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Measurement-induced squeezing of a Bose-Einstein condensate
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We discuss the dynamics of a Bose-Einstein condensate during its nondestructive imaging. A generalized
Lindblad superoperator in the condensate master equation is used to include the effect of the measurement. A
continuous imaging with a sufficiently high laser intensity progressively drives the quantum state of the
condensate into number squeezed states. Observable consequences of such a measurement-induced squeezing
are discussed.
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Since its birth, quantum mechanics has led to an interp
tational debate on the role played by the measurement
cess in its structure and its relationship to classical mech
ics developed for macroscopic systems@1#. This debate has
been enriched by the realization of new experimental te
niques spanning from quantum jumps in single-ion traps
macroscopic entangled states in various quantum syst
Recently, the production of atomic Bose-Einstein cond
sates of dilute atomic gases has also paved the way to
study of dynamical phenomena of macroscopic quantum
tems with the precision characteristic of atomic physics@2#.

Two optical techniques, absorption and dispersive im
ings, have been used to monitor the dynamics of a Bo
Einstein condensate@2#. In the former the condensate inte
acts with a light-beam resonant~or close to resonance! with
an atomic transition. The output beam is attenuated pro
tionally to the column density of the condensate—the c
densate density integrated along the line of sight of the
aging beam. The absorption of photons heats the conden
then strongly perturbing it, and in general, a replica of
condensate has to be produced to further study its dynam
This measurement is, in the language of quantum meas
ment theory, of type-II since it destroys the state of the
served system and forbids the study of the dynamics o
single quantum system@3#. Repeated measurements on
Bose-Einstein condensate or, at the limit, its continuo
monitoring are instead possible using its dispersive featu
for instance through phase contrast@4# or interference@5#
imaging techniques. Off-resonance light is scattered by
condensate that induces phase shifts thereby converted
light-intensity modulations by homodyne or heterodyne
tection. The off-resonant nature of the atom-photon inter
tion allows for a very low absorption rate and therefore lo
heating of the condensate. Thus, multiple shots of the s
condensate can be taken—a type-I measurement that a
to study with high accuracy several phenomena, such a
formation in nonadiabatic conditions@6#, short and long
wavelength collective excitations@7#, and vortices and super
fluid dynamics@8#. The effect of the measurement process
typically neglected in these analysis. An attempt to inclu
the measurement process in a two-mode configuration for
condensate has been discussed in@9#. Our main goal is to
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include the atom-photon interaction process present in
persive imaging into the intrinsic dynamics of the conde
sate. We show that the measurement process induces nu
squeezing of the quantum state of the condensate, and
provide realistic estimates that suggest that the phenome
could be observed with current experimental techniques.

Let us start the analysis with the effective interacti
Hamiltonian between the off-resonant photons and the
oms, written as

Ĥ int5
e0x0

2 E d3xn̂~x!:E2:, ~1!

wheren̂ is the condensate density operator, andE the electric
field due to the intensityI of the incoming light. The coeffi-
cient x0 represents the effective electric susceptibility of t
atoms defined asx05l3d/2p2(11d2), where we have in-
troduced the light wavelengthl and the light-detuning mea
sured in half linewidthsG/2 of the atomic transition,d5(v
2vat)/(G/2). Equation~1! allows us to write the reduced
master equation for the atomic degrees of freedom by a s
dard technique, i.e., by tracing out the photon degrees
freedom @10#. The photons are assumed to be in a pla
wave state with momentum along the impinging directio
corresponding to a wave vectork5k0ẑ orthogonal to the
imagingx-y plane. Unless tomographic techniques are us
the image results from a projection of the condensate o
the x-y plane, by integrating along thez direction. This de-
mands to project the dynamics of the condensate into
imaging plane. In order to write a closed two-dimension
~2D! master equation to describe thex-y dynamics we as-
sume the condensate wave function to be factorizable
c(x,y,z)5f(x,y)L(z). Such factorization holds if the con
finement in thez direction is strong enough to make th
corresponding mean-field energy negligible with respect
the energy quanta of the confinement, i.e.,\vz@Ng, as re-
cently demonstrated in@11#, whereg54p\2a/m, with a the
s-wave scattering length, andvz the angular frequency of the
confinement harmonic potential along thez direction. The
resulting reduced master equation in the imaging plane
written as@12#
©2002 The American Physical Society20-1
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dr̂

dt
52

i

\
@Ĥ2D ,r̂ #2E d2r 1

3E d2r 2K~r12r2!†n̂~r1!,@ n̂~r2!,r̂ #‡, ~2!

