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Creation of photons in an oscillating cavity with two moving mirrors
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We study the creation of photons in a one-dimensional oscillating cavity with two perfectly conducting
moving walls. By means of a conformal transformation, we derive a set of generalized Moore’s equations
whose solution contains the whole information of the radiation field within the cavity. For the case of resonant
oscillations we solve these equations using a renormalization-group procedure that appropriately deals with the
secular behavior present in a naive perturbative approach. We study the time evolution of the energy density
profile and of the number of created photons inside the ca\#¥050-29479)03604-3

PACS numbes): 42.50.Lc, 42.50.Dv, 12.26.m, 03.70+k

I. INTRODUCTION place[8—13]. It is typically considered that the cavity is mo-
tionless and that at some instant one mirror starts to oscillate
It is well known that in the presence of moving bound- resonantly with a tiny amplitude. For small times after the
aries the vacuum state of the electromagnetic field may nanotion starts, one can make a perturbative expansion of the
be stable, which results in the generation of real photonsequations of motion of the field in terms of the small ampli-
The generated radiation exerts pressure on the movingude to find an approximate solution. In this way one can
boundaries which can be looked upon as a dissipative forcstudy the structure of the electromagnetic field inside the
that opposes itself to the mechanical motion of the boundeavity, which departs from the standard static Casimir profile
aries. The generation of photons, which is an amazing demwhich is constant over the whole cavitgnd develops a
onstration of the existence of quantum vacuum fluctuationstructure of small and broad pulses. The number of motion-
of QED, is referred to in the literature as the dynamical Cainduced photons grows quadratically in time, and the spec-
simir effect[1] or motion-induced radiatiof]. It goes with-  trum has an inverted parabolic shape with an upper fre-
out saying that it would be very nice to have an experimentafjuency cutoff given by the mechanical frequency, its
verification of this prediction. Due to the technical difficul- maximum being at half that valyd,14]. Similar results are
ties involved in the detection of the phenomenon, up to nowfound in[2] by means of a scattering approach for the radia-
no concrete experiment has been carried out, and there atien emitted out of a lossy cavity. However, for long times
only a few experimental proposdl3,4]. However, feasible these methods are not valid, and new approximation tech-
experimental evidence is not out of reach, and therefore it isiques are required. 112,15 it is shown that in such a limit
of interest to explore different theoretical models to describehe structure of the electromagnetic field is nontrivial, with a
the process and identify signatures which permit us to distinnumber of pulses equal to the mechanical resonant fre-
guish vacuum radiation from spurious effects. quency, whose width decreases exponentially and whose
Research in the field has mainly concentrated on onekeight increases exponentially with time, in such a way that
dimensional models, which are useful for giving an accounthe total energy within the cavity grows exponentially at the
of the main physical processes participating in the phenomexpense of the energy given to the system to keep the mirror
enon (a small number of works deal with more realistic moving. Also, the spectrum does not have an upper fre-
three-dimensional mode[gl—6)). In this work we will also  quency cutoff. Through a process of frequency up-
restrict ourselves to one-dimensional models. Motionconversion, the generated photons contain frequencies of
induced effects of vacuum radiation already show up for éhigher-order cavity modes and thus exceed the mechanical
single mirror moving with a nonuniform acceleration in frequency. The physical mechanism of such an optical
vacuum[7]. Since the amount of radiation generated is verypumping into the high-frequency region is the Doppler up-
small, basically determined by the ratio of the speed of theshift of the field upon reflection at the mirrors. Similar con-
mirror to the speed of light, much attention has been paid telusions are found for the lossy cavit¥6].
the study of one-dimensional models for which the effect is The case of cavities with two moving mirrors has also
enhanced. been considered recently. In the small time approximation,
A cavity made of two perfectly parallel reflecting mirrors, both for the ideal cavity17] and for the lossy ong2], it is
one of which is motionless and the other oscillating with afound that the number of motion-induced photons grows
mechanical frequency equal to a multiple of the fundamentatjuadratically in time and that the spectrum is once again
optical resonance frequency of the static cavity, is a thorparabolic. In the long time approximation, the lossy cavity
oughly studied example where such an enhancement takéss been studied with the scattering apprdd@j. Just as in
the case of a single oscillating mirror, it is found that in this
regime there is pulse shaping in the time domain and fre-
*Electronic address: dalvit@df.uba.ar quency up-conversion in the spectrum of emitted photons
"Electronic address: fmazzi@df.uba.ar from the cavity. A striking feature of the spectrum is that no
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photons are emitted at frequencies equal to multiple integerien the mode functiong(x,t) must be chosen so as to
of the mechanical frequency. satisfy the above boundary conditions.

