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Observation of the thermal Casimir force
A. O. Sushkov1*, W. J. Kim2, D. A. R. Dalvit3 and S. K. Lamoreaux1

Quantum theory predicts the existence of the Casimir force between macroscopic bodies, a force arising from the zero-point
energy of electromagnetic field modes around them. A thermal Casimir force, due to thermal rather than quantum fluctuations
of the electromagnetic field at finite temperature, was theoretically predicted long ago. Here we report the experimental
observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a
spherical plate for separations between 0.7µm and 7µm. An electrostatic force caused by potential patches on the plates’
surfaces is included in the analysis. Previous measurements of the quantum-fluctuation-induced force have been unable to
clearly settle the question of whether the correct low-frequency form of the dielectric constant dispersion for calculating
Casimir forces is the Drude model or the plasma model. Our experimental results are in excellent agreement (reduced χ2 of
1.04) with the Casimir force calculated using the Drude model, including the T = 300 K thermal force, which dominates over
the quantum fluctuation-induced force at separations greater than 3µm. The plasma model result is excluded in the measured
separation range.

There are four known fundamental forces: electromagnetism,
gravity, weak and strong interactions. The weak and strong
interactions manifest themselves on length scales on the

order of the size of a nucleus, whereas at larger distances
electromagnetism and gravity prevail. It may therefore come
as a surprise that two macroscopic non-magnetic bodies with
no net electric charge (or charge moments) can experience
an attractive force much stronger than gravity. This force was
predicted by Hendrik Casimir in the late 1940s, and now bears
his name1. The existence of this force is one of the few direct
macroscopic manifestations of quantum mechanics; others are
superfluidity, superconductivity, kaon oscillations, and the black
body radiation spectrum.

The first experimental test of Casimir’s prediction came within a
few years2, but the first ‘precision’ measurements were made in the
late 1990s (ref. 3), leading to renewed interest in this subject, both
for experiment and theory4,5. Casimir’s result, which he obtained
by adding up the zero-point energies of the electromagnetic field
modes of a cavity comprising two perfectly-conducting flat plates
of area A separated by distance d , gives the force between the two
plates at zero temperature:

FC(||)(T=0)=
π 2h̄c
240

A
d4

(1)

Note the presence of the Planck constant h̄, which indicates that
this is a quantum effect, which vanishes in the classical limit.
With some notable exceptions6, most Casimir force experiments,
including ours, are performed with one flat plate and one
spherical plate, to avoid the difficulty of aligning two flat plates
parallel to within fractions of a microradian. In the sphere-plane
configuration, the zero-temperature Casimir force for perfect
conductors can be deduced from equation (1) using the proximity
force approximation (valid when d�R; refs 7,8):

FC(T=0)=
2π 3h̄c
720

R
d3

(2)
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where R is the radius of curvature of the spherical plate, and d is
defined as the distance between the flat plate and the closest point
on the spherical plate.

Real-world plates, however, are never perfectly conducting,
but instead are characterized by a complex permittivity
ε(ω)= ε ′(ω)+ iε ′′(ω), a material-dependent function of frequency
ω. This modifies the zero-temperature Casimir force, which
now has to be calculated in the framework of the Lifshitz
theory9, based on the computation of the electromagnetic field
stress tensor, taking into account the correlated fluctuating
charges and currents in the plates. The Lifshitz theory has
been tested in experiments with <200Å-thick liquid-helium
films on cleaved crystal surfaces10, and measurements of the
short-range forces between plates of a number of metallic11–13
and semiconducting14 materials have been found to be in
reasonable agreement with the Lifshitz theory at plate separations
less than 1 µm. Repulsive forces have been observed between
metallic plates immersed in fluids, also in agreement with the
Lifshitz theory15,16.