wheren̂(r )5Ĉ†Ĉ(r ) is the 2D density operator. The effe
of the measurement is taken into account through the sec
term in the right-hand side of Eq.~2!. This equation pre-
serves the total number of atoms, and corresponds to a q
tum nondemolition@13# coupling between the atom and th
optical fields@9,14–16#. The measurement kernelK has the
expression

K~r !5
px0

2k0I

2\c E d2k exp~2j2k4/4k0
2!exp~ ik•r !, ~3!

wherej is the length scale of the condensate in thez direc-
tion, the width of the Gaussian stateL(z) under the above-
mentioned approximation. Equation~3! holds for a conden-
sate having thickness in thez directionj@l. If the measure-
ment kernel were a local one,K(r12r2).d(r12r2), Eq. ~2!
would reduce to a Lindblad equation for the measuremen
an infinite number of densitiesn̂(r ). This assumes that n
spatial correlation is established by the photon detect
However, the ultimate resolution limit in the imaging syste
depends on the photon wavelength, regardless of the p
density of the detecting camera. The resolution length s
follows from Eq. ~3! as a width of the kernelDr
5(2p2j/k0)1/25(pjl)1/2, the geometrical average of th
light wavelength and the condensate thicknessj.

When the measurement outweighs the self-dynamics,
wave function of the condensate is driven towards an eig
state of the measurement apparatus. In that case the m
equation ~2! is solved by the eigenstates of the dens
operator n̂(r ), which are then pointer states@17#,
Ĉ†(r1) . . . Ĉ†(rN)u0&. This state describes a ‘‘gas’’ ofN at-
oms localized at the pointsr1 . . . rN . These states are man
festly not mean-field states so they cannot be described
any generalization of the Gross-Pitaevskii equation. A m
surement, strong in comparison to the HamiltonianĤ2D, will
project an initial mean-field condensate state onto one of
pointer states with a probability distribution for differentr ’s
given by the initial mean-field wave functionp(r )
5f!f(r ). However, this dramatic change of the condens
state will not directly affect the condensate image since
homodyne current is given by the convolutionI (r )
;*d2r 8K(r2r 8)^n̂(r 8)&, which coarse grains the densi
distribution over the resolution of the kernelDr 2. The only
effect on the image will be small statistical fluctuations.
the average number of atoms within a given resolution a
of Dr 2 is n, then after the localization the number will be
the rangen6An.

When the system HamiltonianH2D is strong enough, it
can change pointer states@18#. To quantify this phenomenon
and the competition between localization induced by
measurement and the delocalization due toĤ2D we discretize
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Eq. ~2! introducing a 2D lattice with the natural choice fo
the lattice constant set by the resolution length scaleDr ,

dr̂

dt
52

i

\ F2\v (
^k,l &

Ĉk
†Ĉ l1V̂,r̂G2S(

l
†n̂l ,@ n̂l ,r̂ #‡.

~4!

Here Ĉ l is an annihilation operator andn̂l5Ĉ l
†Ĉ l is the

number operator at a lattice sitel. The frequency of hopping
between any nearest-neighbor sites^k,l & is v'\/2mDr 2,
which is \21 times the characteristic kinetic energy. Th
potential-energy operator isV̂5( lUl n̂l1Gn̂l

2 , where
Ul is the trapping potential andG5g/jDr 2. The
effective measurement strength isS'*d2rK (r )/Dr 2

5(2p/Dr )2(px0
2k0I /2\c).

The Lindblad term in Eq.~4! is a sum of Lindblad terms
for different lattice sites. Its pointer states are the Fock sta
u$Nl%&5uN1 ,N2 , . . . & with definite occupation numbersNl
at every sitel. An initial pure mean-field state can be e
panded in the Fock basis,uc(0)&5($Nl %

c$Nl %
(0)u$Nl%&. If

the initial mean-field wave function of the condensate isf l ,
then the initial expectation value of the number of atoms a
site l is nl(0)5Nf l

!f l . Each site has a finite dispersion
the number of atoms,s l(0).@nl(0)#1/2. For largenl(0) the
distribution of Nl can be approximated by a Gaussian.
there were no self-Hamiltonian the Lindblad term wou
drive the state of the system into a mixed state of differ
Fock statesu$Nl%&. The mixed state describes an ensemble
outcomes of different realizations of the experiment. In
given realization the outcome would be a definite Fock st
u$Nl%& with randomNl in the rangenl(0)6s l(0). To de-
scribe a single realization of the experiment we use a~Stra-
tonovich! unraveling of the master equation by a stochas
Schrödinger equation~SSE! @19#

d

dt
c$Nl %

52
i

\ (
$Nl8%

h$Nl ,N
l8%c$Nl8%2

i

\
V$Nl %

c$Nl %
1c$Nl %

3(
l

@2S~Nl2nl !
21Ss l

21~Nl2nl !u l #, ~5!

