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Abstract. The interaction between drifting carriers and traveling electromagnetic waves is
considered within the context of the classical Boltzmann transport equation to compute the
Casimir-Lifshitz force between media with small density of charge carriers, including dielectrics
and intrinsic semiconductors. We expand upon our previous work (Phys. Rev. Lett.
2008, in press; arXiv:0805.1676) and derive in some detail the frequency-dependent reflection
amplitudes in this theory and compute the corresponding Casimir free energy for a parallel
plate configuration. We critically discuss the the issue of verification of the Nernst theorem of
thermodynamics in Casimir physics, and explicity show that our theory satisfies that theorem.
Finally, we show how the theory of drifting carriers connects to previous computations of Casimir
forces using spatial dispersion for the material boundaries.

PACS number: 42.50.Ct, 12.20.-m, 78.20.-i

1. Introduction
Quantum vacuum forces acting between dielectric planar surfaces or between an atom and a
dielectric semi-space were computed long ago by Lifshitz [1] in terms of the complex frequency-
dependent dielectric permittivity ε(ω) of the material boundaries. In this original formulation
for ideal dielectrics, ε(ω) does not include contributions from current carriers, and as such can
be called the “bare” permittivity. Extensions of the Lifshitz theory to media with large free
charge carrier density, such as metals or highly doped semiconductors, are typically done by
adding a frequency-dependent conduction term, computed from the optical data of the material
and extrapolated to low frequencies by different theoretical models (e.g., a Drude-like term
i4πσ0/ω, where σ0 is the dc Drude conductivity). The finite temperature Casimir-Lifshitz force
is extremely sensitive to the optical response of the materials at low frequency, and therefore
different theoretical extrapolations have resulted in conflicting conclusions about the nature of
the Casimir force between metals and/or highly doped semiconductors.

Systems with small density of current carriers, such as insulators or intrinsic-semiconductors,
were recently considered by Pitaevskii [2] and by us [3]. In [2] the thermal Lifshitz force between
an atom and a conductor with low charge density was computed in terms of the Green function
formalism, taking into account the penetration of the static component of the fluctuating EM
field into the conductor. This approach is quasi-static, appropriate for the large distance regime
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of the thermal Lifshitz atom-surface interaction. The relevant (longitudinal) Green function,
expressed in terms of an auxiliary static potential field, can be computed assuming that the gas
of carriers in nondegenerate. The static potential satisfies the equation (∇2 − κ2)ϕ = 0, where
κ2 = 4πe2n0/ε0kBT . Here −e is the electron charge, ε0 is the static bare dielectric constant
of the medium (which does not take into account the contribution from current carriers), and
n0 is the (uniform) carrier density. Note that κ = 1/RD is the inverse of the Debye-Hückel
screening radius RD. For good metals the Debye radius is very small (on the order of inter-
atomic distances), while for insulators and intrinsic semiconductors it is much larger (on the
order of microns or more).

In [3] we have extended Pitaevskii’s calculation beyond the quasi-static limit and proposed a
theory for the Casimir interaction taking into account Debye screening and carrier drift based
on the classical Boltzmann equation. Rather than computing the force with the Green function
formalism, we use the form of the Lifshitz formula written in terms of frequency-dependent
reflection amplitudes rp

k,j(w) of the j-th material boundary. Here p denotes the polarization
of incoming waves (transverse electric TE or transverse magnetic TM). For simplicity, we will
assume that the material is such that there is no mixing of polarizations upon reflection (the
more general case can be treated replacing the reflection amplitudes by 2×2 reflection matrices).
The projection on the plane of the interface of the linear momentum of incoming waves is denoted
by k. The Casimir-Lifshitz pressure between two plane semi-spaces separated by a gap of length
d is

P (d) = 2kBT
∞′∑

n=0

∫
d2k

(2π)2
√

k2 + ξ2/c2
∑

p

rp
1r

p
2e
−2d
√

k2+ξ2/c2

1− rp
1r

p
2e
−2d
√

k2+ξ2/c2
. (1)

The prime in the sum over n means that the zero frequency n = 0 term has to be multiplied
by a 1/2 factor, and all reflection coefficients are evaluated at imaginary frequencies ω = iξn,
where ξn = 2πnkBT/~ are the Matsubara frequencies.

