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Abstract. We report on measurements of forces acting between two conducting surfaces
in a spherical-plane configuration in the 35 nm-1 µm separation range. The measurements
are obtained by performing electrostatic calibrations followed by a residuals analysis after
subtracting the electrostatic-dependent component. We find in all runs optimal fitting of
the calibrations for exponents smaller than the one predicted by electrostatics for an ideal
sphere-plane geometry. We also find that the external bias potential necessary to minimize the
electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by
implementing a parametrization-dependent subtraction of the electrostatic contribution we have
found evidence for short-distance attractive forces of magnitude comparable to the expected
Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general
context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of
the electrical and geometrical characterization of the involved surfaces.

PACS numbers: 12.20.Fv, 03.70.+k, 04.80.Cc, 11.10.Wx

1. Introduction
Casimir-Lifshitz forces [1, 2] provide an experimental window on the nature of quantum vacuum
at the macroscopic level [3, 4, 5, 6, 7, 8, 9, 10, 11]. After pioneering attempts in the original
parallel plate configuration [12], and in a variant of this configuration based upon a sphere and
a plane [13], the claimed accuracy of recent experiments ranges from 15% in the parallel plane
case [14] to 0.2-5% in the sphere-plane case [15, 16, 17, 18, 19]. In the case of the sphere-plane
configuration, the Casimir force is typically evaluated by using the so-called proximity force
approximation (PFA) [20, 21], introducing a theoretical uncertainty estimated to be in the 0.1
% range, and recently investigated experimentally [22].

A sphere-plane experiment has been performed, with a radius of curvature for the sphere of
order of cm, at relatively large distances above 1µm [15]. In this case the largest deviation from
the bare Casimir formula for an idealized configuration (perfect conductors, zero temperature) is
expected to be the thermal contribution to the radiation pressure on the surfaces, still below the
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sensitivity of the apparatus at the largest explored distances. Three sphere-plane experiments
have also been performed in a quite distinct regime, with smaller radius of curvature, of order
100 µm, and in the range below one micrometer [16, 17, 18, 23]. At distances less than 1 µm the
correction to the Casimir force due to finite conductivity and surface roughness of the substrates
cannot be neglected at the level of accuracy claimed in these three experiments. At least other
five groups have recently performed Casimir force experiments in the sphere-plane configuration
[24, 25, 26, 27, 28].

Mastering the Casimir force at the highest level of accuracy is essential to provide reliable
limits to other macroscopic forces acting in the micrometer range, such as corrections to the
Newtonian gravitational force independently predicted in many attempts to unify gravitation
with the remaining fundamental interactions [29, 30, 31]. Although in the nanometer range
the Casimir force loses its universal nature morphing into more specific, structure-dependent,
molecular van der Waals forces, its study is sometimes considered of some relevance for designing
nanomechanical structures and to investigate nonlinear effects, as first discussed in [32] and then
experimentally demonstrated in [33, 34].

In this paper we report more extensively on measurements performed in a sphere-plane
geometry exploring a novel range of parameters that interpolates between the two previous
sets of sphere-plane measurements [35]. We use a gold-coated spherical lens with large radius
of curvature, similar to the experiment performed by Steve Lamoreaux in Seattle, while at the
same time exploring distances down to few tens of nanometers from the point of contact between
the sphere and the plane, similar to more microscopic setups using microresonators. While we
do achieve some evidence for the expected Casimir-Lifshitz force, our measurements suggest
that a reanalysis of systematic effects in previous experiments will be beneficial to assess the
accuracy with which this force has been measured so far, with particular regard to the role of
the residual electrostatic forces [36, 37].

The paper is organized as follows: in Section II we describe the experimental apparatus and
the basics of our measurement technique. In Section III we describe a procedure for electrostatic
calibrations to determine various critical parameters such as the calibration factor, the absolute
separation, and the minimizing potential related to the contact potential. Careful control over
the system parameters allows us to search for a non-Coulombian contribution to the observed
force signal and therefore to test this residual against various hypothesis such as a possible
uncompensated electrical voltage, and the presence of the Casimir-Lifsthiz force, as described in
Section IV. In Section V we critically assess systematic effects in our measurements and compare
our findings to both previous short-range Casimir force measurements and long-range atomic
force microscopy measurements.

2. Experimental set-up
The experimental setup is an upgrade of the one already described in a previous paper [38] for
measuring the Casimir force in the cylinder-plane configuration as first theoretically discussed
in [39]. Forces acting between a flat surface and a spherical surface are detected by measuring
the shift in the mechanical oscillation frequency of a silicon cantilever that acts as the plane
surface. The main components in this setup are the use of a phase-locked loop scheme [40] to
drive the cantilever at its resonant frequency, the use of optical quality surfaces for both the
resonator and the sphere, and a faster and more flexible data acquisition scheme.