where the homodyne noises have averagesu l(t)
50 and u l 1

(t1)u l 2
(t2)52Sd l 1 ,l 2

d(t12t2). Here nl

5($Nl %
Nl uc$Nl %

u2,s l
25($Nl %

(Nl2nl)
2uc$Nl %

u2,h is the ma-

trix element of the hopping Hamiltonian, andV$Nl %

5( l(UlNl1GNl
2) is the potential energy. The unravelin

does not change the pointer states@20#.
Equation~5! can be solved provided that we neglect t

hopping term,h50. In this case Fock states are fixed poin
because they are characterized byNl5nl ands l50. SSE is
satisfiedexactlyby the ansatz

c$Nl %
~ t !5eiw$Nl %expF2

i

\
V$Nl %

t G)
l

expS 2
@Nl2nl~ t !#2

4s l
2~ t !

D
@2ps l

2~ t !#1/4
,

~6!

when the parameters satisfy the equations of motion
0-2



re

r

o
ca

on
.
-
e

n

an

s,

t

th

ling

u-
ith
he

ters
ase

l

a-

-
h

e
the
l-
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d

dt
s l

2524Ss l
4 ,

d

dt
nl52s l

2u l , ~7!

andw$Nl %
5( lNlarg(f l) are constant phases. The ansatz

mains normalized as long ass l
2@1 when summations ove

Nl can be replaced by integrals. For an initials l
2(0)

.nl(0) the dispersions shrink to zero~a Fock state! as
s l

2(t)5s l
2(0)/@114s l

2(0)St#. Intuitively, the continuous
reduction of number fluctuations is due to the weak nature
the measurement, and takes place on a time s
.1/Ss l

2(0). While s l
2’s shrink down tos l

2'1 the meansnl

make random walks in the rangenl(0)6s l(0). When s l
2

!1 our ansatz breaks down but the numerical simulati
for two- and three-site models show thatnl becomes frozen

For nonzeroh, localization in a Fock state may be inhib
ited due to the hopping between nearest-neighbor sites. H
a scaling argument is used to estimate the dependence o
physical parameters ofs l

2(`), the dispersion at which the
measurement term and the hopping term in the SSE bal
each other. We assume that the density distribution
smooth, i.e., any two nearest-neighbor sitesk,l have close
occupation numbers,nk'nl . For large occupation number
the element of the hopping Hamiltonian betweenk and l can
be approximated byvANkNl'vAnknl'vnl . The hopping
mixes the amplitudesc$Nl %

and c$Nl8% that have negligibly

close potential energies,V$Nl %
'V$Nl8% . We again assume tha

s l
2@1 so that we can treat the occupation numbersNl as

continuous variables. After neglecting the noise term,
SSE can be written as an eigenvalue (V) problem

FIG. 1. s1
2(t) for a 1D three-mode configuration withS

52 s21,nl(0)5100, ands l
2(0)566.6. We show four single real

izations of the experiment for different hopping frequencies. T
thick solid line is the analytic solutions l

2(t)5s l
2(0)/@1

14Sts1
2(0)# for v50 s21.
03362
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5c$Nl %(l

@2S~Nl2nl !
21Ss l

2#

2 iv (
^k,l &

AnknlF ]2c$Nl %

]Nk
2

1
]2c$Nl %

]Nl
2

22
]2c$Nl %

]Nk]Nl
G .

~8!