2. From Boltzmann transport equation to reflection amplitudes
In order to compute the appropriate frequency-dependent reflection coefficients for materials
with small density of carriers we will consider that the EM field interacts with the gas of
drifting carriers, and that these can be modeled as a continuum nondegenerate system. Under
these conditions, it is reasonable to model the carriers with the classical Boltzmann transport
equation coupled to Maxwell’s equations for the electromagnetic field [5, 6].

For a dielectric the carriers are charged particles (electrons or ions) hopping from site to
site of the crystalline array. For an intrinsic semiconductor, the density of carriers and hole
is equal, but their dynamics are different; however, in this work we treat them as dynamically
equivalent, which doubles the charge density. Assuming that there is no external applied field
on the material, and all fields have a time dependency of the form e−iωt, Maxwell’s equations
take the form

∇×E = iµ0ωH, ∇×H = −iε(ω)ωE + J, ∇ ·E = − en

ε(ω)
. (2)

Here n is the carrier density, µ0 is the permeability of vacuum, and J = −env is the carrier
current, where v is the mean velocity of carriers. The charge transport in the system is described
by the classical Boltzmann equation,

(
∂

∂t
+ v · ∇

)
v = − e

m
E− v2

T

n
∇n− v

τ
, (3)

where m is the effective mass of charge carriers, vT =
√

kBT/m is their mean thermal velocity,
and τ is the carrier relaxation time. Now we linearize Eq.(3) with respect to the ac fields.
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Writing the charge density as n → n0 + n(r)e−iωt, the current is J = −en0v (after discarding
the term n(r)ve−2iωt). Since by assumption there is no external field applied, there is no net
motion of charges, v0 = 0, so the term v · ∇v in Eq.(3) behaves as e−2iωt, and can also be
discarded. Finally, the linearized Boltzmann equation is

(
−iω +

1
τ

)
v = − e

m
E− v2

T

n0
∇n. (4)

Inserting n = −ε∇ ·E/e into this equation, we can solve for v:

v =
τ

1− iωτ

[
− e

m
E +

v2
T ε

en0
∇ · (∇ ·E

]
. (5)

Plugging this expression into Maxwell’s equations we derive the fundamental equation for the
electric field inside the material,

[
∇2 + µ0ε(ω)ω2

(
1 + i

ωc

ω(1− iωτ)

)]
E =

[
1 + iµ0ε(ω)

ωD

1− iωτ

]
∇ · (∇ ·E). (6)

Here ωc = 4πen0µ/ω, µ = eτ/m is the mobility of carriers, and D = v2
T τ is the diffusion

constant. Note that the frequency-dependent ratio ωc/D = 4πe2n0/ε(ω)kBT coincides with
κ2 = 1/R2

D in the quasi-static limit.
As we will show below, Eq. (6) allows TM and TE solutions, so that there is no cross-

polarization upon reflection on the material, and we can safely use reflection amplitudes rather
than reflection matrices in the Lifshitz formula. Let us assume that the material occupies the
semi-space region z < 0 and the region z > 0 is vacuum.

2.1. TM modes
For transverse magnetic modes ey = 0, so that the electric field is

E(r) = [ex(z)x̂ + ez(z)ẑ]eikx, (7)

where, from now on, we are omitting the phase factors e−iωt. Substituting this into Eq. (6) we
obtain two coupled second-order differential equations for ex and ez:

[
∂2

z + µ0ε(ω)ω

(
1 + i

ω̃c

ω
+ i

D̃k2

ω

)]
ex = ik[1 + iµ0ε(ω)ωD̃]∂zez,

[
−iµ0ε(ω)ωD̃∂2

z − k2 + µ0ε(ω)ω2

(
1 + i

ω̃c

ω

)]
ez = ik[1 + iµ0ε(ω)ωD̃]∂zex,

where ω̃c ≡ ωc/(1 − iωτ) and D̃ ≡ D/(1 − iωτ). It is possible to combine these two coupled
equations into two uncoupled fourth-order differential equations. To this end one takes the ∂2

z

derivative of the first equation above, which results in terms proportional to ∂4
zex, ∂2

zex, and
∂3

zez. This last term ∂3
zez can be obtained from taking the ∂z derivative of the second equation

above, which results in terms proportional to ∂2
zex and ex. Putting all together, one can derive

the following fourth-order differential equation for ex:

(∂2
z − η2

T ) (∂2
z − η2

L)ex = 0, (8)
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where

η2
T (ω) = k2 − µ0ε(ω)ω2

(
1 + i

ω̃c

ω

)
, (9)