In this work we will consider an ideal cavity with two In the case where only one of the walls moves, say the
mirrors oscillating resonantly at the same frequency, and weght one, the modes can be written in terms of a function
will allow for different amplitudes and a possible dephasingU(t) as
between the mirrors. To investigate the problem, we will
deduce a generalization of Moore's equati8] to the i
problem of two moving boundaries, whose solution gives (X 1) = \/m
complete information on the electromagnetic field inside the

cavity. For the case of resonant harmonic motions, no exagind the boundary condition on the right is fgtovided that
solution exists, and we find an approximate analytic solutionne functionU verifies U (t + R(t))—U(t—R(t))=2, which
based on a renormalization-grotRG) technique. We have s known as Moore’s equatidii8]. The complete solution to
already applied this method [15] for the case of a single he problem involves finding a solutidd(t) in terms of the
oscillating mirror, and just as in that case, the strategy a”OW%)rescribed motiorR(t). Moore’s equation can in fact be
us to find a single solution valid for both short and long gequced by means of a conformal transformation from the
times. This will allow us to describe precisely the behaV'Ororiginal space-time coordinates X) to a new set of coordi-

of the energy density and the number of photons for aIInates(,—x) in which not only the left mirror but also the right

times. M . )
As we shall see, motion-induced radiation strongly de-One is fixed. This transformation takes the form

pends on the relation among the amplitudes of oscillation, - - —

the frequency, and the dephasing. For some relations among tx=U(t+x),  t=x=U(t=x), )

these variables, there is constructive interference and aserimﬂch, after mapping the coordinate of the left mirror as

of pulses develops within the cavity that grow exponentiall — . —

in Eme, and freqﬂency up-convers?/on takges placg. For son): (t)zgﬁx'-:t(.) and the right one a8(t) —»Xg=1, leads to

other relations, there is destructive interference and hence Ofr? S equation. ider th | in which both

vacuum radiation. We also show that our solution is capable . et us now ‘éof‘j' ?Ir € more ?enerakcase.m_?/v Ic fo

of accounting for other physical behaviors, for which themlrlrotrs m?ve. tY' enb ¥[ we can also 31? € "’flsml!;; contor-

peaks grow quadratically rather than exponentially. :::a dr?)?i)r?;mgé?ir;,in uthgotvrv ar\:vseforr]r?]i\tioxvgsunc lodsin-
The paper is organized as follows. In Sec. Il we will in- ' 9

troduce the generalization of Moore’s equations for a mov- THX=G(t4%), T—x=F(t—x) @)

ing cavity and we will explain how to calculate the energy ' ’

density and the number of motion-induced photons. In Sec,q mappingL(t) and R(t) as before, we obtain a set of

[ll the renormalization-group method is described and aPyeneralized Moore’s equations

plied to the problem of harmonically oscillating walls with

[e—ikﬂTU(t+X)_e—ik’)TU(t—X)], (2)

dephasing. In Sec. IV we study some particular dephasings, G(t+L(t))—F(t—L(t))=0,

which we will call translational and breathing modes. In Sec. (5)

V another motion is considered, which has a qualitatively G(t+R(1)—F(t—R(t))=2,

different behavior as compared to those of Sec. IV. Finally in

Sec. VI we make our conclusions. which, when solved for given motions for the mirrors, allows

us to find the solution for the modes inside the cavity. In-
Il GENERALIZED MOORE EQUATIONS deed, the modes can be cast in the form
We consider a one-dimensional cavity formed by two per- )= i — kGt x) _ amikmF(t—X) ©)
fectly reflecting mirrors, each of which follows a given tra- Pdx.H= /4wk[e € 1
jectory, sayL(t) for the left mirror andR(t) for the right
one. These two trajectories are predetermified, are given  and they satisfy both the field equation and the boundary

data for the problefnand act as time-dependent boundaryconditions.

conditions for the electromagnetic field inside the cavity. The We shall be interested in studying the space-time profile

equation for a massless scalar field @+ 92)A(x,t)=01 , ,

and the boundary conditions aré(x=L(t),t)=A(x 1 <(5A(x,t)) >+< 0A(X,t)) >

ot X

creational and annihilationa, operators for photons in the ) ]

form where the expectation values are taken with respect to the
o and a regularization method is needed to get meaningful re-

A(x,t)zz [ak¢k(x,t)+alw§(x,t)], (1) sults. Using the point-splitting method and introducing ad-

k=1

. (D)

field equation for the vector potential takes the form of theof the energy density of the field between the moving walls
=R(t),t)=0 for all times. If we express the field in terms of (Todx,1))= 2|
vacuum state. As is well known, this quantity is divergent

2The boundary condition on the lefixed) mirror is automatically
The speed of light is set to unity. fulfilled by this form for the modes.
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vancedu=t+x and retarded) =t—x coordinates, the en- Ill. RENORMALIZATION-GROUP METHOD
ergy density can be rewritten in terms of the functi@and FOR MOORE’S EQUATIONS

Fin the following way[7]: For resonantly harmonic motions it is not possible to find

- an exact solution to Eq$5) and approximation methods are
_r , / i\ e ik G(u)—G(u+tie compelling. A naive approach is to make perturbations in the
{Toolu,0))= Zkzl kG (UG (utigemiGmmetmiol amp?itudegof the osciIIF;F'zion, but it turns OlFJ)t that the strategy
. _ _ is ill-fated, because of the appearance of secular terms pro-
+F'(v)F' (v +ie)e " mFWI=FWHal - (8)  hortional to the time which, after a short period, make the
. o _ approximation break down. If15] we have applied a
with e—0". From here it is straightforward to get the renor- method inspired in the renormalization group to treat these

malized  version, (Too(X,t))ren=—fa(t+Xx)—fr(t—X),  singular perturbations for the case of a one-dimensional cav-
where ity with one oscillating mirror. The method has a wide range
of applications in different fields, especially for studying or-
1[G” 3[G"\? =2 oo dinary differential equation problems involving boundary
fG:E G 2\ G +7(G )7 layers, multiple scales, etf19]. In the following we shall
9) extend the method for the case of a one-dimensional cavity
" o o whose mirrors oscillate in resonance with the cavity. More
fF:i F__ §<F_ +—(F")2|. specifically, we consider that far<0 the two mirrors are
24w gy 2\ F 2 motionless and separated by a distafgeand that at=0