A schematic of the apparatus is shown in Fig. 1. The rectangular cantilever, of length
L = (22.56 ± 0.01) mm, width w = (9.93 ± 0.01) mm and thickness t = (330 ± 10) µm was
laser-cut from a silicon wafer. Given the density of silicon, ρ = 2.3 × 103 kg/m3, the physical
mass of the cantilever is mp = (1.72±0.05)×10−4 kg. The cantilever is sandwiched between two
aluminum clamping structures, electrically isolated and thermally stabilized by a Peltier cooler.
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Figure 1. Schematic of the experimental setup and the data acquisition scheme. The silicon
resonator is opposed by a spherical mirror, both Au coated. The latter can be moved along
the vertical direction by driving two mechanical actuators for coarse approach, and with a
piezoelectric actuator for fine control of the separation. The outside face of the resonator reflects
light coming from a fiber optic interferometer, located 20-100 µm above it. The resonator is
driven weakly at its resonant frequency with a piezoelectric actuator connected in a phase-locked
loop (PLL) to the optical fiber.

This last feature is required since we have observed that the resonant frequency of the cantilever
drifts as much as 2 Hz as the ambient temperature fluctuates about 1 K over the duration of a
typical run of a few hours. The effect of the thermal drifts has also been mitigated off-line by a
proper implementation of the data acquisition sequence, as described in Section III.

Below the cantilever a spherical mirror with radius of curvature R = (30.9 ± 0.15) mm and
diameter a = (8.00± 0.25) mm is mounted on an aluminum frame connected to two motorized
actuators allowing for coarse translational motion, plus an additional piezoelectric transducer
for fine translational motion driven with a bias VPZT. The spherical lens is gold-coated by the
manifacturing company with a thickness of 250 nm (± 10 %) The surface of the cantilever facing
the spherical lens is coated with a 200 nm layer of gold (± 10 %) by thermal evaporation, with
the rate of evaporation kept below 50 Å/sec at a pressure of 3 × 10−6 mbar to ensure better
conditions for homogeneous coating.

The predicted frequency of the fundamental flexural mode of the cantilever is νp =
(0.162t/L2)

√
E/ρ with E the Young’s modulus of the material [41]. In our case this yields

a resonant frequency around 894 Hz, within few percent from the measured frequency at the
typical vacuum pressure of 1.6 × 10−4 Torr in the vacuum chamber. The stiffness k of the
resonator can be estimated by assuming an effective mass for the resonator mode roughly equal
to the physical mass, which yields k = 1.036Ewt3/L3 ' 5.4 × 103 N/m. The stiffness is three
or four orders of magnitude higher than the typical cantilevers used in atomic force microscopy,
implying both advantages and drawbacks. A large stiffness allows us to reliably achieve small
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Figure 2. Calibration of the PZT actuator governing the sphere-plane separation. Four
calibrations of the PZT actuator have been performed during the overall data taking, of which
only two are reported here for simplicity, indicated with red-square and black-dot points, and
their best fit with a sinusoidal function (red, dotted line, and black, continuous line, respectively).
The average value of the actuation coefficient from the four data sets is β = (87± 2) nm/V.

gaps with little static deflection of the cantilever in the presence of strong electric fields for
calibration purposes, at the expense of a lower force sensitivity. By decreasing the stiffness of
the cantilever both the reachable minimum gap before snapping between the two surfaces occurs
and the largest explorable gap for a given signal to noise ratio are increased.

The motion of the cantilever is detected by using a fiber optic interferometer [42] positioned a
few microns above the upper cantilever face and fed by temperature-stabilized diode laser with
an adjustable power in the 5-10 mW range at the wavelength of 781 nm. The output signal from
the interferometer is filtered and amplified through a single reference mode lock-in amplifier and
is fed back into the piezoelectric actuator driving the cantilever motion. The phase between the
input and the output signals is properly chosen to maximize the vibration amplitude, typically
around 30-40 degrees. This scheme is much faster and more efficient than the previous open-
loop scheme as described in [38] in which white noise was used as the driving source without a
feedback, and the complete FFT spectrum was acquired. The vibration frequency was measured
by a counter with 10 mHz resolution, 100 times faster than in the open-loop scheme. The
front side of the chamber has a large viewport allowing for visual inspection of the relevant
components through an optical microscope, as shown in Fig. 10 of [38]. This also provides for
a quick assessment of the optical fiber location, which can be manually adjusted within few
hundred micrometers from the underlying resonator using a feedthrough micrometer.