η2
L(ω) = k2 − i

ω

D̃

(
1 + i

ω̃

ω

)
. (10)

In a similar fashion one obtains the following equation for ez:

(∂2
z − η2

T ) (∂2
z − η2

L)ez = 0. (11)

The solutions of these equations that vanish for z → −∞ are ex(z) = AT eηT z + ALeηLz and
ez(z) = A′T eηT z + A′LeηLz, where we assume ReηT > 0 and ReηL > 0. The amplitudes are
related as A′L = −iηLAL/k and A′T = −ikAT /ηT . Given this TM electric field, the associated
TM magnetic field can be readily computed, H = iŷAT eηT zeikx(k2 − η2

T )/µ0ωηT .
Now we compute the TM reflection amplitude, imposing the boundary conditions on the

z = 0 interface. These conditions are Ex, Hy, and εEz continuous (the continuity of Bz is
automatically satisfied for TM modes). On the vacuum side (z > 0) the condition ∇ · E = 0
implies ikex + ∂zez = 0, so that the fields incident on the interface from the z > 0 side are
Ein = E0[−(kz/k)x̂ + ẑ]eikzzeikx and Hin = −E0ωŷeikzzeikx/µ0kc2, where we have used that
in vacuum k2 + k2

z = ω2/c2. The reflected fields are Er = rE0[+(kz/k)x̂ + ẑ]e−ikzzeikx and
Hr = −rE0ωŷe−ikzzeikx/µ0kc2, where r is the reflection amplitude. The transmitted fields
into the material (z < 0) are Et =

[
(AT eηT z + ALeηLz) x̂ +

(
− ik

ηT
AT eηT z − iηL

k ALeηLz
)
ẑ
]
eikx

and Ht = iŷ(k2 − η2
T )AT eηT zeikx/µ0ωηT . Imposing the boundary conditions, and after some

straightforward algebra, the reflection amplitude can be written as r(ω) = (1−α)/(1+α), where
α = k2

iηLkz

[
1

ε(ω) −
ω2/c2

k2−η2
T

+ ηLηT ω2/c2

k2(k2−η2
T )

]
. Expressed along imaginary frequencies ω = iξ, the TM

reflection amplitude is

rTM
k (iξ) =

ε(iξ)
√

k2 + ξ2/c2 − χ

ε(iξ)
√

k2 + ξ2/c2 + χ
, (12)

where

χ =
1
ηL

[
k2 + ε(iξ)

ξ2

c2

ηLηT − k2

η2
T − k2

]
. (13)

Along imaginary frequencies, ηL and ηT take the form:

ηL(iξ) =

√
k2 +

4πe2n0

ε(iξ)kBT
+

ξ(1 + ξτ)
v2
T τ

, (14)

ηT (iξ) =

√
k2 + ε(iξ)

ξ2

c2

(
1 +

4πe2n0τ

mε(iξ)ξ(1 + ξτ)

)

=
√

k2 + [ε(iξ) + 4πσ(iξ)/ξ]ξ2/c2, (15)

where σ(iξ) = σ0/(1 + ξτ) and σ0 = e2n0τ/m are the ac and dc Drude conductivities,
respectively. Therefore, Eq. (12) gives a modified Fresnel TM coefficient due to the presence of
Debye-Hückel screening and charge drift in the material.

2.2. TE modes
For transverse electric modes ez = 0, so that the electric field is

E(r) = [ex(z)x̂ + ey(z)ŷ]eikx. (16)
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Substituting this into Eq. (6) we obtain two second-order differential equations for ex and ez:
[
∂2

z + µ0ε(ω)ω2

(
1 + i

ω̃c

ω
+ i

D̃k2

ω

)]
ex = 0,

[
∂2

z − k2 + µ0ε(ω)ω2

(
1 + i

ω̃c

ω

)]
ey = ik[1 + iµ0ε(ω)ωD̃]∂zex.

The solution to the first equation is ex(z) = Aeβz, where A is a constant and β2 = −iµ0ε(ω)ωD̃η2
L

(we assume Reβ > 0). Plugging this solution into the second equation we obtain ey(z) = BeηT z+
Ceβz, where C = ikAβ(1 + iµ0ε(ω)ωD̃)/(β2 − η2

T ) . Given this TE electric field, the associated
TE magnetic field is H = (1/iµ0ω)[−(BηT eηT z + Cβeβz)x̂ + Aβeβzŷ + ik(BeηT z + Ceβz)ẑ]eikx.

