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Abstract. The radiation pressure coupling with vacuum fluctuations gives rise to en
ergy damping and decoherence of an oscillating particle. Both effects result from the
emission of pairs of photons, a quantum effect related to the fluctuations of the Casimir
force. We discuss different alternative methods for the computation of the decoherence
time scale. We take the example of a spherical perfectly-reflecting particle, and con
sider the zero and high temperature limits. We also present short general reviews on
decoherence and dynamical Casimir effect.

The understanding of the quantum-to-classical transition has been the subject
of extensive research[1 ,2]. The core of the problem is that the Hilbert space of
allowed states of a quantum system is huge, whereas the set of states with as
sociated classical properties is a tiny subset of the whole Hilbert space. Some
questions that naturally arise are the following: which mechanism is responsible
for the classical appearance of macroscopic and mesoscopic quantum systems?
How are those few classical states selected from the huge Hilbert space? The
common wisdom is that classicality is an emergent property induced on subsys
tems by their environment.

The interaction between a system S and its environment E creates eJ;ltangle
ment (i.e. non reducible correlations) between the states of the system and those
of the environment. Imagine that at a given time (say t = 0) the state Iljf(t))
of S+E is a product state, that is, there are no initial correlations. We have
Iljf(t = 0)) = Is)IE), where the first ket corresponds to the system state (assumed
for simplicity to be in a pure state), and the second one to the environmental
state, also assumed pure. When the two parts begin to interact, entanglement
is generally produced. This means that at a later time t, the state Iljf(t)) will be
given by a linear superposition of the form
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where {I Si)} and {lEi)} are states of the system and environment Hilbert spaces,
respectively. If the interaction is such that the states lEi) become approximately
orthogonal ((EnIEm) :::::: onm), then interference between the system states ISn)
and ISm) will not be observed. These set of states {lsi)} usually have classical
properties. Any quantum superposition of them is a non-classical state, and
quickly decays away into a statistical mixture of the states. The coherence of
the phase relation between the components of the superposition is lost, and this
process is accordingly known as decoherence. In other words, the environment
monitors the different classical alternatives for the system (the different states
lSi)), thereby providing which-way information, even though such information is
usually unaccessible to the observer. The set of states {lSi)} are called pointer
states [3], and they are the states within the huge Hilbert space of the system
that become less entangled with the environment. Perfect pointer states are
those that produce no entanglement at all, so that an initial product state of
S+E will remain a product state throughout the interaction time, which means
that those states are robust and stay unperturbed by the interaction. All this
will be illustrated in Section 3 in the particular case where the environment is
the radiation field at zero temperature (vacuum field) and radiation pressure is
responsible for the coupling between system (a mirror) and the environment.

A possible method to identify pointer states is called the 'predictability sieve
criterion' [4], which is based on the fact that pointer states are the ones that
produce least entropy and remain most pure. Let us explain these concepts.
The evolution of the closed combined system S+E is unitary, so that the purity
of the whole state 11ji) is preserved, i.e. P(PS+E) = Trp1+E = 1 for all times.
However, the purity of S is not preserved. To show it one needs to calculate the
reduced density matrix of the subsystem S by tracing out the environmental
degrees of freedom, PS = TrEPS+E, and then P(ps) < 1. The loss of purity
can be associated with a loss of information about the system state. When no
measurement involving the environment is made, the density matrix PS contains
the state of knowledge of an observer about the system, and purity is a measure
of that knowledge. Initially, there is full knowledge of the system state, which
is described by a single ket state. Subsequently, the interaction with the envi
ronment produces entanglement, and part of the information about the system
S is lost to the environment, causing a decrease in the purity of the system.
One can also measure the information content of PS through the von Neumann
entropy, S(ps) = - 'Il'ps log PS. Initially one has full information, and entropy
is identically zero; as time goes on, information is lost and entropy is produced.
Pointer states are least affected by the environment, so their information content
is preserved and hence they produce the least entropy. The idea is then to take
every state in the Hilbert space of S, calculate the von Neumann entropy at time
t produced via interaction with the environment starting from the given state
of the system, and order the initial states in a tower of increasing entropy. The
states that lie at the bottom of such a tower are candidates for pointer states.
Finally, one must check that those states remain at the bottom when the time
t when entropy is calculated is changed, so that the states are robust pointers.
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If one can satisfy these conditions, one gets the pointer states of the system S.
If not, there are no pointer states for the problem. When these ideas are put
into practice, it is more convenient to work with the linear entropy, defined as
S(ps) = 1 - P(ps) = 1 - Trp1·