When the Casimir force between a pair of plates at finite
temperature is considered, another source of the force arises—
thermal fluctuations of the electromagnetic field. According to
Bose–Einstein statistics, the population of an electromagnetic field
mode of frequency ω at temperature T is

n(ω)=
1
2
+

1
eh̄ω/kBT −1

=
1
2
coth

h̄ω
2kBT

where the first term describes the zero-point fluctuations, and the
second term is the thermal population for a gas of Bose particles
(photons); kB is the Boltzmann constant. This second term gives
rise to a finite-temperature term in the Casimir force FC(T ). At small
separations (d ∼< 1 µm at T = 300K) the thermal force is much
smaller than the zero-point force: FC(T ) � FC(T=0), but for large
separations (d ∼> 3 µm at T = 300K) the thermal force dominates:
FC(T )� FC(T=0). Although an analogous thermal Casimir–Polder
force has been measured between an atom and a surface17, the
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thermal Casimir force between two macroscopic objects has not
been experimentally observed until now.

The magnitude of the force FC(T ) has been a subject of intense
theoretical debate18–20. The controversy concerns the form of
the behaviour of the complex permittivity ε(ω) of the plates at
low frequencies, and the related question of whether or not the
zero-frequency transverse-electrical (TE ω = 0) mode should be
included in the calculation of the finite-temperature force. If the
Drude model, εDrude(ω) = 1− ωp

2/ω(ω + iγ ) (where ωp is the
plasma frequency and γ is the dissipation rate), is used to describe
the low-frequency permittivity, then the TE ω= 0 mode does not
contribute to the finite-temperature force, the magnitude of which
at large plate separations is calculated to be (for a sphere-plane
geometry with d�R)

FC(T )(Drude)=
ζ (3)
8

RkBT
d2

(3)

where ζ is the Riemann zeta function, ζ (3)≈ 1.202. The use of the
Drude model, however, has been claimed to contradict the third
law of thermodynamics (Nernst’s heat theorem), as it seems to
give rise to finite zero-temperature entropy of the electromagnetic
field between the plates, if the plate material dissipation is allowed
to vanish in the limit T → 0, as is the case, for example, in an
ideal crystal19,20 (if the dissipation stays finite as T → 0, there
is no contradiction with the third law). To avoid this problem,
a different form of the low-frequency permittivity for the plates
has been proposed: εplasma(ω)= 1−ωp

2/ω2, known as the plasma
model. In this model, the TE ω = 0 mode does contribute to
the finite-temperature force, with a magnitude that at large plate
separations is double the Drude result:

FC(T )(plasma)=
ζ (3)
4

RkBT
d2

(4)

Some Casimir force measurements at small plate separations
(d < 750 nm) have been interpreted as being in agreement with
the plasma model21, although at such small separations the relative
difference between the Drude and the plasma model predictions
is very small. A calculation of the entropy of the electromagnetic
field in the plasma model gives zero at absolute zero temperature,
in agreement with the third law. Let us note, however, that the third
law of thermodynamics does allow for a non-vanishing entropy
at zero temperature for systems with a degenerate ground state22,
as is the case with glasses23. It is possible that the Drude model
with vanishing dissipation in the limit T→ 0 leads to a degenerate
ground state of the system due to persistent eddy currents (Foucault
glass)24. Equations (3) and (4) give only the leading temperature-
dependent term in the Casimir force; at 300K and at the larger plate
separations considered in our experiment this is the dominant term.

We report the measurement of the finite-temperature contri-
bution to the Casimir force between gold plates. The total force
between the plates measured in our experiment can be written as
the sumof theCasimir force FC(d) and the electrostatic force:

F(d,V )= FC(d)+πε0R
[
(V −Vm)2

d
+

Vrms
2

d

]
(5)

where ε0 is the permittivity of free space, and V is the computer-
controlled bias voltage applied between the plates. The ‘minimizing
potential’ offset Vm is due to the contact potential difference of
approximately 20mV between the two plates, caused by the several
solder contacts around the electrical loop connecting the two
plates. The second term in brackets is due to regions (patches)
of varying potential on the plate surfaces, caused, for example, by
spatial changes in surface crystalline structure, adsorbed impurities,
or oxides, and invariably present even on chemically inert metal
surfaces prepared in an ultra-clean environment25,26. The force

XYZ 
positioner

Pivot/suspension point
(pendulum grounded 
through torsion wire)