Now we compute the TE reflection amplitude imposing the boundary conditions on the
interface (the continuity of εEz is automatically satisfied for TE modes). On the vacuum
side we have ex = 0, so that the incident fields are Ein = E0e

ikzzeikxŷ and Hin =
E0(−kzx̂ + kẑ)eikzzeikx/µ0ω, and the reflected fields are Er = rE0e

−ikzzeikxŷ and Hr =
rE0(+kzx̂ + kẑ)e−ikzzeikx/µ0ω. The transmitted fields into the material are given above. A
simple calculation leads to the expression of the reflection amplitude r = (ikz − ηT )/(ikz + ηT ).
Upon performing the rotation ω → iξ, we get

rTE
k (iξ) =

√
k2 + ξ2/c2 − ηT√
k2 + ξ2/c2 + ηT

. (17)

Using Eq. (15) we see that rTE is the usual Fresnel TE reflection coefficient with a dielectric
permittivity equal to the sum of the “bare” one and the ac Drude (conduction) permittivity,
ε(iξ) = ε(iξ) + 4πσ(iξ)/ξ.

As discussed in detail in [3], these modified TE and TM reflection coefficients have appropriate
limiting behaviors. In the quasi-static limit (ξ → 0) they coincide with the ones derived in [2] for
conductors with small density of carriers in the large distance (low frequency) regime, namely
rTE
k (0) = 0 (in the static limit the TE polarized field is a pure magnetic field, which fully

penetrates the nonmagnetic material) and rTM
k (0) = (ε0q − k)/(ε0q + k), with q =

√
k2 + κ2

(in the static limit rTM interpolates between a good conductor and an ideal dielectric). On
the other hand, for any frequency ξ ≥ 0, and in the limit of ideal dielectrics (small free charge
density and small effective thermal velocity), we recover the usual Fresnel equations written in
terms of the bare permittivity ε(ω).

3. Influence of drifting carriers in the Casimir-Lifshitz free energy
We now study the implications of our theory in the computation of the Casimir-Lifshitz free
energy

E

A
= kBT

∑
p

∞′∑

n=0

∫
d2k

(2π)2
ln[1− rp

k,1(iξn)rp
k,2(iξn)e−2d

√
k2+ξ2

n/c2 ], (18)

between two identical planar semi-spaces with small density of charge carriers, such as intrinsic
semiconductor media. As examples, we consider the cases of pure germanium and pure silicon.
The reflection coefficients Eqs.(12,17) that enter into this equation depend on temperature
explicitly through the Matsubara frequencies and implicitly through the optical and conductivity
parameters, which we proceed to quote.

For intrinsic Ge, the bare permittivity can be approximately fitted with a Sellmeier-type
expression

ε(iξ) = ε∞ + ω2
0

ε0 − ε∞
ξ2 + ω2

0

, (19)
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where ε0 ≈ 16.2, ε∞ ≈ 1.1, and ω0 ≈ 5.0 × 1015rad/sec at T ≈ 300K. The temperature
dependence of the permittivity has been measured in the 20 − 300K range at wavelengths
1.9 − 5.5µm [7], and shown to be very weak. Therefore, in this paper we assume that the
permittivity is approximately constant as a function of temperature, and given by the above
Sellmeier fitting function. The intrinsic carrier density varies with temperature as

n0(T ) =
√

ncnve
− Eg

2kBT , (20)

where nc and nv are the effective density of states in the conduction and valence band,
respectively. These depend on temperature as nc(T ) = 1.98 × 1015T 3/2cm−3 and nv(T ) =
9.6× 1014T 3/2cm−3 (temperature is measured in degrees K). The band gap energy also depends
on temperature, Eg(T ) = 0.742−4.8×10−4T 2/(T +235)eV. The effective mass of conductivity is
m = 0.12me, where me is the free electron mass [8]. The relaxation time depends on temperature
as τ(T ) = τ0 + τ1e

C1(T/300)2+C2(T/300) [9], where τ0 = 0.26ps, τ1 = 1.49ps, C1 = −0.434, and
C2 = 1.322. At T = 300K one has Eg = 0.66eV, nc = 1.0×1019cm−3, nv = 5.0×1018cm−3, and
τ = 3.9ps.