they start to move as

Suppose that for<0 both walls were at rest separated by ot
a distanceA and that the field was in its vacuum state. The L(t)=€eA, sin(q—
solution of the generalized Moore equations is sim@ift) A
=F(t)=t/A and the mode functiong, correspond to posi-
tive frequency modes. If at=0 the boundaries begin to R(t)=A — eAgsin( ¢)+eARsin(q—m+¢)EA+eéR(t)
move, it is well known that for some types of motion the A ’
field does not remain in vacuum, but photons are produced (13)
through nonabiabatic processes. A consistent calculation qf the left and riaht mi tivelv. Hedei )
the number of created photons through motion-induced rao! (N€ 1€TL and right mirrors, respectively. egeis a pos
diation requires having a well-defined vacuum state in theSlble dephasing anglé_andAg, are amplitudes of oscilla-

future. To this end we consider that at tinre T both walls tlorll_,e?r&ieffs%[ Issta?tsv(/ri}t%lltﬁgragfl}?t:étive aporoximation. We
come to resfL(t)=0 andR(t)=A for t=T]. The evolved P bp )

old vacuum state does not coincide with the vacuum inexpand both unknown functiorS(t) andF(t) in terms of

the future, but rather it contains a number of photonsthe small parametee and retain first-order terms only,

which can be calculated by means of the Bogoliubove(t) =Co(t) +€Gi(t) and F(t)=Fo(t)+eF4(t). Equating

=0+ ebL(1),

= — (% (O (0) terms of the same order in the set of generalized Moore
‘io(e::g')‘i”lﬁisin (rf ;‘TQ Aggl‘i;,,‘fﬂ )is’ the mV\cl)r:jeer?unctilf) ';‘] 15())(rltt)he equations, we get for the zeroth-order part
static problen?, and ¢,(x,t) is the mode function which Go(t) —Fo(t)=0, (12)
solves the nonstationary problem tor 0 and coincides with
¢$1°)(x,t) for t<0. Writing the mode functions in terms of Go(t+A)—Fo(t—A)=2, (13

the functionsG andF, integrating by parts, and using the set _
of Moore’s equations to drop the surface terms, we get th@nd for the first-order part
following relation for the Bogoliubov coefficient:

Gy(t)—F4(t)=—6(t) SL(D[Go() +Fo(1)], (14
1 m t/IA
Bam(t,T)= 5\/;| f/A 1dxexp{— i 7[nF(AX)+mx]} Gi(t+A)—Fi(t—A)=—6(t) 5R(1)
t —
X[GH(t+A)+F4(t—A)]. (15

t/A+1
+ Jt,A dxexp{—im[nG(AX)+mx]} (100 The general solution to Eq&l2) and (13) is

for timest>T. The number of created photons inside the Go(t)=Fq(t)=c+ %+ > A, sin( nTTrt>

cavity after the stopping tim& in the nth mode is given by n=1
N(T) ==l Bam(t, T)|? (the dependence of the Bogoliubov Nt

coefficient ont is just a phaseand summing oven we get +B, cos{T , (16)
the total amount of motion-induced photons.

where ¢, A,, and B, are constants determined by the
boundary conditions of the problem. These are obtained from
®The inner product is the usual for the Klein-Gordon equation,the fact that the modes,(x,t) must be positive frequency
namely (,€)= —i[F{)dx[ & — ). modes fort<0, which implies thatG(t)=t/A for —o<t
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<A andF(t)=t/A for —oo<t=<0. The different ranges for
the functionsG and F follow directly from the nonlocal
structure of Moore equations.

Making the shiftt—t—A in Eq. (14) and replacing the
result in Eq.(15) we get an equation for the first-order cor-
rection to the functiorG, namely

Gy(t+A)—Gy(t—A)
= 0(t— A)SL(t— A)[GY(t—A)+F)(t—A)]
(17

Since this equation is linear, the solution is of the foBn
=G{M+GP®, where

—0(t) SR(D[GH(t+A)+Fo(t—A)].

G (t+A) -G (t—A)=0(t—A)SL(t—A)
X[Gy(t—A)+Fy(t—A)],
(18
G2 (t+A)—GP(t—A)=— (1) SR(1)
X[Gy(t+A)+Fo(t—A)],
(19

whose general solutions read

GP(t)= At f(t)sin(qmt/A)
g AA
x[1+7r2 n[A,cognmt/A)
n=1
—B,sin(nmt/A)]

+gM() (20

for Eq. (18), and for Eq.(19) we get

Agr t
(2)py= R _
Gi7(t)= A AH(H—A)

x{sin(¢)+(—1)9" Lsin(qmt/A + ¢)}

X

1+ >, n[A,cognmt/A)
n=1

—anin(nn-t/A)]] +g@(1), (22)

whereg® andg‘® are arbitrary periodic functions of period
2A. The first-order correction fdf can be deduced from the
first-order correction fofs that we have just found using Eq.
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namely, G(t) =t/A for t<A, while that for F readsF(t)
=t/A for t=<0. If we assume that these boundary conditions
are already satisfied by the zeroth-order soluti@gét) and
Fo(t), then the periodic functions must be chosen so that
G4(t)=0 andF(t) =0 in the respective intervals. This fact,
when translated to the functio®{" andG{», implies the
following boundary conditions:
GM(t)=0 for 0<t=2A,