The PZT was calibrated by using the same fiber optic interferometer with the cantilever
removed and the spherical mirror replaced by a flat mirror. Assuming a linear relationship
∆x = β∆VPZT, the DC interference amplitude versus the voltage applied to the PZT, as shown
in Fig. 2, was fit with a sinusoidal function and the distance inferred from its period to be half of
the 781 nm laser wavelength. The average of four separate calibration runs yields β = (87± 2)
nm/V, and it was found to be independent of the voltage applied to the PZT, within the
error, in the 0-100 V range. The sensitivity of the fiber optic interferometer is evaluated in the
same configuration by driving the PZT with a monochromatic signal at various amplitudes, and
looking the corresponding signal at the FFT spectrum analyzer. When the driving amplitude
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at a frequency of 1 KHz (still well below the maximum response frequency of the PZT of 69
KHz) is reduced at the level of a peak-to-peak signal of 0.25 mV, the measured amplitude at
the FFT spectral analyzer becomes equal to the FFT broadband noise level of 10 µVrms with an
integration time of 10 s. Using the determined value of the actuation coefficient of the PZT, we
estimate the minimum detectable signal with SNR ' 1 to be ' 0.80Å/

√
Hz, similar to the one

reported in [42].
For a generic distance-dependent force and for a small amplitude of the cantilever oscillation

(2-3 nm as inferred from the interferometer signal) with respect to the average separation
between the two surfaces x, the measured frequency of the resonator νm is shifted with respect
to the proper frequency of the resonator νp in such a way that

∆ν2 = ν2
m − ν2

p = − 1
4π2meff

∂F (x)
∂x

, (1)

where meff is the effective mass of the mode of oscillation of the resonator. In general, the total
force acting on the resonator is the aggregate from independent sources and the square of the
measured frequency νm of a cantilever can be identified as the sum of contributions from those
sources,

ν2
m(x, V ) = ν2

p + ∆ν2
e (x, V ) + ∆ν2

r (x), (2)

where ∆ν2
e is the frequency shift due to electrical force gradients for instance due to an external

bias voltage V , and ∆ν2
r is the frequency shift subject to force gradients of non-electrostatic

nature, for instance the Casimir force, or random drifts of instrumental and environmental origin.
In the next section we will discuss the response of the resonator in the case of electrostatic forces.

3. Electrostatic calibrations
We start with the electrostatic energy stored in a generic capacitance C(x) biased by an external
potential V , and under the presence of a contact potential Vc(x) which in general may depend
on the distance:

Eel =
C(x)

2
[V − Vc(x)]2. (3)

As recently pointed out by Lamoreaux [43], if the contact potential depends on distance the
electrostatic force will include an additional term independent upon the external bias voltage.
Since in our configuration the observable is the frequency shift, proportional to the second
derivative of the electrostatic energy with respect to x, we have, after regrouping the various
terms in powers of V − Vc:

E′′
el =

C ′′

2
(V − Vc)2 − [2C ′V ′

c + CV ′′
c ](V − Vc) + CV ′

c
2
. (4)

This can be regrouped again as E′′
el = A(V − Vc + B)2 + D and, identifying the coefficients

A,B, D to match the terms in Eq. 4, we obtain

A =
C ′′

2
, B = −2C ′V ′

c + CV ′′
c

C ′′ , D = CV ′2
c − (2C ′V ′

c + CV ′′
c )2

2C ′′ . (5)

This allows to write:

E′′
el =

C ′′

2
(V − V0)2 + CV ′

c
2 − (2C ′V ′

c + CV ′′
c )2

2C ′′ , (6)
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where

V0(x) = Vc(x) +
2C ′V ′

c + CV ′′
c

C ′′ (7)

is the minimizing external potential, i.e. the external bias minimizing the electrostatic
contribution to the frequency shift. It is clear that, even if the external bias voltage is chosen
to minimize the electrostatic contribution, an irreducible term containing the first and second
spatial derivatives of Vc in Eq. 7 still causes a frequency shift. The expected frequency shift due
to Coulombian interactions is therefore:

ν2 = ν0
2 − C ′′

8π2meff
(V − V0)2 +

1
4π2meff

[
−CV ′

c
2 +

(2C ′V ′
c + CV ′′

c )2

2C ′′

]
. (8)

We identify three contributions on the RHS of Eq. 8: the first term is unrelated to external
or internal voltages, the second term depends on the external voltage, and the last term is a
Coulombian contribution only related to the spatial dependence of the contact potential. The
electrostatic calibrations consist in the study of the response of the cantilever frequency to an
external potential, therefore selecting the second contribution alone which allows to infer both
the effective mass of the resonator and the minimizing potential V0. This knowledge is then used
to infer the contact potential assuming a specific form of the functional dependence on distance
of V0, which is in turn used to identify the third contribution in Eq. 8. The subtraction of
the total Coulombian contribution allows then to evaluate the square frequency related to non-
Coulombian forces and to random drifts due to background noise in the apparatus (see section
IV) as first discussed in AFM measurements by [44] and in the specific context of Casimir
measurements in [45].