The determination of pointer states for a given problem depends both on
the system and environment dynamics, as well as on their interaction, There are
three different regimes: 1) When the system Hamiltonian is irrelevant, pointer
states are given by the eigenstates of the system's operators contained in the
interaction Hamiltonian. A typical example is that of a measuring apparatus
(the system) that has no internal dynamics, measuring an external reservoir
(the environment), say a photocurrent. 2) When the system dynamics as well
as the interaction are relevant, pointers come from an interplay between the
two. The most thoroughly studied example is that of quantum Brownian motion
(QBM), in which a particle is coupled to a set of harmonic oscillators in a ther
mal state, thereby suffering decoherence [5]. Although the coupling between the
system and the environment is of the type position-position, pointer states are
not position eigenstates of the system because the self dynamics of the harmonic
oscillator interchanges position and momentum every quarter of a cycle. It turns
out that the interplay between interaction and self dynamics leads to coherent
states as pointers [6]. This second case is also the relevant one for this paper.
3) Finally, when the environment evolves much slower than the system, pointers
may correspond to energy eigenstates of the system's Hamiltonian [7].

In the above we have ignored the information contained in the environmental
state, and that is the reason why one traces over the environmental degrees of
freedom in order to find the reduced density matrix of the system. However,
the information lost to the environment could be, in principle, intercepted and
recovered. Performing measurements on the environment one may extract infor
mation about the decohering system. In [8] it is shown that the preferred pointer
states remain unchanged, even when that information is kept and modifies the
dynamical evolution of the system.

Another related way to study the dynamical process underlying in the quantum
to-classical transition is via phase space representations of the reduced quantum
dynamics for the system S. Among the many possible representations, one of
particular interest is the Wigner function W(x,p), which is defined as a Fourier
transform of the reduced density matrix. W(x,p) is a pseudo probability distri
bution in phase space, and encapsulates the quantum coherence of the system
in interference fringes that take both positive and negative values. Imagine that
one starts with an initial state for S which is highly non classical, such as a
cat state Icat) = 1/-)2"(la) + I - a)), where la) is a coherent state with large
amplitude (Ial » 1). The corresponding Wigner function will have interference
fringes, showing the quantum nature of the state. However, when the system is
put in contact with the environment and each component of the state becomes
entangled with almost orthogonal states of the environment, the interference
fringes will be washed out. In the end the Wigner function becomes positive
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defined, with two peaks at the values corresponding to ±O', as a true probability
distribution. Decoherence transforms the initial pure state into a mixture of the
two coherent states I± 0').

Unti! not very long ago the ideas of decoherence were restricted to the the
oretical domain. Recent experimental developments have succeeded in studying
in real time the process of decoherence in the laboratory, and have tested the
predictions of the theory. Here we shall mention a few experiments that have
been a hallmark in those developments. First, in the field of cavity QED, super
position states of photons and Rydberg atoms have been created within high-Q
microwave cavities. Cat states of around 3 photons have also been produced, and
it has been studied how they decay due to decoherence [9J. The coherence of the
state was monitored with the help of a measurement of correlations between two
consecutive atoms crossing the cavity [10]. Second, in the field of ion trapping,
methods for creating superposed motional states of ions were developed, as well
as schemes of environment engineering to protect those states from decoherence
[11]. Finally, it has been possible to push the size of the cat states further into
the macroscopic realm by generating a mesoscopic cat inside a rf-SQUID. The
two components of the cat correspond to superconducting currents moving either
clockwise or counterclockwise, each containing around 109 Cooper pairs [12J.