Piezoelectric transducer
with strain gauge

Capacitance bridge
and PID DC feedback

network

Computer
control

d.c. bias voltage
(from computer DAC)

  Force (voltage)
to computer ADC

Figure 1 | The top-view schematic of the torsion pendulum
experimental apparatus.

caused by these patches has been experimentally observed in, for
example, refs 14,27, and is characterized by the parameter Vrms,
related to themagnitude of the voltage fluctuations across the plates.
There are three length scales relevant to the form of the electrostatic
patch force: the plate separation d , the ‘effective interaction length’
reff =

√
Rd , and the typical patch size λ. As shown in ref. 28,

potential patches of size λ� d lead to an exponentially-suppressed
electrostatic force between the plates (∝ e−d/λ), which we neglect.
Potential patches of size λ ∼

> reff give rise to an electrostatic force
of the form πε0R(Vm(d)+ V1)2/d , where Vm(d) describes the
dependence of the minimizing potential on plate separation d , and
V1 is a constant29. We find that for the gold-coated plates used in
our experiment Vm is very nearly independent of d (variation is
0.2mV between 0.7 µm and 7 µm), therefore this additional force
is small compared to the experimental error, and we do not include
it in our data analysis. Finally, potential patches on the length scale
d� λ� reff give rise to an electrostatic force between the plates of
the formVrms

2/d , which is the last term in equation (5).
A top-view schematic of our torsion pendulum apparatus is

shown in Fig. 1 and described in detail in the Methods section. The
total force between the two plates is measured at 30 logarithmically-
spaced plate separations between 0.7 µm and 7 µm in a series of
383 sweeps, adding up to a total of 8 days of data taking. To find
the plate separation d , the force as a function of bias voltage V is
recorded at a fixed d . A parabolic fit to the force-versus-voltage data
is used to extract the separation d , and the offsetVm. This procedure
is repeated at separations of 0.7 µm and 7 µm, at intermediate
separations the bias voltage is set to Vm, eliminating the first term
in brackets in equation (5), and d is determined from the change
in the piezoelectric transducer strain gauge reading, pre-calibrated
in a separate series of direct measurements. The closest approach of
0.7 µm was chosen because of feedback instability at smaller plate
separations caused by the large force gradient3.

A systematic correction has to be applied to the data to take into
account fluctuations in plate separation d (ref. 30). The sources of
these fluctuations are surface roughness of the plates and pendulum
fluctuations, caused, for example, by apparatus vibrations. Surface
roughness measurements were performed with the Micromap
TM-570 interferometric microscope at the Advanced Light Source
Optical Metrology Laboratory31,32, yielding an rms roughness of
Sq ≈ 10 nm for the curved plate, and Sq ≈ 1 nm for the flat plate.
Vibrational fluctuations in d were measured by connecting an
inductor in parallel with the Casimir plates and monitoring the
resonance frequency of the resulting LC-circuit; rms fluctuations of
∼
<40 nmwere recorded. In addition, a statistical error of±10 nm in
the determination of d contributes in quadrature to the fluctuations
mentioned above.We take the total rms plate separation fluctuation
of δ= (40±20) nm. From the Taylor expansion of the Casimir force
about the mean plate separation, we deduce that a correction term
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Figure 2 | Experimental results for the total short-range force between
gold plates. The data have been binned for clarity, the vertical error bars
include contributions from the statistical scatter of the points as well as
from uncertainties in the applied corrections, discussed in the text. Also
shown are the four theoretical models for the Casimir force: (1) the Drude
model including the T= 300 K finite-temperature force (red), (2) the
plasma model including the T= 300 K finite-temperature force (green), (3)
the Drude model without the finite-temperature force, that is with T=0
(blue), and (4) the plasma model at T=0 (magenta). The data are plotted
as F×d on the y axis, so that the electrostatic force, proportional to 1/d,
appears as a constant offset on the plot. Inset: experimental data with each
of the theoretical Casimir force models subtracted, colour as above.
Electrostatic patch force πε0RVrms

2/d corresponds to a constant offset (up
to the small 1+(δ/d)2 correction). The fit to the Drude model points is
shown by the black line.