Regarding the capacitance, for the sphere-plane configuration and for our choice of
parameters, the proximity force approximation (PFA) holds and the capacitance is C(x) =
2πε0R ln(R/x). This formula in principle must be corrected for the finite spherical mirror
diameter used in alternative to a full sphere, but this is a sub-leading PFA correction
approximately equal to 0.1% for a typical separation of d = 1µm. Therefore, the measured
frequency νm of the cantilever can be parameterized as

ν2
m(x) = ν2

0(x)−Kel(x)(V − V0)2, (9)

where ν2
0(x) = ν2

p +∆ν2
e (x, V0)+∆ν2

r (x), a parabola whose maximum is reached when the applied
voltage at a given distance equals to the minimizing potential V0. The parabola curvature
Kel(x) = ε0R/4πmeffx2 reflects the cantilever response to externally applied electric forces at a
given distance x and allows to extract the effective mass of the resonator mode, and it can be
measured by sweeping the applied bias over a bipolar range to discern the parabolic dependence
of the frequency shift. The minimizing potential V0 is found by looking at the horizontal
displacement of the parabola. In Fig. 3 we show examples of electrostatic calibrations in which
the square resonator frequency is plotted versus the bias voltage for different values of the gap
separation between the sphere and the plane. In order to minimize the resonator frequency drifts
due to fluctuations of ambient temperature, we measure the unbiased frequency before and after
each measurement taken at a given bias voltage V . The average of the two unbiased frequencies
is then used as the reference to evaluate the shift. We notice two remarkable features in Fig.
3. First, the peak value of the frequency is different in the four cases, reflecting the possible
presence of a distance-dependent force combined with possible drifts in the value of the intrinsic
frequency. Second, the location of the peak value of the resonator frequency in the parabolic fit
does not occur at the same value of external voltage, indicating a distance-dependent minimizing
potential.

The absolute distance between the sphere and the plane is not known with sufficient accuracy
prior to the force measurement. In the experiment, the gap is varied by the voltage applied to
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Figure 3. Parabolic dependence of the squared frequency ν2
m upon the external bias voltage

V for a typical experimental run. The different curves correspond to different values of the
sphere-plane separation (defined in the legend in terms of the voltage applied to the PZT used
for approaching the sphere). The range of external bias voltages is adapted for each sphere-plane
separation to maintain comparable values of the maximum detected frequency shift, of about
1 Hz. This corresponds to keep a constant value for the electric field in the gap. The best fit
with a parabolic function is also shown, with the parabolic curves relative to the largest PZT
voltages (corresponding to smaller gap separations) displaying largest curvatures. No significant
dependence of the fitting parameters has been observed by changing the external bias voltage
span.

the PZT (VPZT) and consequently Kel is a function of the relative distance (i.e., of the applied
VPZT). This requires an additional fitting parameter V 0

PZT, which would cause contact and must
be inferred from fitting the function

Kel(VPZT) = α(V 0
PZT − VPZT)−2, (10)

where α is a calibration factor containing the effective mass of the cantilever through α ≡
ε0R/4πmeffβ2. In Fig. 4 the curvature parameter Kel is plotted versus the piezoelectric actuator
voltage VPZT for four different experimental runs. Assuming the PZT actuation is linear, the
absolute separation for a given VPZT can be inferred in two ways: x(VPZT) = β(V 0

PZT−VPZT) or
x(VPZT) = β[α/Kel(VPZT)]1/2. Therefore, the absolute distance can be inferred either from the
asymptotic limit V 0

PZT of the fit function or from the calibration factor α of the same function,
indicating an interdependency of the two physical parameters appearing in Eq. (10). Note that
quite large values of Kel, of order −2 × 104Hz2/V2 in runs 1, 3, and 4, have been achieved.
These large signals serve to accurately constrain the fit parameters owing to the high stiffness
of the cantilever, which allows us to explore very small distances between the sphere and the
cantilever without stiction.