In what we have discussed so far decoherence has been portraited as a "good"
effect, in the sense that is responsible for the quantum-classical transition and the
appearance of our classical world. Decoherence can also have a "bad" role in the
field of quantum computation and quantum information processing. There one
performs logical operations making use of the superposition states of quantum
mechanics. For such operations to be successful it is very important to maintain
the relative phase between the components of the superpositions all along the
operations. If decoherence acts, it produces quantum errors that must be some
how corrected. Several methods have been proposed to minimize the effects of
decoherence (see [13] for an example in nuclear magnetic resonance).

The prototype calculation of environment ind uced decoherence is the heuris
tic position-position interaction Hamiltonian for describing quantum Brownian
motion, where the environment is taken to be a collection of harmonic oscilla
tors. Although such a model is quite useful for studying many physical processes
associated to dissipation and decoherence of a quantum system, the results that
follow from it do not apply to every situation. That is, it is necessary to per
form a case by case analysis in order to compute physical observables, such as
decoherence and damping rates, how they scale with the parameters of the sys
tem, the environment, and their coupling, etc. For usual environments (thermal
atoms, thermal light, phonons, etc.) it is in principle possible to design engineer
ing schemes to protect the state of the system from decoherence, for example by
reducing the coupling to the environment.

Then, the following question naturally arises: is it possible, at least in prin
ciple, to have arbitrarily weak decoherence? In this paper, we consider a funda
mental source of decoherence that cannot be 'turned off': the radiation pressure
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coupling with the vacuum field [14]. As reviewed in Sec. 2, any particle not com
pletely transparent unavoidably scatters vacuum field fluctuations. This type of
coupling is responsible for the Casimir effect. More generally, photons are cre
ated out of the vacuum field when moving boundaries are considered, an effect
known as dynamical Casimir effect or motion-induced radiation. In Sec. 3, we
show how the dynamical Casimir effect engenders decoherence. Our emphasis is
on the basic physical ideas, and most of the calculations are referred to [15], but
we also briefly discuss a model alternative to the one employed in this reference.

2 Dynamical Casimir Effect

The Casimir effect is perhaps the simplest and most striking effect of the quan
tum vacuum field (see [17] for reviews). The essential idea is that the boundary
conditions modify the spectrum of the radiation field, and thereby its zero-point
energy. This modification has direct physical consequences, leading, for example,
to an attractive force between two parallel perfectly-reflecting plates (of surfaces
A) and at a distance L, given by [18]

F = rr
2 n.c

240 L4 A.

A series ofrecent experiments [19] reported precision measurements of the Casimir
force in agreement with the predictions of Quantum Electrodynamics, although
more complete theoretical calculations, taking into account corrections due to
finite temperature and conductivity as well as to roughness and geometry of the
surfaces are partially yet to be done [20].

The Casimir force may also be computed by taking the average of the Maxwell
stress tensor over the field vacuum state [21]. This method suggests that the
Casimir force is itself a fluctuating quantity, as noted by Barton. Its fluctua
tions were first computed for plane perfectly reflecting mirrors [22], and later
for spherical and spheroidal particles [23]. More generally, any particle scatter
ing the radiation field is under the action of a fluctuating radiation pressure
force exerted by the vacuum field, even in the situations where the average force
vanishes (for example a single plane mirror at rest). The coupling responsible
for those fluctuations also gives rise to a dissipative force, when the particle is
moving in vacuum. Dissipation of the mirror's mechanical energy is needed to
enforce energy conservation, since the motion induces the emission of pairs of
photons (for reviews see [27][28]). Because of their common physical origin, fluc
tuations and dissipation are related by a very general result [29], whose most
known application is the Einstein relation between diffusion and friction coef
ficients for a Brownian particle in the high-temperature limit. This connection
provides a very useful tool for deriving the response to an external small pertur
bation from the fluctuations in the unperturbed case. Linear response theory was
employed by Jaekel and Reynaud to infer the vacuum radiation pressure force