FC ′′δ2/2 has to be added to the theoretical force when comparing it
with experiment (the double prime denotes second-order derivative
with respect to d). In addition, as the same correction exists for
the electrostatic force, the plate separation d extracted from the
electrostatic calibrationwas corrected by a factor 1+(δ/d)2, and the
electrostatic patch forceVrms

2/d was corrected by the same factor.
The binned force data, corrected as described above, are shown

in Fig. 2. These data were taken with the bias potential set equal
to the offset Vm (determined at 7 µm), therefore, as shown in
equation (5), the recorded force is a sum of the Casimir force and
the electrostatic patch-potential force, given by the second term
in the brackets. Unfortunately an independent measurement of
this electrostatic force with the required accuracy is currently not
feasible. To perform such ameasurement, the local surface potential
has to bemeasured withmillivolt sensitivity andmicrometre spatial
resolution. Commercial Kelvin probes (used for measurements
in ref. 25, for example) lack the necessary spatial resolution,
as, to get an appreciable sample–tip capacitance, a tip size of
at least 1mm is needed33. State-of-the-art custom-built Kelvin
probes have achieved micrometre-scale resolution, but have an
electrostatic potential sensitivity of only 30mV (ref. 34). Therefore
the electrostatic patch-potential force has to be modelled and
extracted from our data. This is done by fitting the experimental
data with an expression of the form F(d)=FC(d)+πε0RVrms

2/d+
a, where FC (d) is the theoretical prediction for the Casimir force
with no adjustable parameters (see below), and the constant force
offset a is due to voltage offsets in measurement electronics; for
clarity we subtracted this offset from the displayed data. The two
fitting parameters Vrms and a are the only adjustable parameters
used in our data analysis.

We consider four theoretical possibilities for the Casimir force
between the gold plates: (1) the Drude model including the
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Figure 3 | The short-range force data corrected for an electrostatic force
with Vrms = 5.4mV. The error bars are the same as in Fig. 2. The reduced
χ2 of 1.04 demonstrates excellent agreement with the Drude model
including the thermal Casimir force at T= 300 K (red lines). The grey band
represents theoretical uncertainty in the Casimir force calculation from the
ellipsometry data; the force curve with Drude parameters ωp= 7.54 eV,
γ =0.051 eV was chosen for comparison with experiment (see Methods
section). The data are plotted as F×d2 on the y axis, so that the thermal
Casimir force, given by equation (3), corresponds to an offset of
97 pN×µm2, which dominates the force at large plate separations. In this
region the Casimir force is largely independent of the material properties of
the plates.

T =300K finite-temperature force, (2) the plasmamodel including
the T = 300K finite-temperature force, (3) the Drude model
without the finite-temperature force (that is with T = 0), and (4)
the plasma model at T = 0. The Casimir force for each of these
models is calculated using the Lifshitz formalism and the gold
optical permittivity data35, extrapolated to zero frequency using
the corresponding (Drude/plasma) model with the parameters
ωp = 7.54 eV, γ = 0.051 eV (details in Methods section). The
resulting theoretical force curves are shown in Fig. 2. Note that the
data are plotted as F×d on the y axis, so the patch-potential force
contribution leads to a separation-independent offset (up to the
small 1+ (δ/d)2 correction) of the experimental data points when
compared to the theoretical models.

The fit F(d) = FC(d)+ πε0RVrms
2/d + a is performed inde-

pendently for the four theoretical models. The best agreement is
obtained for the Drude model at T = 300K, with the reduced χ 2

of 1.04. The rms patch-potential fluctuation obtained from the fit is
Vrms = (5.4±0.1)mV, consistent with the magnitude of potential
fluctuations expected across a gold surface due, for example, to
work function variations28. The force offset obtained from the fit
is a= (−3.0± 0.4) pN. Having extracted the electrostatic contri-
bution to the force, and the offset, we can subtract them from the
experimental data, the remainder being the Casimir force, plotted
in Fig. 3 together with the theoretical prediction of theDrudemodel
at T = 300K. We plot F × d2 on the y axis, so that the 1/d2

finite-temperature force of equation (3) corresponds to an offset
that dominates the force at large plate separations (d ∼> 3 µm). The
experiment is in excellent agreement with the Drude model includ-
ing the thermal Casimir force. Note that the theoretical calculation
of the thermal Casimir force, which dominates at large separations,
is largely independent of the exact values of theDrude parameters.