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012004 doi:10.1088/1742-6596/161/1/012004

7



10
0

10
1

10
2

10
3

10
4

10
5

K
el

(H
z2 /V

2 )

0 10 20 30 40 50 60

V
PZT 

 (V)
10

0

10
1

10
2

10
3

10
4

10
5

K
el

(H
z2 /V

2 )

0 10 20 30 40 50 60

V
PZT

  (V)

Run 1

Run 3

Run 2

Run 4

Figure 4. Electrostatic curvature coefficient versus the voltage applied to the PZT actuator for
four different runs, and related fits with the expected fixed exponent e = −2 (blue dashed line)
as in Eq. 10 and by allowing the exponent to be a free parameter (red continuous line). In run 1
the location of the surface of the sphere in proximity of the cantilever is different from the other
runs, as the latter were taken after tilting the sphere by an angle equal to 5×10−2 radians.

Comparison of the two methods for determining x(VPZT) in Fig. 5 (left plot) reveals
disagreement when applying the inverse square law in Eq. 10. Direct measurement of the sphere-
plane capacitance versus gap provides a third assessment of V 0

PZT. In Fig. 6 the capacitance
versus PZT voltage is shown with the fitting curve corresponding to the capacitance between a
sphere and a plane in the PFA approximation.

Another issue complicating the electrostatic calibrations is evident in Fig. 7 displaying
V0 inferred from Fig. 3 versus VPZT. While the error bars are relatively large at large gap
separations, they become smaller at smaller gaps, and two distinct dependencies are observed.
In runs 1 and 2 the minimizing potential seems to depend linearly on the gap separation at
small separations, while in the remaining runs it appears to tend towards a constant value. The
significance of this dependence in the context of high-precision measurements of the Casimir
force is discussed in section V.

The error in the curvature parameter Kel has been determined with dedicated runs in which
conditions nominally leading to the same gap size are maintained, and the result is shown in
Fig. 8. The overall time drift in Kel, if converted into a thermally induced change in gap
size, corresponds to ±200 nm. The average random uncertainty in Kel has been evaluated by
taking the data of Fig. 8 and subtracting for each point the long term drift by means of a
moving average with a defined time window. By choosing the average time window equal to 4
curvature measurements (each measurement taking 8-10 minutes depending on the number of
points obtained in the frequency versus bias voltage measurement) we obtain a relative error
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for the inverse square law, versus the same function evaluated from the asymptotic limit of the
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the right plot is obtained by optimizing the exponent in the curvature scaling with distance.
Red lines are added to provide an eyeguide for the deviations from the expected consistency
between the two determinations of the same quantity.

in Kel equal to about 4% error on top of the fitting uncertainty associated with the parabolic
fit. This allows us to quantitatively compare fitting functions for the distance dependence of
Kel, and has resulted in another anomalous behavior. Indeed, the reduced χ2 is near one
when the exponent is fit in the -1.7 to -1.8 range, while it is at least one order of magnitude
higher for fixed -2.0 exponent, as shown in Table 1. Adherence of our data to a strict power
law from the farthest to the closest approach in all four cases implies the drift played little
role during our data runs, except possibly in the case of Run 4. However, we find that the
data clearly fail to follow the inverse square law dependence of the electrostatic coefficient
upon the sphere-plane separation. More quantitatively, if the fitting exponent is left as a
free parameter, our experimental data from four separate sequences follow a power law with
exponents −1.70± 0.01,−1.77± 0.02,−1.80± 0.01,−1.54± 0.02, far from the expected value of
-2. When substituted into Eq. 10, these exponent values produce better agreement between the
two methods for determining x(VPZT), as shown in the right plot in Fig. 5.

The stability of the electrostatic result has been checked through repeating the data fit of
Kel versus VPZT, starting with few points at the largest distances and by progressively including
the data point corresponding to the closer distances. In this way the intrinsic instability of the
fit will manifest itself through a systematic variation in the fit parameters subject to a choice of
data points included. Figures 9 and 10 show the result of the stability test for Run 1-4, revealing
dependence of the fits on the number of points considered. As we will discuss later in Section IV,
this is limiting the accuracy of the determination of the Casimir force. In Table 1 we report the
values of the parameters of the best fit of the electrostatic calibration for the four runs, leaving
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Figure 6. Capacitance versus PZT voltage data (black circles) and its best fit (red line). The fit
is based on the PFA formula C(d) = C0 + A ln[β(V 0

PZT− VPZT)], where the actuation coefficient
β = (87±2) nm/V. The best fit yields, for the coefficients C0 and A, the values C0 = (193.9±0.2)
pF and A = −(1.757±0.002) pF, this last in agreement within two standard deviations with the
less accurate theoretical expectation A = −2πε0R = −(1.72± 0.02) pF. The same fit provides a
value for the asymptotic value of the PZT voltage corresponding to zero gap distance the value
V 0