-.
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on partially-reflecting moving mirrors in the one-dimensional (lD) case [30]. For
a single perfect mirror (position x(t)) the force is given by

For any situation of physical interest, the zero point energy is much smaller than
the rest mass energy: nwo « M c2• In this case, (3) has solutions corresponding
to oscillations damped at the rate

!I'

(2)

(3)

(4)

F= ~d3x
6?Tc2 dt3 '

nwor = ~wo« wo,

d2 x n d3x_ 2 +
dt 2 - -wox 6?TM c2 dt3 .

a result first obtained by solving the boundary conditions of a moving mirror in
the long wavelength approximation, and assuming the effect of the motion to be a
small perturbation [27]. Eq. (2) was also derived as the n -7 00 limit of a moving
half-space of refractive index n [32]. It also corresponds to the nonrelativistic
approximation of the exact result (for a perfect mirror) derived with the help of
a conformal coordinate transformation to the co-moving frame [33].

Since the wave equation in three dimensions is not invariant under a general
conformal transformation, only approximated methods are used in this case. The
dissipative force on a plane mirror was computed within the long wavelength ap
proximation for a scalar [27] and electromagnetic [34] field models. The angular
and frequency distributions of the emitted radiation were also computed for
a single plane moving mirror [35], a moving dielectric half-space [36] [37] and
two parallel plane mirrors [38]. Linear response theory was employed to derive
the dissipative force on moving spheres [39]. Small but otherwise arbitrary time
dependent deformations of an initially plane surface were analyzed with the help
of different approaches: linear response theory [40], long wavelength approxima
tion [41], and path integrals [42].

The magnitude of the dynamical Casimir effect may be illustrated with the
following example, which we shall discuss in detail in Sec. 3. We consider that
the 'mirror' is a particle of mass M in a 1D harmonic potential, such that the
oscillation frequency is woo From Eq. (2), the equation of motion reads

showing that the dynamical Casimir effect provides a tiny perturbation of the
free oscillations.

As could be expected, a larger effect takes place when field modes of a cavity
resonator are coupled to the moving boundaries, mainly when the mechanical
frequency lies close to a given cavity eigenfrequency. Moore considered a scalar
1D field inside a cavity where one of the mirrors follows a prescribed motion [11].
The field modes were formally built in terms of the solution of a functional equa
tion. This method was later developed [44] and extended to the case where the

l
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3 Decoherence and the Casimir Effect

where we have assumed that the field is initially in the vacuum state [0). The
oscillation gives rise to the emission of photon pairs at time t at the field modes
Al and A2, with probability amplitudes b(AI' A2' t) :

(5)

(6)

iIJ/(t = 0)) = la)IO),

IIJ/(t)) = la) (B(t)IO) + L b(Al,A2,t)I Al,A2)) ,
)11 ,>-2

two mirrors are set in motion [45]. The case of partially-transmitting mirrors
was also calculated, allowing for a reliable estimation of the orders of magni
tude for the rate of transmitted photons and the number of photons inside the
cavity at steady-state [46]. So far, few three-dimensional (3D) calculations along
these lines have been reported. A rectangular cavity made of perfectly-reflecting
moving mirrors [47] [48], and a spherical bubble with time-dependent radius [49]
were analyzed, the latter motivated by the problem of sonoluminescence.

In this article we only consider a single scatterer, so that no resonant en
hancement takes place. In this section, we have shown that the radiation pressure
coupling gives rise to energy damping of a particle scattering vacuum fluctua
tions. In the next section, we show that it also destroys the quantum coherence
of the particle.

Most treatments of the dynamical Casimir effect consider the particle that scat
ters the vacuum field (the 'mirror') to follow a prescribed motion (an exception is
Ref. [50], which considers fluctuations of position of a particle driven by vacuum
radiation pressure). In this article, however, we want to focus on the particle as
the dynamical degree of freedom of interest. More specifically, we analyze how
the radiation pressure coupling destroys the quantum coherence of an initial
superposition state of the particle.

