixed points
because they are characterizedMyy=n, ando;=0. SSE is

where

effect on the image will be small statistical fluctuations. If satisfiedexactlyby the ansatz

the average number of atoms within a given resolution area

of Ar? is n, then after the localization the number will be in
the rangen= \/n.

When the system HamiltoniaH 5 is strong enough, it
can change pointer statgs8]. To quantify this phenomenon

and the competition between localization induced by the

measurement and the delocalization duéigg we discretize

exp( - [N|—n|(t>]2)
i i Aci(t)
¢{N|}(t):e ‘P{N|}eX[{_ %V{Nl}t}l_ll [2770-|2(t)]1/4

(6)

when the parameters satisfy the equations of motion
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FIG. 1. Ui(t) for a 1D three-mode configuration witls
=2s"%,n,(0)=100, anda,Z(O)=66.6. We show four single real-
izations of the experiment for different hopping frequencies. Th
thick solid line is the analytic solutiono?(t)=ca?2(0)/[1
+4Sto2(0)] for =0 s%.

FIG. 2. Asymptotic variance3(=) versus| wn,(0)/S]*? for a
1D three-mode configuration, witB=2 s ! andn,(0)=100. The
€scaling o?() ~ w2 applies for[ wn,(0)/S]¥2< o?(0)=67 when
w<Sa|4(O)/n|. The straight line is a guide for the eye. In the
opposite caserf(oo) does not increase above the dispersion of the
initial mean-field state. Thef(oc) are averages over the noisy val-
d ues at large of trajectories in Fig. 1.
0'|2:_4SO'4, &n|:20'|20|, (7)

gle

Q= lﬂ{N,}Z [—S(N,—n))2+ So?]

and @{N|}=E|N|arg(¢|) are constant phases. The ansatz re- 5 5 5
TPy SNy Iy

mains normalized as long ag>1 when summations over :

—iw 2, Yngn - .
N, can be replaced by integrals. For an initiaf(0) <k2,l> K ONZ AN? NN,
=n,(0) the dispersions shrink to zer@ Fock statg as )

of(t)=0?(0)/[1+40%(0)St]. Intuitively, the continuous

reduction of number fluctuations is due to the weak nature oﬁ_ . Lo . .
. his equation is made parameter independent by rescaling
the measurement, and takes place on a time scale

_% 14 _5 112 -
~1/Se2(0). While o2's shrink down too2~1 the means, ~ N=Ni(0n/S)™ and Q1 =0%(Swn)™, so the stationary

make random walks in the rangg(0)= c(0). When U|2 solution of the rescaled equation must scale @éx)

~ 1/4 ; }
<1 our ansatz breaks down but the numerical simulations_(wn'/s) - In Fig. 1 and 2 we show results of exact nu

: merical simulations on a 1D three-site periodic lattice with
foré\(/)vro nggg eﬁ;‘??;gﬁgggﬁ Ii‘;s; c'>:v(\)/ ggtg:: Orrrlr;\(;strgoizrﬂb- 300 atoms that confirm the validity of thege predizctions. The
ited due to the hopping between nearest-neighbor sites. He?@lunog without the hopping term,o7(t) =07(0)/1
a scaling argument is used to estimate the dependence on thg*S i (0)], reacrl?/sz its asymptotic value () after a
physical parameters af?(=), the dispersion at which the tme 7=[Swn;(0)]""*. _ _
measurement term and the hopping term in the SSE balance e estimate the effect assuming the following parameters
each other. We assume that the density distribution iior the condensate and its imaging, relevant for the case
smooth, i.e., any two nearest-neighbor sikek have close  ©f _Egbim; 1.4 10 kg, a=5.8 nm, A=780 nm, xo
occupation numbersy,~n, . For large occupation numbers, —10 = ", laser intensityl =100 mw/cnd, and a total
the element of the hopping Hamiltonian betwéeandl can ~ number of atom&=10". The width of the Gaussiaf(z) is
be approximated bys VNN~ /N~ wn; . The hopping assumed to bé=10 wm. The resolution of the kernéB) is