PZT = (69.31± 0.01) Vm, equivalent to a distance of 47± 2 nm. The best fit corresponds to a
reduced χ2 = 2.9.

the exponent free, and with the exponent frozen at the expected value of -2. In the latter case

Run 1 Run 2 Run 3 Run 4
fixed exponent -2 -2 -2 -2
α (Hz2V−2m2) 6200± 98 6197± 97 6701± 101 6438± 156

x0 (nm) 64.4± 1.7 90.5± 2.6 62.6± 1.7 93.1± 2.6
χ2/DOF 15.9 7.7 6.9 36.5

free exponent −1.70± 0.01 −1.77± 0.02 −1.80± 0.01 −1.54± 0.02
α (Hz2V−2me) 2805± 92 3021± 153 3732± 144 1415± 69

x0 (nm) 29.6± 0.9 49.6± 1.7 35.7± 1.7 20.0± 1.7
χ2/DOF 1.0 0.8 1.2 7.0

Table 1. Fitting parameters of the electrostatic calibrations, and values of the reduced χ2, as
the absolute χ2 normalized by the number of degrees of freedom (DOF) in the fitting for a fixed
exponent equal to 2 as expected from electrostatic considerations, and for a free exponent e.
Note that the calibration factor α characterizes the sensitivity of our apparatus, yielding the
effective mass in the case of fitting with the expected Coulomb exponent equal to 2. Variations
of α from run to run are attributable to the rearrangement of the resonator clamping system,
which strongly affects its effective mass. If the exponent is different from the expected value of
2, then the dimension of α changes and the effective mass cannot be properly evaluated.

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012004 doi:10.1088/1742-6596/161/1/012004

10



0

0.1

0.2

0.3

0.4

V
0(V

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 10 20 30 40 50 60
V

PZT
(V)

-0.5

-0.4

-0.3

-0.2

-0.1

0

V
0(V

)

0 10 20 30 40 50 60
V

PZT
(V)

-0.5

-0.4

-0.3

-0.2

-0.1

0

Run 1

Run 3 Run 4

Run 2
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to a less extent, Run 2). Note that in run 1 V0 is positive while for Runs 2-4 it is negative and
converges to V0 ' -150 mV at the smallest separations.

one can infer the effective mass of the cantilever and this turns out to be larger by an order
of magnitude than the physical mass, against the expectation to be a fraction of the physical
mass [46, 47, 48]. Apart from the uncertainties related to the clamping of the resonator, this is
another signal that the calibration fitting with a pure electrostatic contribution neglects some
systematic effect.

The unexpected power law poses a significant limit on the validity of our electrostatic
calibration. Among the possible systematic effects causing this deviation from the expected
Coulombian behaviour, we have considered the following.

3.1. Static deflection of cantilever
The spring constant of our cantilever is extremely stiff (about 5400 N/m). Using Hooke’s law, a
deflection experienced by the cantilever due to an electrostatic force at 100 nm with an applied
voltage of 100 mV is less than 0.2 Å. Hence, the static deflection should play little role.
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Figure 8. Long-term drift of the curvature coefficient Kel during a 12 hours test. The vertical
bar represents the equivalent drift in terms of the change in the sphere-plane separation, in the
conservative hypothesis that all the drift is attributable to the gap drift. Subtracting each point
with a window average of 4 measurements one gets a relative error in Kel of 4 %. The sensitivity
to the choice of the average window time has been also assessed, with relative errors of 2.9 %,
4.1 %, 4.4 % and 4.6 % for alternative choices of 2, 6, 8, and 10 measurements, respectively.

3.2. Thermal drift
Even though the temperature of the cantilever is actively stabilized by a Peltier cooler, the rest
of the system is still subject to global thermal variation. In order to see this, we have measured
kel with respect to time at a nominally fixed distance. In the worst circumstance, the gap
separation during the course of measurements can drift as much as 200 nm in either direction.
Although such a drift could in principle affect the inferred exponent, a highly unlikely non-linear
monotonic drift would be necessary to account for the consistently observed anomaly in each
independent run.

3.3. Nonlinearity of the PZT actuation
The linearity of the PZT translation has been tested under a number of different circumstances.
Notice that the translation intervals between the data points in each of the runs shown in are
completely random. Yet, all of the runs obey a specific power law in all distances. The PZT was
also independently calibrated by means of the fiber optic interferometer with a consistent, linear
actuation coefficient factor β = 87 ± 2 nm/V. Also, the presence of significant nonlinearities
should manifest also as deviations from the PFA fitting of the sphere-plane capacitance versus
the PZT voltage. As visible in Fig. 6, this class of measurements strongly constraint the PZT
nonlinearity.
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Figure 9. Test of stability of the fit of the electrostatic calibrations: shown is the determination
from the fitting of the calibration factor α in the case of the fixed -2 exponent versus the sphere-
plane distance for the fixed -2 exponent (in units of Hz2 V−2 m2) expected from electrostatics
(diamond points, black), and for the best exponent left as a free parameter (circle points, red).
The number of points used in the data fit includes up to the gap distance evaluated at that
point. The best exponent points show convergence to a constant value at the closest distances
in all four runs, unlike the electrostatic case with the fixed exponent.