We consider as before that the particle is in a harmonic potential well, cor
responding to a frequency of oscillation woo The connection with the previous
approaches, where the (classical) particle is assumed to follow a prescribed os
cillation, is made by taking a coherent quasi-classical state la) for the particle,
so that the combined particle-field state at t = 0 is

where B(t) is such that this state is normalized. As discussed in Sec. 2 (see, in
particular, Eq. (4)), the energy damping associated to the dynamical Casimir
effect is very small. This effect, and more generally the recoil of the particle, is
neglected in (6), where the particle state is assumed not to be modified. Even at
this level of approximation, there is decoherence, as we show by taking the initial
state of the particle to be the cat state Icat) = (Ia) + 1- a))/,J'2, an example
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(8)

(9)
1 1

td = 41al2 f'

(E(-)(t)!E(+)(t)) = 1 - 2 L Ib(Al, A2, tW
AI,A2

already mentioned in Sec. 1. It corresponds to the coherent superposition of
two wavepackets oscillating out-of-phase in the harmonic potential well. The
amplitudes b(>ll, A2, t) depend on the phase of the oscillation, so that they have
an opposite sign when we take the state I - a). Since the evolution operator is
linear, the complete state at time t is the superposition of the f.-h.-s. of (6) with
the analogous state for! - a). It turns out to be an entangled state of the form
discussed in (1):

li[I(t)) = la)IE(+)(t)) + 1- a)IE(-)(t)), (7)

with IE(±)(t)) = B(t)IO) ± L:A A b(Al, A2, t)!Al, A2)' These field states work as
I, 2

tags for the particle states, providing which-way information about the phase of
the oscillation. As time goes on, the information gets better defined, since

decreases as the probability for photon emission increases. When the emitted
photons are not detected, all the relevant information about the particle is con
tained in the reduced matrix p(t) = TrF(W(t)) (i[I(t) I), where the trace is taken
over the field states. Since the interference term is gradually washed out as a con
sequence of the photon emission effect and the corresponding entanglement with
the field, p(t) decays into the statistical mixture Pm = (la)(al + 1- a) (-al)/2.
The corresponding time scale td may be computed [15] from Eq. (7), and turns
out to be proportional to the energy damping time 1/r, which is related to the
two-photon probabilities by energy conservation:

Eq. (9) also holds when the coupling with the environment is described by a
heuristic master equation in the Lindblad form (derived with the help of the
rotating-wave approximation) [51], as well as in the case of position-position
coupling to a zero-temperature environment of harmonic oscillators, and has a
very simple interpretation [16J: if 1/r is the time needed to damp the energy
2lal2nwo, it corresponds to the emission of 21al 2 pairs of photons (each pair has
a total energy equal to nwo). On the other hand, coherence is much more delicate
than energy, since a single photon provides which-way information that destroys
the quantum phase of the cat state. Hence the decoherence time is the time scale
for the emission of a single photon. Since 41al 2 photons are emitted during the
time interval 1/r, the time for a single photon scales as in the f.-h.-s. of (9).

Eq. (9) only holds when lal » 1. In this limit, decoherence is much faster
than damping, justifying the approach of neglecting the decay of the amplitude
a of the coherent states in (6) and (7). This is of course in line with the idea
that in the 'macroscopic' limit weird non-classical states are extremely fragile
and difficult to observe. For truly macroscopic systems td is so short that no
experimental monitoring of the decoherence process is possible. However the
validity of Eq. (9) is restricted by the additional condition that decoherence is
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It is also possible to analyze the decoherence effect in a more complete the
oretical framework, where the dynamical radiation pressure coupling between

(10)

(11)

(12)

3 27r
td = (v/c)2 wo'

(
LlXO ) 2 1

td = 4 Llx r'