; : iy Ar=(m\&)Y?=5 um. We also get w=15s?, S
mixes the amplitude and n that have negligibl
Xes plitudes/, Yinyy Ve NegIgbY 65 s 1 andG/i=0.2 s 1<S. We assume that the initial

close potential energie¥yy;~Vyy,y . We again assume that condensate has a size of (50m)? that implies 100 occu-
a|2>1 so that we can treat the occupation numbérsas  pied lattice sites wittn,(0)~107/100=10° atoms per site
continuous variables. After neglecting the noise term, theando(0)=[n,(0)]¥>~300 atoms per site. Due to the mea-
SSE can be written as an eigenvalé) (problem surement the dispersion shrinks 25 times dowier i@ =)
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=[wn(0)/S]**~12 atoms per site in a timescale; Of Ref. [2817]), and that in each trap there am:(0)~109
=[Swn;(0)]~ Y2~ 100 ws. Until now we have neglected the atoms ‘)fl Rb, the hopping frequency i&=Gn(0)/As
off-resonance Rayleigh scattering due to the measuremerit 900 s .

The same methods leading to E¢®). and (3) also predict a Suppose now that we add phase-contrast imaging to
Rayleigh depletion time of,~7 ms, i.e., 70 times longer (PCI) the above experimental setup. The kernel resolution is
than 7 [12]. Ar=(méN)Y2~1.5 um, which implies there are two opti-

The dramatic 25-fold shrinking of the dispersion in occu-Cal traps within the kernel resolution. The effective number

pation number results in quasiFock state. AnexactFock ~ Of atoms withinAr is, therefore,npc,=200, the effective
o o self-coupling isGpc/A=G/2h=20 s ! and the effective
state would be¥| - .- W¥/ |0), where each atom can be as- . . s -1 .

. 1 N ] o ~~ hopping frequency isvpc=w/2=250 s . For a laser in-
signed to exactly one lattice site and as such it is Iocahzeqensity of, say) =100 mW/cn?, we obtainS=500 s ! and
within the kernel resolution ofAr?. The localization in an o/(*)=3 atoms per site after a localization time of
exact Fock state would cost a lot of kinetic energy. In our—200 ;s but much before a depletion time e§=7 ms.
quasiFock state, as shown by the calculation of the expecThe final dispersion in the number of atoms per optical trap
tation value of the hopping term in our ansatz stdle as g o () =[o()22]¥?=2. The final squeezing factor will
long as alloy>1 the energy remains very close to the energypo 02(0)/02() ~50, where we take-,2(0)= n(0). Such an

of the initial mean-field state. n _ enhancement of squeezing due to the measurement should be
A direct experimental test of our predictions and in par- pservable with the techniques of the experin{@di.

ticular of a simplified'lattice model4) can be made in the _In conclusion, we have applied the theory of open quan-

1-D array of weakly linked mesoscopic traps of the experi,m systems to include the back-action of a nondemolitive

ment described in Ref21]. In this experiment the traps are eagyrement into the dynamics of a Bose-Einstein conden-
created by a standing optical wave of wavelendth sate We have shown that dispersive imaging with a suffi-
=840 nm superimposed on a confining harmonic potentiatiently high laser intensity results in number squeezing of the
due to a magnetic trap. Given a transverse trapping angulfyngensate state. Our prediction can be tested in present-day
frequency of 2rx120 s we estimate the transverse gyperiments and could result in a significant improvement
length of the condensates in each trap as the correspondifgyard the implementation of Heisenberg-limited atom inter-

oscillator length, equal t§=1 wm. In the experiment each ferometry[22], and in a more general understanding of the
condensate has aelividth of Al=\¢/6, therefore we esti- 5ckaction of other quantum-limited devidas).

mate G/%=g/(2hA1(2£)?)~40 s 1. Assuming one is in

the range of parameters of the experiment for which the We thank L. Viola for useful discussions. D.A.R.D. was
ground state of the condensate is close to a mean-fielsupported in part by NSA; J.D. was supported by NSA and
(quasi-coherentstate(for instance squeezing=3 in Fig. 2  KBN through Grant No. 5P03B 088 21.
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