3.4. Nonlinear oscillation of cantilever
The cantilever is driven at resonance in a phase-locked loop, a routine technique adopted by
many groups [18, 25, 49, 50]. Higher order terms in the force expansion should produce higher
harmonics of the drive frequency. Then the assumption that the frequency shift is simply
proportional to the gradient of the external force could lead to erroneous assessments of kel,
eventually affecting the exponent. We have not observed higher harmonics in the frequency
spectrum of the resonator.

3.5. Deviation from geometrical ideality
The deviation from geometrical ideality and its influence on the local capacitances [51] could in
principle play a role, both in having a different shape or a variable radius of curvature, and in
the deviations from the PFA formula. In our case, even at the smallest explored distances, the
PFA correction due to the roughness is estimated to be of 0.4% in the electrostatic calibration,
well below our sensitivity. A more careful analysis beyond the PFA is possible taking into
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Figure 10. Test of stability of the fit of the electrostatic calibrations: shown is the determination
from the fitting of the offset distance x0 = βV 0

PZT versus the sphere- plane distance in the case
of the fixed -2 exponent expected from electrostatics (diamond points, black), and for the best
exponent left as a free parameter (circle points, red). Clearly, the trend associated with the fixed
exponent displays a wide variation in the fitting parameter V 0

PZT, while the overall behavior
driven by the best exponent shows a degree of stability in all distances.

account the actual surface profiles. It is however worth to point out that at least the simple
hypothesis of a non uniform radius of curvature of the spherical surface cannot take into account
the anomalous scaling. In PFA, the force signal (for both electrostatic and Casimir) is directly
proportional to the radius of curvature and the total force will be therefore obtained as an
integral along the radii of curvature with no deformations to the inverse square law for the
distance dependence. In [52] an interesting geometry has been discussed which could take into
account the anomalous exponent we have observed, however the stringent agreement between
the capacitance measurements and the PFA expression for a pure sphere-plane geometry rules
out this hypothesis.

3.6. Surface roughness
Roughness corrections become important at small separations between the surfaces, both for
electrostatic calibrations and for analyzing their residuals in the search for Casimir forces.
Usually roughness corrections in the electrostatic calibration are disregarded as such calibrations
are performed at large distances. Here we consider the simplest analysis based on the proximity
force approximation. Let us assume that both surfaces have stochastic roughness with rms
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amplitudes 〈h2
s〉 and 〈h2

p〉 for the sphere and plane respectively. Apart from the usual PFA
condition to treat the curvature effects due to the spherical lens (d ¿ R), we further assume
that the sphere-plane distance d is much smaller than the lateral roughness correlation length ξ
on each surface (this is the condition for the applicability of PFA to roughness considerations,
only valid for very smooth surfaces). Further assuming that the rms roughness amplitudes are
the smallest lengthscales in the problem, the PFA second-order perturbation correction to the
sphere-plane electrostatic force is

Fel(x) = F0(x)

(
1 +

〈h2
s〉

x2
+
〈h2

p〉
x2

)
, (11)

where F0 is the same force evaluated for smooth surfaces. Figure 11 shows typical images of
the cantilever surface taken using AFM microscopy. We measured the surface profile for our
surfaces and estimate the rms roughness of 〈h2

s〉= 4 nm2 and 〈h2
p〉= 2.4 nm2. The resulting

deviation from ideality is below the estimated sensitivity of the apparatus, and an attempt
to fit the electrostatic calibrations including the roughness at the PFA level as in Eq. 11 did
result in significantly larger reduced χ2. Roughness corrections to the electrostatic calibration
potentially represent a systematic effect that could influence the residuals in the search of the
Casimir contribution.

3.7. Patch potentials
Patch effects are expected to induce deviations from the Coulombian scaling with distance [37],
and the fact that we have found in some calibrations a distance dependent minimizing potential
could validate this hypothesis. However, this does not explain yet while the anomalous exponent
is systematically observed in all runs, while only in some of them a manifest distance-dependent
minimizing potential occurs.