For intrinsic Si, ε0 ≈ 11.87, ε∞ ≈ 1.035, and ω0 ≈ 6.6 × 1015rad/sec at T ≈ 300K. The
temperature dependence of the permittivity has been measured in the 20 − 300K range at
wavelengths 1.1−5.6µm [7], and also shown to be very weak. The effective density of states in the
conduction and valence bands are nc(T ) = 6.2×1015T 3/2cm−3 and nv(T ) = 3.5×1015T 3/2cm−3

respectively. The band gap energy is Eg(T ) = 1.17− 4.73× 10−4T 2/(T + 636)eV. The effective
mass of conductivity is m = 0.26me [8]. The relaxation time parameters are τ0 = 1.0ps,
τ1 = −0.538ps, C1 = 0.0015, and C2 = −0.09 [9]. At T = 300K one has Eg = 1.12eV,
nc = 3.2× 1019cm−3, nv = 1.8× 1019cm−3, and τ = 0.5ps.

In Fig 1 we plot the Casimir-Lifshitz free energy between two identical planar intrinsic
semiconducting (Ge and Si) semi-spaces as a function of the distance between them. We use our
theory of Casimir forces with account of Debye-Hückel screening and charge drift to compute
the reflection coefficient Eqs. (12,17) and compare these predictions with the simple model in
which the reflection coefficients are given by the usual Fresnel formulas in which the permittivity
of the materials ε(iξ) is computed by adding to the bare permittivity ε(iξ) a dc conductivity
term 4πσ0/ξ. In both models we normalize the free energies to the free energy computed using
the standard Lifshitz theory using the bare permittivity only. For intrinsic Ge and intrinsic Si,
ω̃c and D̃/ξ are both very small in the relevant range of frequencies for the Lifshitz formula.
Therefore only the n = 0 TM mode is significantly modified by the screening and charge drift
effects, rTE

k (0) = 0 and rTM
k (0) = (ε(0)q − k)/(ε(0)q + k), with q =

√
k2 + κ2, as in [2]. In

all other n ≥ 1 terms in Eq. (18) the reflection coefficients can be replaced by the standard
Fresnel expressions in terms of the bare permittivity ε(iξ). Since for intrinsic carrier density
for Ge (≈ 1013cm−3) is much larger than that for Si (≈ 1010cm−3), the Debye radius is of Ge,
RD = 1/κ = 0.68µm is much smaller than that of Si, RD = 24µm. As follows from Fig. 1, the
effect of Debye screening and drifting carriers (denoted as “drift” in Fig. 1) becomes important
for distances much larger than the Debye radius, so that this effect is more likely to be detected
in Ge than in Si. In the latter case, for distances d > RD, the Casimir force is too weak, at such
a large distance, to be measured by any current or proposed experimental technique. From Fig.
1 we also note that when d À RD the plates appear as perfect conductors for the TM n = 0
mode, while in the case of the additive term (ε(iξ) + 4πσ0/ξ, denoted as “cond” in the figure),
the plates appear as perfect conductors for the TM n = 0 mode at distances of the order of
λT = ~c/kBT (≈ 7µm at T = 300K), independent of the material properties.

4. On the satisfaction of Nernst theorem as a prerequisite for a Casimir theory
Calculations of finite temperature Casimir-Lifshitz forces between media with large charge
density, such as metals and highly doped semiconductors, have resulted in a heated debate on the
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Figure 1. Casimir-Lifshitz free energy at T = 300K for intrinsic Ge and Si taking into account
charge drift Eqs. (12,17) (curves denoted by “drift”) or an additive dc conductivity term 4πσ0/ξ
to the bare permittivity (curves denoted by “cond”). For Ge, σ0 = 1/(43Ω cm), and for Si,
σ0 = 1/(2.3 × 105Ω cm). The free energies are normalized to those computed using only the
bare permittivity in the usual Lifshitz theory.

adequate way to describe the optical properties of such systems within the Lifshitz formalism.
Different phenomenological ways to extrapolate optical data to low frequencies, either with a
Drude model including dissipation or with a plasma model setting dissipation to zero from the
start, result in completely different predictions for the force at finite temperature [10].