(22)
GP(1)=0 for —A<t<A,
which leads to the following expressions for the periodic
functions:

AL z+
gV[(2k+1)A+2]=— =

X T SII’](C]WZ/A)
X3 1+ 772 n
n=1

X[A,cognmz/A)—B,sin(n7z/A)]
(23
and

Ar W

A A
X{sin(¢)+(—1)9* L sin(qmrw/A+ ¢)}

9@ (2pA+w)=

X 1+7TE n

n=1
X[Apcodnmw/A)—B,sinnTw/A)];,

(24)

wheret=(2k+1)A+z, k=0,1,2..., and—A=<z<A for
the functiong®, while for the functiong® we havet
=2pA+w, p=0,1,2..., and—A=<w<A. Givent, the
values of the integerk and p are obtained ask=p
=3int(t/A) for int(t/A) even andk=3[int(t/A)—1],
p=3[int(t/A)+1] for int(t/A) odd. Note that during the
first period k=0 (p=0), the functiong™ (g®) makes
G{M (G?) vanish identically. As we have already seen,
since the mirrors were at rest far<0, we must impose
G(t)=t/A for t<A andF(t)=t/A for t<0. Thereforec

(14) or (15) interchangeably. We see that the perturbative” A,12= B,=0, and the perturbative solution for-0, to order
corrections contain secular terms that grow linearly in time O(€°), 8

Therefore, the approximation will be valid only for short
times, that iset/A<1.

In order to determine the two unknown periodic functions
we have to consider the boundary conditions for the func-
tions G andF. We have already said that the nonlocal struc-

ture of Moore’s equations implies that, althoughtatO the
motion of the mirrors starts, the expression @ifor times
up tot=A is given by the solution for motionless walls,

t A t—z—A
G(t)zx‘FGX A

X[sin(¢)+(—1) 9" sin(qmt/A+¢)],

. /A Art
sin(qrt )+ex A

(29

F(t)=G(t)+25% sin(qart/A). (26)
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These perturbative solutions suffer from the aforementioned IAN(T) 2 L
secularity problems, being valid for timésA<e 1. In or- =;<’:1t‘5nq—2(—1)q+ bnB,+|n—q

der to deal with this drawback and get improved solutions T

valid for longer times, in the rest of this section we describe X[aAp_q—bsgnn—q)Bj,_q]—(n+Qq)
the RG method we mentioned before for this problem of an )

oscillating cavity. X[aAn:qtbBnig]+0O(€%), (29

What the renormalization-group method does is to im-

prove the perturbative expansion by resumming an infinite  dBn(7) 2 q+1

number of secular terms. In general, if one performs the per- 5, — Pt 2(= 1) bnA+[n—q

turbative expansion to higher orders, there appear different

tirsne S§a2|eSﬁt tc3> girst order,€’t and €%t? to second order, xX[asgnn—0a)Bj,_q+bAn_q]l+(n+q)
e€°t, €°t%, ande’t® to third order, and so on. The RG tech- >

nique sums the most secular terms of each ord&"), and X[~ aBnqThAn o]0, (30
it is therefore valid for time$/ A <&~ 2. The way to carry out

the resummation is nicely described[itO] and it basically where

consists in introducing an arbitrary time splitting the time

in the secular terms of the first-order perturbative corrections I A " Ai( ~ 1)1 cog ) 31)
ast=(t— 7)+, and absorbing the terms proportional to A2lA A '

into the “bare” parameters of the zeroth-order perturbative

solution, thereby becoming “renormalized.” Introducing the e 7 AR _

arbitrary time 7 and splittingt as stated, the perturbative bExgx(—l)q“SIH((ﬁ)- (32

solution can be written as

These parameters and b play a crucial role because they
determine the behavior of the solutions to the set of general-

G(t,7)=c(n)+ X, [An(7)sin(nt/A) ized Moore’s equations. There are four distinct cases. The
n=1 simplest one is foa=b=0, which happens, for example, for
t— 7 equal amplitudesA| =Ag, zero dephasing, and even fre-

+Bn(7)cognmt/A)]+ a quencies. In this case there is no secular behavior at the level

of the perturbative solutions Eq&5) and (26), which are

then valid also for long times. The energy inside the cavity
1+ 772 n oscillates around the static Casimir value and there is no

n=t motion-induced radiation. A second caseais 0 andb=0,
which occurs, for example, for equal amplitudes, zero
dephasing, and odd frequencies. In this case secular terms do
appear in the perturbative solutions and the RG method is
t—7Ar 1 useful for finding the long time behavior, which shows an

te— X{sm( d)+(—1)9" sin(qmt/A+ @)} exponential increase of the energy in the cavity and motion-
induced photons. This case will be the subject matter of the
next section. A third case ia=0 and b+ 0, which takes
place, for example, for a static left mirré =0 and dephas-
ing ¢= /2. Here there are also secular terms at the pertur-
bative level, and for long times the energy does not grow
exponentially but quadratically, photons also being gener-
ated. We shall deal with this case in the Sec. V. Finally, the
casea+ 0 andb+#0 is similar to the second case in that there
is motion-induced radiation and an exponential increase of
the energy. We shall not cover this case in detail, since the
expressions for the solutions to Moore’s equations are cum-
bersome.

t_TAL

+ €A sin(qat/A)