The experimental data rules out the other three theoretical
Casimir force models. The reduced χ 2 obtained from the fit is: (2)
χ 2
= 32 for the plasma model at T = 300K (best fit Vrms= 3.0mV),
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(3)χ 2

=23 for theDrudemodel without theT =300K temperature
correction (best fit Vrms= 4.0mV), and (4) χ 2

= 43 for the plasma
model without the T = 300K temperature correction (best fit
Vrms = 3.6mV). Therefore our experiment rules out the plasma
model for the Casimir force between gold plates in the separation
range 0.7–7 µm, confirms the Drude model, and demonstrates the
existence of the T = 300K thermal Casimir force. The thermal
Casimir force drops off as T/d2, and therefore dominates over the
purely quantum T = 0 Casimir force (which behaves roughly as
1/d3, see equation (2)) for plate separations greater than 3 µm.

Methods
A torsion pendulum is suspended inside a vacuum chamber (pressure 5×10−7 torr)
by a tungsten wire of 25 µm diameter and 2.5 cm length. The force to be measured
is between the two ‘Casimir plates’, each coated with a 700Å (optically thick) layer
of gold evaporated on top of a 100Å-thick layer of titanium. One is a flat plate
mounted on one side of the pendulum, as shown in Fig. 1, the other is a spherical
lens (radius of curvature 15.6 cm, as measured with the Micromap TM-570
interferometric microscope at the Advanced Light Source Optical Metrology
Laboratory together with surface roughness, and found to vary by less than 2% over
the surface of the lens), mounted on a Thorlabs T25 XYZ positioning stage, which,
together with a piezoelectric transducer, is used to vary the plate separation d . The
attractive force between the plates creates a torque on the pendulum body that
is counteracted by a pair of ‘compensator’ electrodes on the opposite end of the
pendulum. The voltage that has to be applied to the compensator electrodes to keep
the pendulum stationary is proportional to the force between the Casimir plates,
with the calibration coefficient extracted from themeasurements of the electrostatic
force between the plates. Pendulum rotation is detected by a capacitance bridge
connected to the compensator electrodes, and a servo loop is used to apply the
compensator electrode voltage necessary to hold the pendulum in equilibrium (at
a fixed angle). A NdFeB magnet is placed under the pendulum body to damp the
swingingmodes of the pendulum. The experiment is placed on a vibration-isolation
slab, extending down to the bedrock below the building foundation. Subsequent
measurements indicated that a smooth long-term drift, which is subtracted from
the experimental data, is due to tilting of this slab (measured by an Applied
Geomechanics model 701-2A tilt meter), correlated with ambient humidity. Both
humidity and temperature were monitored using an Onset HOBOU12 data logger.
Temperature variations were less than 1 ◦C.

Ellipsometric measurements in the wavelength range 191–1,700 nm were
performed on gold-coated plates prepared identically to the ones used in the
force measurement apparatus. The resulting absorption and reflectivity data were
within a few per cent of the data given in ref. 35. To calculate the theoretical
Casimir force with the Lifshitz formalism, the data were extrapolated to higher
frequencies using the data in ref. 35, and to zero frequency using either the
Drude or the plasma model. The following ranges for the plasma frequency and
dissipation were explored: ωp = 6.85–9.00 eV, and γ = 0.02–0.061 eV, resulting
in theoretical force variation of up to 3%, shown by the grey band in Fig. 3.
The parameters ωp = 7.54 eV, γ = 0.051 eV were chosen for the theoretical
Casimir force that was compared to experimental data, as they best fit the optical
data given in ref. 35.
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