324 ( c ) 6 27r C 8 27r
td = (v/c)2 woR wo» (:;J wo'

where Llxo = JIi/(2Mwo) is the position uncertainty of the oscillator ground
state. Eq. (10) shows more explicitly that the decoherence rate scales as the
squared distance in phase space between the two components of the cat state. In
Eq. (9), the distance is expressed in terms of the squared difference Lla = 2a be
tween the amplitudes of the two coherent states I± a). Such dependence, already
experimentally observed in [9], was fully verified in [11]. Thus, the decoherence
rate is directly connected to the quality of which-way information, for the pos
sibility of resolving the two wavepackets is quantified by the distance between
them divided by their width Llxo.

The second factor entering in the r.-h.-s. of (9) is the damping coefficient
r. Rather than a phenomenological constant, here r quantifies the strength of
the radiation pressure coupling to the vacuum field, and is calculated from first
principles. As discussed in Sec. 2, it may be obtained directly from the expression
for the dissipative radiation pressure force on the particle. In the ID case, r is
given by Eq. (4), which jointly with Eq. (9) yields

slower than the free oscillation (this condition is fulfilled by the experiments [9]
[11] discussed in Sec. 1). In this regime, the particle oscillates several times in the
potential well before coherence is lost, and the I.-h.-s. of Eq. (9) may be written
in terms of the distance Llx = 2J21i/Mwo lal between the two wavepackets when
they are at their turning points (M is the mass of the particle):

where v = J2tiwo/M lal is the velocity of the wavepackets at the moment they
cross the bottom of the potential well. Therefore, in the nonrelativistic limit
considered in this paper, decoherence is much slower than the free oscillation.
The ratio between the two time scales is even larger when considering the real 3D
case. If we take a spherical perfectly-reflecting particle of radius R smaller than
the range of oscillation, then woR/c < vic « 1. Since the relevant field modes
have frequencies of the order of wo, in this limit the particle is much smaller than
typical wavelengths (Rayleigh scattering regime), and hence is weakly coupled to
the field. The dissipative force in this regime was calculated in [39]; the resulting
damping coefficient scales as the squared polarizability of the sphere, leading to
an additional factor (wOR/c)6 :
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(13)

(15)

Hint = -xF,

I7FF(t) = ({F(t),F(O)}),

P 02W 02W
OtW=-MOxW+Mw62xopW+2rOp(pW)+Dl Op2 -D2oxOp' (14)

particle and field is fully taken into account. This approach also accounts prop
erly for damping of the particle's energy, as well as for additional effects resulting
from the coupling with the field. Moreover, it allows us to analyze decoherence
in the more general case of an arbitrary temperature of the field. An ab-initio
Hamiltonian model for the particle-field system was derived from first principles
in Ref. [26]. This model was the starting point for the discussion of decoherence
in Refs. [14] and [15). The field scattering corresponds to frequency dependent
reflection and transmission coefficients that satisfy the passivity requirements
discussed in [52]. This means that the dynamics of the particle does not suffer
from the instabilities associated to the model of a perfect mirror (as well known
from clas$ical electron theory, Eq. (3) is plagued with 'runaway' solutions).

Here we describe the radiation pressure coupling with the alternative, more
intuitive model, where the interaction Hamiltonian corresponds to the energy
transfer between field and particle:

Decoherence Effects of Motion Induced Radiation 119

where F is the radiation pressure force on the particle, and x its position. This
type of model was extensively employed in several contexts associated to the
dynamical Casimir effect [27]. Here we focus on the limit where the particle
perfectly reflects the (lD) field, but a discussion of partially-reflecting mirrors
along these lines is also possible. As shown below, it leads to results for the
decoherence and damping rates in agreement with those found in Ref. [15].

Starting from (13), we derive a master equation for the reduced density ma
trix of the particle. It is similar to the master equation for QBM, derived from
the position-position interaction Hamiltonian. Technically, the essential differ
ence arises from the fact that the force operator F in (13) is quadratic in the
field operators, which leads to a damping coefficient that depends on the state
(and hence temperature) of the field (reservoir). Although the formalism relies
on a 1D model, the final results may be generalized to the 3D case.