This equation is made parameter independent by resca
Nl[Ñl(vnl /S)1/4 and V5Ṽ( l(Svnl)

1/2, so the stationary
solution of the rescaled equation must scale ass l(`)
.(vnl /S)1/4. In Fig. 1 and 2 we show results of exact n
merical simulations on a 1D three-site periodic lattice w
300 atoms that confirm the validity of these predictions. T
solution without the hopping term,s l

2(t)5s l
2(0)/@1

14Sts l
2(0)#, reaches its asymptotic values l(`) after a

time t l.@Svnl(0)#21/2.
We estimate the effect assuming the following parame

for the condensate and its imaging, relevant for the c
of 87Rb:m51.4 10225 kg, a55.8 nm, l5780 nm, x0
510223 m3, laser intensityI 5100 mW/cm2, and a total
number of atomsN5107. The width of the GaussianL(z) is
assumed to bej510 mm. The resolution of the kernel~3! is
Dr 5(plj)1/255 mm. We also get v515 s21, S
565 s21, andG/\50.2 s21!S. We assume that the initia
condensate has a size of (50mm)2 that implies 100 occu-
pied lattice sites withnl(0)'107/1005105 atoms per site
ands l(0).@nl(0)#1/2'300 atoms per site. Due to the me
surement the dispersion shrinks 25 times down tos l(t5`)

e

FIG. 2. Asymptotic variances1
2(`) versus@vn1(0)/S#1/2 for a

1D three-mode configuration, withS52 s21 andnl(0)5100. The
scaling s l

2(`);v1/2 applies for@vnl(0)/S#1/2!s l
2(0)567 when

v!Ss l
4(0)/nl . The straight line is a guide for the eye. In th

opposite cases l
2(`) does not increase above the dispersion of

initial mean-field state. Thes l
2(`) are averages over the noisy va

ues at larget of trajectories in Fig. 1.
0-3
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5@vnl(0)/S#1/4'12 atoms per site in a timescalet l

5@Svnl(0)#21/2'100 ms. Until now we have neglected th
off-resonance Rayleigh scattering due to the measurem
The same methods leading to Eqs.~2! and~3! also predict a
Rayleigh depletion time oftD'7 ms, i.e., 70 times longe
thant l @12#.

The dramatic 25-fold shrinking of the dispersion in occ
pation number results in aquasi-Fock state. AnexactFock

state would beĈ l 1
†
•••Ĉ l N

† u0&, where each atom can be a

signed to exactly one lattice site and as such it is locali
within the kernel resolution ofDr 2. The localization in an
exact Fock state would cost a lot of kinetic energy. In o
quasi-Fock state, as shown by the calculation of the exp
tation value of the hopping term in our ansatz state~6!, as
long as alls l@1 the energy remains very close to the ene
of the initial mean-field state.

A direct experimental test of our predictions and in p
ticular of a simplified lattice model~4! can be made in the
1-D array of weakly linked mesoscopic traps of the expe
ment described in Ref.@21#. In this experiment the traps ar
created by a standing optical wave of wavelengthlst
5840 nm superimposed on a confining harmonic poten
due to a magnetic trap. Given a transverse trapping ang
frequency of 2p3120 s21 we estimate the transvers
length of the condensates in each trap as the correspon
oscillator length, equal toj51 mm. In the experiment each
condensate has a 1/e width of D l 5lst/6, therefore we esti-
mate G/\5g/(2\D l (2j)2)'40 s21. Assuming one is in
the range of parameters of the experiment for which
ground state of the condensate is close to a mean-
~quasi-coherent! state~for instance squeezings.3 in Fig. 2
J,
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of Ref. @21#!, and that in each trap there arenl(0)'100
atoms of 87Rb, the hopping frequency isv5Gnl(0)/\s2

'500 s21.
Suppose now that we add phase-contrast imaging

~PCI! the above experimental setup. The kernel resolutio
Dr 5(pjl)1/2'1.5 mm, which implies there are two opti
cal traps within the kernel resolution. The effective numb
of atoms withinDr is, therefore,nPCI5200, the effective
self-coupling isGPCI/\5G/2\520 s21 and the effective
hopping frequency isvPCI5v/25250 s21. For a laser in-
tensity of, say,I 5100 mW/cm2, we obtainS5500 s21 and
s l(`)53 atoms per site after a localization time oft l
5200 ms but much before a depletion time oftD57 ms.
The final dispersion in the number of atoms per optical t
is s(`)5@s l(`)2/2#1/252. The final squeezing factor wil
bes2(0)/s2(`)'50, where we takes l

2(0)5nl(0). Such an
enhancement of squeezing due to the measurement shou
observable with the techniques of the experiment@21#.

In conclusion, we have applied the theory of open qu
tum systems to include the back-action of a nondemolit
measurement into the dynamics of a Bose-Einstein cond
sate. We have shown that dispersive imaging with a su
ciently high laser intensity results in number squeezing of
condensate state. Our prediction can be tested in presen
experiments and could result in a significant improvem
toward the implementation of Heisenberg-limited atom int
ferometry@22#, and in a more general understanding of t
backaction of other quantum-limited devices@13#.
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