X[Ap(T)cognat/A)—B,(7)sin(nat/A)]

x[ 1+7721 n[A,(7)cognat/A)

—B,(7)sin(nmt/A)]} +eg(t, 7) + eg®(t,7),

where the bare parametecs A,,, and B, have been re-
placed by their renormalized counterpasts), A,(7), and

(1) (2) i
B(7). Hereg'™(t,7) andg™!(t, 7), respectively, denote the ="\ \ o <ove the RG equatiori8)—(30). The solution

functions g¥(t) and g®(t) with the same replacement. L _ - )

Note that these functions are no longer periodic due to th(faor cis trivial, C(T)_[UA+(_E/A)(AR_/Z_\)Sm@)]TfK’ with

RG improvement. K a Sonslant to be determined. Writig,=A,—A_, and
Since the timer is arbitrary, the solution fo6 should not B,=Bp+B_, the new variables satisfy

depend on it, which implies the following RG equation

(0G/97);=0. In our case it consists of three independent AN(T) 2

equations =

a0mq—2(— 1) 'bmBy,+(m—q)

T _;

) _ 2,2 Cherproe 28 AR
o A t-(D (€9, (28

X[a‘Am+q+bEm+q]+o(62)v (33
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Bn(7) 2 ~
E— —1)a+1 _
P 7Tb5mq+2( 19" *bmA,+(m—q)

X[aBy_q+bAn_q]+(Mm+0)

X[ —aBnyy g+ bAnql+O(e?). (34)
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- i tanH(qar)f (1—ib/a)’
mTATwd) | [1+i(—1)9 Y(bla)tanigar) |

B (1+ib/a)!
[1—i(—1)%"Yb/a)tanHgan) ]|’

(40)

The initial conditions for these differential equations are\herej e N. Note that sincéA,-o=B,-o=0, the original

dictated by the perturbative solutia{0)=A,(0)=B(0)
=0. This implies that the constartis zero. In order to solve

for A, andB,,, we first decouple the equations through the

transformationC,,=A,,—iB,, and D,,=A,+iB,,, and in-
troduce a generating function® (s, 7)=3,,s"C(7). It is

easy to see that this functional verifies the following differ-

ential equation;

oM 2
= T (a—ib)s9+[—2i(—1)9+1 —ip)gdtl
P 7_r(a ib)s+[—-2i(—1)9"*bs+(a—ib)s

—(a+ib)sl‘q]%, (395

with boundary conditioiM (s,7=0)=0. The solution can be
obtained by proposing an ansatd(s,7)=®[e "a(S)]
+ B(s), where®|[ ...],a(s), andB(s) are functions to be

coefficientsA, and B, are equal to thé\,,'s andB,,’s, re-
spectively.

The expressions for the RG-improved coefficients ensure
that the solution folG andF does not depend on We still
have the freedom to choose the arbitrary timat will, and
the obvious choice ig= 7, since in this way the secular
terms proportional tot— 7 disappear. Given the RG-
improved coefficients, we still have to plug them into Eqg.
(27) and perform the necessary summations to finally get the
RG-improved solution&(t,t) andF(t,t).

For a general dephasing, the resulting expressions are
rather lengthy, so in the next two sections we will concen-
trate on particular cases. First, we study the case of dephas-
ing ¢=0, which corresponds to translational modes, and
dephasing¢é=m, which corresponds to breathing modes.
Second, we analyze a case with only one mirror oscillating,
similar to the one we studied if15], but with a dephasing
¢= /2, which gives qualitatively different results.

determined. We shall not dwell on the details of finding these
functions, but suffice it to say that the last two are straight-

forwardly derived after introducing the ansatz in E85),
while the first one is obtained once the initial conditionMn
is imposed. The solution reads

2
M(s,7)= —(i(~ 1)9*1gb7—In coshgar)

—In{[1+i(—1)%"Y(b/a)tanigar)]

—(1—ib/a)tanh(gar)s’}). (39

Expanding this solution in powers &f (and doing the
same for its complex conjugatewve get to our final objec-

tive, i.e., the coefficientd,,, andB,,. The only nonvanishing
coefficients are

A”“qu-riq{_ 2 In cosligar) —In[1+i(b/a)tanHga7)]

—In[1—i(b/a)tanhgar)]}, (37

Bm=O:ﬂ_I_q(_ 1)9*Y2igbr—In[1+i(b/a)tanhgar)]

+In[1—i(b/a)tanhqar)]}, (38

- _tanH'(qar)J (1—ib/a)’
" mq) | [1+i(—1)9 Y(bla)tanigar) ]

. (1+ib/a)
[1—i(—1)9"Yb/a)tanHgar) ]|’

(39

IV. TRANSLATIONAL AND BREATHING MODES

In the present section we consider that the cavity has
translational modesg=0), or that it has breathing modes
(¢=m). For the particular case of equal amplitudés
=Ag, the former type of motion corresponds to the cavity
oscillating as a whole, with its mechanical length kept con-
stant(pictorically called an “electromagnetic shakef20]),
while in the latter type of motion the mirrors oscillate sym-
metrically with respect to the center of the cavity, the me-
chanical length changing periodicallfan ‘“antishaker”).
Both for translational and breathing modes the expressions
for the coefficients in Eqs37)—(40) simplify considerably
becausd =0, and the summations to get the functiéhand
F are straightforward. Setting=7 in Eq. (27), we get the
RG-improved solutions