We write the master equation in terms of the Wigner function W(x,p, t) :

The first two terms in (14) correspond to the harmonic oscillation in the potential
well, with a frequency Wo = Wo + 6w modified by the coupling with the field (on
the other hand, when the interaction Hamiltonian is linear in the momentum of
the particle, a mass correction appears [26]). The remaining terms describe non
unitary evolution. The damping as well as the diffusion coefficients D 1 and D2 are
time dependent and given in terms of correlation functions of the force operator.
The diffusion coefficients are related to the symmetric correlation function:

where the brackets denote the anticommutator, and the average is taken over
the field state (thermal equilibrium, temperature T).
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The term proportional to D2 in (14) yields a negligible contribution, so that
we focus on D 1 :

is a function peaked around w = Wo of width 211'/t. Clearly, for a time t long
enough, the function synct(w) is so sharply peaked that O"FF[W] is approximately
constant over the short frequency interval that contributes in the integral in
Eq. (16), and hence may be replaced by its value at w = woo In this case, we find

(16)

(17)
1

D1(t -+ 00) = 4'O"FF[WO]'

synct(w) = sin[(w - wo)t]
w -Wo

1 JdWD1(t)="2 211'O"FF[w]synct(w),

where O"FF[W] is the Fourier transform of O"FF(t) and

',i i'l;
• ' I I I: 'I' .
~. j i ) !; ri J

.,.1 , '1' II',.illl 'i I :lli~Hi

A sufficient (and also necessary at T = 0) condition for the validity of (17) is
wot» 1. In other words, for times much longer than the period of oscillation, the
field fluctuations at frequency Wo provide the dominant contribution to diffusion.

The damping coefficient is likewise connected to the average value of the
commutator of the force operator taken at different times (anti-symmetric cor
relation function). When the interaction Hamiltonian is linear in the operators
of the environment, as in the position-position model, the commutator is a c
number times a delta function (in time), and as a consequence, the damping
coefficient has a constant value that does not depend on the state of the en
vironment. As already mentioned, this is not the case for radiation pressure
coupling. In particular, the damping coefficient depends on the temperature of
the field, as could be expected having in mind the Stefan-Boltzmann law. At
zero temperature, we recover the result given by Eq. (4).

We calculate the pointer states using the predictability sieve criterion, dis
carding all information about the environment, as discussed in Sec. 1. We start
from the master equation, and evaluate the rate of change of linear entropy,
assuming an initial pure state. It is straightforward to show that the entropy is
minimized for minimum uncertainty Gaussian states, hence the pointer states
are the coherent states. This result agrees with the well-known fact that coherent
states provide the closest possible realization of a classical state of oscillation,
given the constraint imposed by the Heisenberg uncertainty relation. In short,
coherent states remain approximately pure because they do not entangle with
field states, at least for times shorter than the damping time 1/r, as shown by
Eq. (6).

On the opposite extreme in Hilbert space, superpositions of coherent states
are highly nonclassical and cannot last when the distance between the two com
ponents is large. This may be analyzed in detail from Eq. (14). The coherence of
the initial state is imprinted on the Wigner function in the form of an interfer
ence term Wint that oscillates in phase space. When the two state components
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are spatially separated by a distance Llx, the oscillation is along the axis of
momentum: Wint(x,p) ,...., cos(Llxpln). Thus, according to Eq. (14), diffusion
washes out this oscillatory term, the faster the larger the value of Llx. With an
additional factor of 2 to take into account the average over several free rotations
of the state in phase space, we find

In order to complete the evaluation of the decoherence time, we need to
evaluate the damping coefficient r in the high temperature limit. We consider
as before a sphere of radius R, which is usually much larger than typical field
wavelengths, which are of the order of ncl(kT) (except for very low temperatures
or very small spheres). In this short-wavelength regime, the radiation pressure

,IJ

(18)

(19)

(20)

n2

D1 = 2MkTr.

td = 2 D 1(Llx)2'

More generally, we may derive a relation between diffusion and damping coef
ficients valid for arbitrary values of temperature [15], including T = 0, starting
from the general relation between symmetric and anti-symmetric correlation
functions (fluctuation-dissipation theorem).