It has been suggested that the Nernst theorem of thermodynamics serves as a way to accept
or discard conductivity models when applied to the computation of the Casimir-Lishitz entropy
S(T ) = −∂E(T )/∂T . The Nernst theorem states that the entropy of a physical system of
N particles in thermal equilibrium at zero temperature is a well-defined constant, determined
only by the degeneracy ΩN of the ground state of the system, that is, S(T = 0) = kB lnΩN .
For systems with non-degenerate ground states ΩN = 1 (e.g., a perfect crystal lattice), the
entropy should vanish at zero temperature. This is not the case for a large class of systems,
including spin networks and glasses, that can have a large collection of degenerate ground states
(with degeneracy ΩN depending on the total number of particles), so that S(T = 0) > 0 in
such systems. In some textbooks [11] it is further required as part of Nernst theorem that
the degeneracy ΩN be independent of any varying parameters of the system (such as pressure,
volume, field intensities, etc). This has been used by some authors to discard Casimir theories
which lead to a zero-temperature entropy that depends on the separation d between the Casimir
plates. The requirement of independence of S(T = 0) on volume is at odds with the fact that
entropy is an extensive quantity, and should grow with system size [12]. It is not clear to us
that one can simply discard a model of conductivity for the Casimir plates based on the fact
that the zero temperature entropy depends on the distance between plates. We believe that this
issue requires further study. Of course, if for a given theoretical model for the Casimir plates
S(T = 0) < 0, then such model violates Nernst theorem.

In the remainder of this section we explicitly prove that our theory for Casimir forces
with intrinsic semiconductor media is compatible with Nernst theorem of thermodynamics,
resulting in S(T = 0) = 0, as for systems with a non-degenerate ground state (ΩN = 1).
We will closely follow the approach in [13]. We start by expressing the Casimir free energy as
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Figure 2. Behavior of the functions gp(iξ,k) used to compute the Casimir-Lifshitz free energy
and entropy for semiconductor materials with account of drifting carriers. The reflections
coefficients are given by (12) and (17), parameters are for intrinsic Ge (see text), and the
distance is set to d = 1µm. The variation with temperature (in the range T = 0− 300K) of the
TE function is not perceptible on the scale of the figure. The corresponding functions without
account of Debye screening and carrier drift correspond to the T = 0K plots in this figure.

E = ~
2π

∑
p,k

∑∞′
n=0 θgp(inθ,k; θ), where

gp(ω,k; θ) = ln[1− rp
k,1(ω, θ) rp

k,2(ω, θ)e−2d
√

k2−ω2/c2 ], (21)

and θ = 2πkBT/~. Note that we have allowed for an implicit dependence of the reflection
coefficients on temperature. The Casimir-Lifshitz entropy is S = −(2π/~)∂E/∂θ. In Fig. 2 we
plot the behaviour of gp(iξ,k; θ) as a function of the imaginary frequency ω = iξ and as a function
of k = |k| for TM and TE polarizations for different temperatures (the corresponding reflection
amplitudes are obtained from Eqs. (12,17)). Let us consider the TE and TM contributions to
the entropy separately.

For TE modes, since the reflection coefficient (17) depends implicitly on temperature only
through ω̃c, which becomes exponentially small as low temperatures because the carrier density
vanishes as T → 0, it is possible to show that the θ → 0 and ω → 0 limits of rTE

k (ω, θ) commute,
that gp(ω,k; θ) is analytic in the upper-half complex ω plane, and that the sum over n and the
derivative with respect to θ in the expression for the entropy can be interchanged. Therefore,
the contribution of TE modes to the entropy is [13]

STE(T ) = −
∑

k

∞′∑

n=0

[gTE(inθ,k; θ) + inθgTE
ω (inθ,k; θ) + θgTE

θ (inθ,k; θ)]. (22)

Here we have defined gTE
ω ≡ ∂ωgTE(ω,k; θ) and gTM

θ ≡ ∂θg
TM(ω,k; θ). Using the analytical

properties of the function gTE it is possible to write an expansion of the first two terms in
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(22) in powers of temperature, resulting in (gTE
ξ (0,k)/6)τ + (5gTE

ξ2 (0,k)/12)τ2 + . . ., where
gTE
ξ (0,k) = limξ→0 ∂gTE(iξ,k; 0)/∂ξ and gTE

ξ2 (0,k) = limξ→0 ∂2g(iξ,k; 0)/∂ξ2 [13]. Thus, the
first two terms in (22) give a vanishing entropy at T = 0, and imply a low-temperature behaviour
of the entropy proportional to T 2, since gTE

ξ (0,k) = 0 and gTE
ξ2 (0,k) = −e−2kdε20ω

2
c/8k4 < 0 (see

TE plots in Fig. 2). The last term in (22) is proportional to ∂θω̃c, which is exponentially
small at low temperatures. Therefore, the full TE contribution to the entropy vanishes at zero
temperature, namely STE(0) = 0.