2 _
G(t,t)= %— W—qlm IN[1+¢+(1— )€™ ]+ eg™P(t,t)

+eg?(t,1), (42)
AL
F(L)=G(t) +2e
X Si t/IA 2
|
T A (1= P cotqmt/A)
(42)

where we have definegl=exd 2gat]. The (now nonperiodit
RG-improved functiong*)(t,t) andg®(t,t) are
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AL z+A 20 '
Dt t)= — —= A
oMt =-+— .
—_— G(t) /’
27 ---- F(1) /
XSi ’ﬂ't/A ’ d
na )1+§2+(1—§2)cos{qwt/A) 1ol 2 |
43)
Ar &
@(t ty=5(—1)9+1_R
0.0 ]
Xsin(qmt/A) 2
sin(qr )
a 1+ %+ (1- %) cogqmt/A)
(44)
-1.0 : ‘
. _ -1.0 0.0 1.0 2.0
where, in the last formula, the upper sign corresponds to YA

=0 and the lower sign t@o=7r. These solutions foG and

F are qualitatively similar to the one we obtained in the case FIG. 1. G(t) andF(t) vst/A as given by Eqs41) and(42) for

for one oscillating wall with zero dephasiid5]. For the small tir_nesq_|a|t/A<1. the that the _functiorh‘-(t) departs fr_om
same reasons described in that reference, both RG-improvdge straight line at=0, while the functionG(t) departs from it at
nonperiodic functions give negligible correctionsGeandF t=A, as dictated by the |n!t|al boundary conditions. The parameters
in the long time limit € *<t/A<e 2). However, they are '€ those for a shaker with, /A =Ag/A=1, q=3,$=0, ande
crucial for the solution to satisfy the correct boundary con-— 003

ditions at short timest(A<e~1). . . .

The energy density inside the cavity is given by E).in The energy density builds up a number gftraveling
terms of derivatives ofG and F. Since these expressions Wave packets which become narrower as exgifalt) and
involve second and third derivatives of these functions, andligher as exp@alt), so that the total energy inside the cav-
since there is an initial discontinuity of the velocities of theity grows like exp(2alt) at the expense of the energy
mirrors, the energy density will develapfunction singulari- Pumped into the system to keep the mirrors moving as pre-

ties that will be infinitely reflected back and forth betweendetermined. In Fig. 3 the profile of the energy density inside
the mirrors. In what follows we will ignore these the cavity ata fixed time is depicted. We compare the case of

singularities® the shaker with that of a single oscillating mirror. The dif-
The structure of the electromagnetic field within the cav-ference in height and width of the peaks between these two

ity at long times strongly depends on the relation amongpituations is due to the fact that the paramedefor the

amplitudes, frequencies, and dephasings. If these are Suéha!(er is twice that of the single mirror. This reflects how the

that the coefficien is equal to zerdremember that for the Cavity can enhance vacuum radiation.

motions considered in this section the other coefficteit A rather different picture appears when one considers the

always nul), then there is destructive interference. For equafl=1 case, which corresponds to an oscillation frequency

amplitudesA| = Ag, this takes place for evemand dephas-

ing ¢=0, or for odd q and dephasingp==: all RG- 15.0 '

improved coefficientsA, and B,, are null, and there is no

motion-induced radiation enhancement whatsoever. If, on

the other handa# 0, then we have constructive interference,

which, for A  =Ag, is maximal for oddq and ¢=0, or for

evenq and ¢=0. Radiation enhancement takes place: the

electromagnetic shaker and antishaker have “explosives

cocktails” at long times. In particular, fog=2, the RG so- = 4100 i

lutions G(t,t) and F(t,t) develop a staircase form. Within &

regions oft between odd multiples ok, there are a total of

g jumps located at values offor which the argument of the

logarithm in Eq.(41) vanishes, i.e., cog@t/A)=*1, where

the upper sign corresponds &3>0 and the lower one ta

<0. In Fig. 1 we show the form of the functio@andF for

short times and in Fig. 2 for long times. Note that in the long 50

time limit they are practically the same. 5.0 100 15.0
t/A

FIG. 2. G(t) andF(t) vst/A as given by Eq941) and(42) for
“These singularities are, of course, artifacts of the sudden approxieng timesg|a|t/A>1. At these times both functions coincide and
mation we are using to describe the motion of the mirrors=ad. take a staircase profile. The parameters are the same as in Fig. 1.
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250.0 ' Having now the form of the solutions for times after the
stopping of the walls, we can calculate the Bogoliubov coef-
ficients for late time$/A >T/A> e~ ! in a manner similar to
that of[12]. Let us split the solutiorG(t) in Eq. (41) in the
form G(t)=G4(t) +G,p(t), where the first part isGg(t)
=t/A—2/(wq)ImIn[1+{+(1— 9™ ] and the last part in-
volves the RG-improved functiong® and g®. From a
graph of these nonperiodic functions and of the difference
betweenG(t) andF(t) one can see that, for long times, they
50.0 | are all bounded, much smaller th&, and that they are
effectively zero except in small time intervals which tend to
] j! | zero as time increases. Therefore, we can drop their contri-
\] - iV bution in the imaginary exponents of the integral representa-
tion of the Bogoliubov coefficient, and get

150.0 - ]