The decoherence time for high T is derived by replacing (19) into (18). As we
discuss below, usually in this limit decoherence is faster than the free oscillation,
so that, contrary to the T = 0 case, there is no average over many oscillations
in this case. To describe the decoherence process, we must evaluate the diffusion
coefficient at a time t much shorter than td. Hence, we are allowed to use its
asymptotic value as given by the Einstein relation (19) only if we assume that
td » nl(kT). The resulting expression is very general [2]' and also holds in the
free particle case:

To derive the decoherence time when the field is in the vacuum sate, we compute
the correlation function O"FF[WO] at zero temperature. When replacing the result
for D 1 as given by (17) into (18), we obtain the same result already derived in
this Section by a more elementary method.

For finite temperatures, the spectrum is approximately constant at low fre
quencies, so that (17) also holds when WQ « kTIn (k is the Boltzmann constant),
including the free particle limit Wo = 0, provided that the entire frequency in
terval around Wo is contained in the low frequency part of the spectrum, which
corresponds to the condition 1It « kTIn. The damping coefficient may calcu
lated in the high temperature limit as well, and the results are in agreement with
Einstein relation

A2 1t - T
d - (Llx)2 F'

where AT = nlJ2M kT is the de Broglie wavelength of a particle of mass M
in thermal equilibrium. Eq. (20) has a form similar to (10), except that now
the reference of distance is set by thermal fluctuations instead of zero point
fl uctuations.
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4 Conclusion

(21)

(22)

F _ 41f
3 (kT)4 R2 dx

- - 45 Ji3 c4 dt .

45 Ji5 c4

td = 81f3 (kT)5R2(iJ.x)2·

Eq. (22) shows that the decoherence time depends strongly on temperature (the
same temperature dependence was found in Ref. [54]). Even at the temperature
corresponding to the cosmic background radiation, T = 2.7K, radiation pressure
is a very efficient source of decoherence. As an example, for R = lcm, we have
td = 2.7 X 10-21 j(iJ.x[m]) 2 s, which is in the nanosecond range for a separation
iJ.x = IjLm.

The force scales with the surface or cross section of the sphere, and is pro
portional to T 4 , in agreement with Stefan-Boltzmann law. As opposed to the
vacuum case, here we have a true friction force, i.e. proportional to the velocity
of the particle and not to higher-order time derivative as in Eq. (2) (the thermal
field is not Lorentz invariant).

In the free case (wo = 0), r is simply the coefficient multiplying the velocity
in Eq. (21) divided by M. Then, with the help of (20) we find

The master equation provides a complete description of the particle dynamics
when no measurement on the field is made. It accounts for the renormalization of
the oscillation frequency, damping, and diffusion and the associated decoherence
effect. It also allows for the determination of the pointer states, and all that for
any temperature T. On the other hand, the decoherence time scale at T = 0
may be calculated by a simpler approach, in which we follow the evolution of
the complete particle-field state, calculated with the help of the superposition
principle, and trace over the field at the very end. This approach explicitly shows
that decoherence results from entanglement between particle and field states.

The decoherence induced by radiation pressure coupling with vacuum fluc
tuations is a very slow effect, when compared with the the time scale of the free
evolution. Yet, it is remarkable, from a conceptual point-of-view, that classical
behavior of a macroscopic system emerges from the formalism of Quantum Me
chanics itself, even though in very long time scale, provided that the quantum
vacuum radiation field is taken into account.

P.A.M.N. thanks M.T. Jaekel, A. Lambrecht and S. Reynaud for discussions,
and CNPq, PRONEX and FAPERJ for partial financial support.

force may be calculated by replacing the surface of the sphere by a collection of
tangent planes, and the final result reads
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