For TM modes, the reflection coefficient (12) depends implicitly on temperature both through
ω̃c and D̃ in a complicated fashion. Contrary to the TE case, the θ → 0 and ω → 0 limits of
rTM(ω,k; θ) do not commute, and therefore it is not possible to write the contribution of TM
modes to the entropy in the simple form (22). The n ≥ 1 and n = 0 terms have to be treated
separately. This can be done by defining a new function g̃TM(inθ,k) which is identical to
gTM(inθ,k; θ) for n ≥ 1, and for n = 0 it is defined as g̃TM(0,k) ≡ limθ→0 gTM(αθ,k; θ), where
we approach zero along the path ω = αθ [13]. The TM contribution to the entropy is

STM(T ) = −
∑

k

{
gTM(0,k; θ)− g̃TM(0,k)

2

+
∞′∑

n=0

[g̃TM(inθ,k; θ) + inθg̃TM
ω (inθ,k; θ) + θg̃TM

θ (inθ,k; θ)]

}
. (23)

As in the TE case, the first two terms in the sum
∑∞′

n=0 vanish in the zero temperature limit
θ → 0. Their first non-vanishing contribution to the entropy is linear in T , since gTM

ξ (0,k) > 0
(see plots TM in Fig. 2). On the other hand, in the low-temperature limit the third term in the
sum over n in (23) is,

∞′∑

n=0

θg̃TM
θ (inθ,k; θ) θ→0−→ ∂θωc(θ)

∫ ∞

0
dξ

∂g̃TM(iξ,k; θ)
∂ωc

+ ∂θD(θ)
∫ ∞

0
dξ

∂g̃TM(iξ,k; θ)
∂D

. (24)

The first term in (24) is zero at T = 0 due to the exponential decay of ωc at low temperatures.
Although ∂θD does not vanish at T = 0 (since τ(T ) goes to a non-zero constant at T = 0 and
then D(T ) ∝ T at low temperatures), the second term in (24) is also zero at T = 0 because the
integrand is exponentially small. Finally, in the limit θ → 0, the first line in (23) vanishes since
gTM(0,k; 0) = g̃TM(0,k) by definition. Therefore, the TM contribution to the zero temperature
entropy is STM(T = 0) = 0. We conclude that our theory for Casimir-Lifshitz forces in systems
with low density of carriers (intrinsic semiconductors, dielectrics, etc) with account of Debye
screening and charge drift is in agreement with Nernst theorem.

5. Connection between this theory of drifting carriers and spatial dispersion
As we have already mentioned, the static limit of the reflection coefficients (12,17) obtained
by us using the Boltmann transport approach coincide with those previously derived in [2],
where it was noted that the same static reflection amplitudes can be interpreted in terms of
spatial dispersion. Indeed, using as the static permittivity tensor ε = diag(ε⊥, ε⊥, ε‖) with the
transverse permittivity ε⊥ = ε0, and the longitudinal permittivity depending on wavevector as
ε‖(k) = ε0[1 + 1/(kRD)2], and computing the reflection coefficients for an anisotropic (uniaxial)
material [14], it is straightforward to recover the static versions of (12,17).

Although the original Lifshitz paper [1] for dispersion forces between bodies separated by
vacuum did not allow for spatial dispersion, it can certainly be generalized to include nonlocal
dielectric response in those setups, for example by averaging the vacuum Maxwell stress tensor
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and calculating field strengths via the retarded Green tensor of the field, that should include
spatial dispersion when it is important [2, 15]. As noted in [2], problems arise when the bodies
are separated by a liquid instead of vacuum.