A2<Tw>

-50.0

0.0 05 1.0
WA 1 m (t/A+1 )
,Bnm(t,T)=§ Py dxexp{—i7[nGg(Ax)+mx]}.
FIG. 3. Energy density profile between plates for fixed time YA—L (46)

t/A=15.4. The solid line corresponds to a shaker wih/A

=Ar/A=1, q=3, ¢=0, and e=0.01. The dashed line corre- The f tionG. h first t i in ti d d
sponds to a cavity with a single oscillating mirrgk (=0) with the € Tunctiontss has a first term, finear in ime, and a secon

same parameters. Note that the height of the peaks for the shakgpef' Whic_h for late times becomes an qscillati_ng _functior_1, its
grows as exp(#get/A), while that for the single mirror grows as Period being 2/q and the amplitude of its oscillations being
exp(2rget/A). independent ofe. Then the Bogoliubov coefficient can be

rewritten as follows

equal to the lowest eigenfrequency of the cavity. In this case 1
the energy do_es not grow exponentially, but oscillates around (tT)= E Tefiﬂ-(ner)(t/Afl) 2 o i M2k
the static Casimir value. nmtt 2 =

Now we calculate the number of motion-induced photons
inside the cavity. We assume that before the mirrors started 2/q (0 M (0]
to move the state of the field was vacuum, and that at time X 0 dxe ' (47)
t=T, when both walls come once again to réste define a
new vacuum, in which there is an amount of real photons . _ _
given by the Bogoliubov coefficients E¢LO). To calculate V_V'g;( Ig;_a Tzé(qg)flgtwgrlzgg(tlo tie);%(:g?c())]’ eérafg(rjmg the
these coefficients at a tinte>T we need to know the form <P ' 9 P

for the functionsG andF in the corresponding time intervals :‘Etri:gt:gi fwsawgi;gra}aﬁ;e%?n\/\ggss\}'eniﬁ;?gﬁtrr%):'emg:c:ﬂgogat::
as they appear in the integral expression @€). ' '

To this end let us discuss briefly how the RG-improveda<0’ for which/—0 at late times. From the graph of (x)

solutionsG(t,t) andF(t,t) match the solutions to the prob- one can see that it can be approximated by
lem of motionless walls fot>T. The nonlocal structure of . 1
Moore’s equation implies that the solution fe(t) is the RG —(1—qd)x for 0=x<--—24,
one F(t,t) up to t<T, and that forG(t) is the RG one
G(t,t) up tot<T+A. Also, evaluating the Moore equation _ 1 1
for timest=T, it follows thatF(t)=G(t) for t=T. Finally, f(x)=4¢ — q—5(1—q6)2(x— q
for t=T+ A both Moore equations can be combined to ob-
tain the usual equation for a static cavity, &gt)=F(t) —(- 5)()(_ E)
=t/A+A(t), whereA(t) is a 2A-periodic function that we L q q
must determine. If due care is taken of the boundary condi- (48
tions at the moment when the walls stop, it is easy to see that
this function can be written by periodizing the RG-improved where 5:2\/5/((17,)_ With this approximate form the inte-
functionsG(t,t) andF(t,t) as follows: grals become trivial, and after neglecting the integral over

the middle interval which is proportional # one can get a
F(T+2T+2z) for —A<z<0, closed expression for the Bogoliubov coefficient, valid for
G(T+2z,T+z) for 0=z=A, md<<1. For the particular casg=2 we get

(45)

1 1
for ——dsx<s—+ 9,
q q

1 2
for —+o0<sx<—,
q q

A(t=T+2A+2)=

=A(t+2A).
andA(t) =A(t+2A) As we have anticipated, the dependence of the Bogoliubov coef-

ficient on the time>T is just a phase.
"The casea>0 gives similar results for the amount of created
SFor the motiond_(t) andR(t) we are considering in this section, particles. The technical difference is that siee « for late times,
this happens for time$ such thafT/A =2k/q, (ke N). the approximate function is different.
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m 1—(—1)™cog2mné) latter case. Photons are created in the odd modes only,
|ﬂnm(T)|2:—2[1+(— )M > ) whereas their amount in even modes is z@ranay be dif-
na (m+2mno) ferent from zero in the next-to-leading-order approximation

(49 This situation is typical of processes involving parametric

Next we need to calculate the sum owven order to find the excitations12]

amount of motion-induced photons in théh mode after the
stopping timeT. Using the summation formulas ¢12] we

get In this section we discuss another particular motion of the
walls, namely one for which the left mirror is static and the
In(m) _(_1)m|n(i” (50) right one oscillates resonantly, with a dephasigg /2.
26 2wd) | The motion we consider is then R(t)=A
—2eAgsir?(qmt/2A), which for q=2 corresponds to the
Recalling thats is a function ofT and taking thel derivative  small e expansion of an exact solution to Moore’s equation
we find the rate of photoproduction studied in[8]. Our motivation for studying this peculiar case
is that for this motion we hava=0 andb# 0, which, as we
have anticipated, gives qualitatively different physical re-
sults.