Instead of proceeding via the Green function method, here we use the scattering formalism
generalized to spatial dispersion to compute the force between plates separated by vacuum.
The Casimir pressure between the plates is given by the same Eq. (1), and the effects of
spatial dispersion are incorporated by appropriately writing the reflection amplitudes rp

k(ω) in
terms of the permittivity tensor ε(ω, k) [16, 17]. In [16] the permittivity tensor is computed in
the random phase approximation (Lindhard dielectric function) including dissipation [18]. The
reflection amplitudes are written as

rp
k(ω) =

Hp(k, ω)− 1
Hp(k, ω) + 1

, (25)

where the TM and TE H-functions are (our H,h functions correspond to the G, g functions in
[16])

HTM(k, ω) =
k

γ0
h̃a(k, ω)− (ω/c)2

(γ0)2
h̃b(k, ω) +

k(k − γ0)
(γ0)2

h̃c(k, ω) + 1, (26)

HTE(k, ω) = h̃(k, ω) + 1, (27)

where

ha(k, ω) = 2k

∫ ∞

−∞

dqz

2π

1
q2ε‖(q, ω)

,

hb(k, ω) = 2γ0(k, ω)
∫ ∞

−∞

dqz

2π

1
q2 − ε⊥(q, ω)(ω/c)2

,

hc(k, ω) =
2(ω/c)2kγ0(k, ω)

k − γ0(k, ω)

∫ ∞

−∞

dqz

2π

1
q2[q2 − ε⊥(q, ω)(ω/c)2]

. (28)

Here γ0(k, ω) =
√

k2 − (ω/c)2, q = (k, qz), and the tilde above an h-function means the h-
function minus the same function except that the dielectric function is set to unity [16]. In the
limit of neglegible spatial dispersion (ε‖ and ε⊥ independent of q) one gets the usual Fresnel
expressions for the reflection coefficients.

We now show that our reflection coefficients can be linked to spatial dispersion even beyond
the static limit, connecting in this way our approach based on Boltzmann transport equation
with spatial nonlocality. We closely follow the approach of [16]. As in the static case, we assume
that the nonlocal permittivity depends solely on k, being independent of qz. This allows us to
straightfowardly compute the integrals in (28). From the HTE function we obtain

HTE(k, iξ)− 1
HTE(k, iξ) + 1

=

√
k2 + ξ2/c2 −

√
k2 + ε⊥(k, iξ)ξ2/c2

√
k2 + ξ2/c2 +

√
k2 + ε⊥(k, iξ)ξ2/c2

. (29)

We recover our TE reflection coefficient (17) for a transverse dielectric function independent of
k,

ε⊥(k, iξ) = ε(iξ)
[
1 +

ωc

ξ(1 + ξτ)

]
. (30)

For HTM we obtain

HTM(k, iξ) = 1 +
k

γ0

[
1

ε‖(k, ω)
− 1

]
+

ξ2/c2

γ0

[
1
ηT

− 1
γ0

]

− kξ2/c2

γ0

[
1

kηT − η2
T

− 1
kγ0 − (γ0)2

]
, (31)
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where, after rotation ω → iξ, γ0 =
√

k2 + ξ2/c2 and ηT =
√

k2 + ε⊥(k, iξ)ξ2/c2 from (17) and
(30). Equating (HTM−1)/(HTM+1) to the expression (12) for the TM reflection coefficient, one
obtains HTM(k, iξ) = ε(iξ)γ0/χ. Using this expression in (31) one can derive the longitudinal
permittivity

ε‖(k, iξ) =
k

γ0
(32)

×
[
ε(iξ)γ0

χ
− 1 +

k

γ0
+

ξ2/c2

γ0

(
1
ηT

− 1
γ0

)
+

kξ2/c2

γ0

(
1

kηT − η2
T

− 1
kγ0 − (γ0)2

)]−1

.

As follows from the above considerations, our theory for Casimir forces with media with low
density of charge carriers can be directly connected to spatial dispersion, as mentioned by us in
[3].

6. Conclusions
In this paper we have expanded on our previous work [3] to compute Casimir-Lifshitz forces
between bodies with low density of charge carriers (intrinsic semiconductors, dielectrics,
disordered systems, etc) taking into account Debye-Hückel screening and charge drift. Our
approach is based on the classical Boltzmann transport equation, and is applicable to non-
degenerate systems with an energy gap. We have shown how the finite conductivity of
such systems modifies the Casimir-Lifshitz force between such materials, and made numerical
predictions for the force using germanium and silicon plates. Our theory can be seen as a
special case of spatial dispersion, and provides a simple way to take into account nonlocal effects
in terms of readily available material properties. We have explicitly shown that our theory is
compatible with Nernst theorem of thermodynamics. This is in agreement with previous work
[16] that demonstrated that spatial dispersion resolves the issues with Nernst theorem. Work
related to our approach, totally based on nonlocal dielectric responses, recently appeared [19],
extending our analysis to degenerate systems.
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