The expressions for the functior®(t,t) and F(t,t) are
These results are valid faT/A>1 and not for very large obtained taking the limia—0 of Egs.(37)—(40). The result
wave numbersnd<18 The number of photons per mode is
grows linearly in the stopping time and the rate, for late

V. A DEPHASED OSCILLATING BOUNDARY

1
Nm(T): >
m

dNi(T)  2a i
T (-1 (51

times, approaches an asymptotic value that depends on the B ot 2 igbteldm/A
value ofa, i.e., on the relation among amplitudes, frequency, Gty=F(tt)= A—eﬁ—w—qlm Inj 1- 1—i(—1)9"1gbt
and dephasing. Both for the shaker and the antishaker,
motion-induced radiation is enhanced in comparison to the + €g'?(t,1), (52
case of a single oscillating mirror in a cavity. Indeed, in the
former cases the rate of photoproduction is twice that of the g(t,t)=0, (53
|
_1\9+1
g2t )= — ﬁ 1+(—=21)9"*cogqmt/A) 1 (54)
A 1+ 2qbtsin(gat/A)+2(gbt)2[1+(—1)9 L cogqmt/A)]

where A=A (1—€eAr/A) is the time-averaged length of form T/A=(2k+1)/(2q)(ke N). This choice for the stop-
the cavity fort>0. ping time simplifies the computation of the Bogoliubov co-
The solution G(t,t) develops a staircase profile, the efficients8,n,. In such a case E@46) is slightly modified,
jumps being located at values pfor which the argument of
the logarithm in EqQ.(52) vanishes, i.e., for cogft/A)= 1 /m (tAegt+1
+1, where the plus sign corresponds to egeand the minus Bom(t, T) = i\fﬁft
sign to oddg. The energy density for this type of motion also
consists of a series ofpeaks that travel between the mirrors. Xexp{ —im[NGg(Aerx) +mx]}. (55
The qualitative difference is that in this case the height of the

o ) . : :

peaks grows asqbt)®, their width decreases asilft) >,  Now G, consists of the first two terms of E(52), the first
and the total energy contained in the cavity grows quadratipeing linear in time and the second one being an oscillating
cally rather than exponentially. This follows from the fact fynction for late times, whose period is\2q. The Bogoliu-
that time enters into the logarithm of EG2) as a power law oy coefficient can also be rewritten in a way similar to Eq.

dx
IAgf—1

instead of an exponential, as in E¢41) and (42). (4
Next we calculate the amount of motion-induced radiation
for this case. To this end we assume that at timel the 1 m q-1
wall comes to restR(t) = A¢y for t=T, whereT is of the — _\/: —im(n+m)(t/Ag—1) —im(n+m)(2/q)k
e Bt T) =5/ 1@ go e
2[q ) ‘
8There is a further restriction that comes from the fact that we are X dxe Lt mx+nfeo] (56)

using a sudden approximation for the motion of the mirrors at 0

=0 andt=T. Indeed, if we assume tha{ is the characteristic time _ . _
for the mirror to come to rest, the sudden approximation will besince in the intervallt/ A ¢— 1t/ A o+ 1] there are a total of
valid for modes such thah<A/r. q(Ae/A)~=q periods. Here
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iqueﬁxeiqwaeﬁIA

1—i(—1)9"1gbA

2
f(X)=——ImIn| 1—

g . (57

The piecewise linear approximation for the functibis in
this cas@

for 0=x<3,

(1 5)( 2) ! for & 2

- 1=~ Xx——|—— for ésx=—,

21 a/ q q
(58)

where 6=[qm(qbT)?] <1 for late times. Now the inte-

gral in Eq.(56) is straightforward, and after dropping the

integral over the first intervdl0,5], which is proportional to
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We see that the number of photons per mode grows logarith-
mically in the stopping time, and as a consequence the rate
of photon creation decreases towards zero. Similarly to the
case of the vibrating cavity, photons are produced only in

odd modes.

VI. CONCLUSIONS

In this paper we have presented a unified and analytic
treatment of the dynamical Casimir effect in a one-
dimensional resonantly oscillating cavity for arbitrary ampli-
tudes and dephasings. We have derived a generalization of
Moore’s equation to describe the state of the electromagnetic
field inside the cavity with two moving mirrors. Using a
technique inspired by the renormalization-group method, we
have found a solution to the set of generalized Moore’s equa-
tions which is valid both for short and long times. The physi-
cal behavior of the moving cavity depends crucially on the

6, one can get a closed expression for the Bogoliubov coefrg|ation among amplitudes, frequency, and dephasing. We

ficients, valid as long asi6<1. For comparison with8] we
concentrate on the casg=2. In this case we have

2m 1-(—1)"cog3mnédl/2)
T)|?=—[1+(=1)™"] :
|Bar( T T iy o5

nm?
(59

Finally, we perform the summation overto get the number

of created photons in theth mode. Using the same summa-

tion formulas as if12], we get

In . (60

Zm) . ( 2
% —(—1) In m

Replacing the value fof and taking ther derivative, we get

2
Nm(T): >
mar

the following formula for the rate of photon production,

valid in the limitsmé<1 andeT/A>1:

dN,(T)
daT

—ﬁ[l—(—l) I+ (61

SWe concentrate on even frequencies, for whizhi0. For odd
frequencies, the results are similar.

have shown that for certain cases there is destructive inter-
ference and no radiation is generated. For others, there is
constructive interference and motion-induced photons ap-
pear. When this takes place, the way the energy within the
cavity and the number of created photons grow in time de-

pends on the relation among the above variables. For certain
motions the growth of the energy density is exponential and

for some others it is a power law.

We hope in the future to apply the RG method to more
realistic situations, such as three-dimensional oscillating
cavities with rectangular or spherical shapes.

Note addedRecently, we received a papl] in which
the problem of photon creation in a cavity with two moving
mirrors is analyzed using a different method. It is shown that
if the frequency of the vibrations is not exactly a resonant
one, photoproduction is highly suppressed for strong detun-

ing.
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