4. Analysis of the residuals of the electrostatic calibrations and tests of the
Casimir force
In the previous section we have found that the electrostatic calibrations performed in the
entire measurement range show the presence of a distance-dependent minimizing potential
(and therefore a distance-dependent contact potential) and an apparent deviation from the
expectation for the sphere-plane capacitance dependence on distance. While the first systematic
effect can be taken into account in the data analysis, the anomalous distance scaling of the electric
force and the lack of its complete characterization prevents in principle to master the calibrations.
This prevents the reliable determination of the relevant parameters of the system, for instance its
effective mass, and therefore the derivation of the residuals containing the Casimir force signal.
In the absence of a complete analysis, and waiting for further experimental and theoretical
input on the anomalous exponent observed in our configuration, in this section we analyze the
cantilever square frequency ν2

0(x) obtained by subtracting to the electrostatic calibration data
the Coulombian electrostatic contribution based on the fitting procedure, as first performed in
[45]. This off-line procedure is necessary as we have evidenced a dependence on distance of V0 in
various runs, and therefore we cannot assume a priori a unique counterbias voltage for an on-line
subtraction of the residual electrostatic force as typically performed in various experiments. A
distance-dependent residual frequency shift implies the presence of a non-Coulombian force or
drifts in the intrinsic resonator frequency or a combination of both. It is evident in Eq. 8 that
the electrostatic residual, ∆ν2

e (x, V0), is zero only if the contact potential is constant. This term
must be evaluated by first inferring the contact potential Vc through numerical integration of
the minimum condition V0.

Based on Eq. 7 we have a second order differential equation for Vc(x):
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Figure 11. Atomic force microscopy images of the cantilever surfaces, of size 10 × 10 µm (left)
and 1 × 1 µm (right). The overall rms roughness for the larger surface is 1.54 nm (with a peak
in the profile due to dust of 4.78 nm) and for the smaller surface is 0.79 nm (with a peak in the
profile of 2.2 nm).

C

C ′′
d2Vc(x)

dx2
+ 2

C ′

C ′′
dVc

dx
+ Vc(x) = V0(x), (12)

where V0(x) is determined experimentally. For the sphere-plane case in the PFA this results in
the following differential equation:

x2 ln(R/x)
d2Vc(x)

dx2
− 2x

dVc(x)
dx

+ Vc(x) = V0(x). (13)

to be solved numerically for instance using a Runge-Kutta integration method, once the
experimental data on V0(x) are interpolated with an analytic function. In the absence of a model
for the dependence on distance of V0, different equivalent empirical functions can be used to fit
the actual data. This obviously is a strong limitation to the predictive power on the residuals,
but at a phenomenological level has to be considered as a conservative and realistic procedure
to infer some physics beyond the Coulombian contribution. We use, as first guess function, an
exponential one such as V0(x) = V0+∆V [1−exp(−x/λ)] with V0 representing the potential when
the two surfaces are in contact, V0 + ∆V is the asymptotic value of the minimizing potential at
large distances, and λ the characteristic lengthscale on which the minimizing potential varies.
Alternatively, we may use the function V0(x) = Vlog + ∆Vlog ln(x/Λ), characterized by similar
parameters Vlog, ∆Vlog and Λ, although in this case a defined asymptotic value is not available.
In Fig. 12 we show the sensitivity of Vc obtained through integration of Eq. 13 to the choice of
the function interpolating the V0 distance dependence.

Another issue requiring careful attention regards the boundary conditions chosen to solve the
second order differential equation for Vc(x). At large distances Vc(x) is expected to be constant
and thus Vc(x) = V0(x). Also, the first derivative of Vc(x) should be zero in order to satisfy the
differential equation. Therefore we choose the boundary condition Vc(xn) = V0(xn);V ′

c (xn) = 0,
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Figure 12. Data for the minimizing potential V0 versus sphere-plane distance for run 1.
The dashed curves represent the best fits of V0 assuming an exponential dependence (red)
and a logarithmic dependence (black). The best fit parameters are V0 = (0.011 ± 0.007)V,
∆V = (0.25 ± 0.01)V, and λ = (703 ± 93) nm in the case of the exponential function, and
Vlog = (0.07± 1140) V, ∆Vlog = (0.058± 0.003) V, and Λ = (140.4± 2.8) nm in the case of the
logarithmic function. The continuous curves represent the corresponding plots of the contact
potential Vc after solving the differential equation Eq. 13 as described in the text.

where xn is the largest distance measured in the data set. In the case of the exponential fitting
of V0(x), the curve becomes quickly flat as x increases and therefore the use of xn at very large
distances is a good approximation. For the logarithmic fitting this is more problematic, making
the solution for Vc(x) quite sensitive to the choice of xn.

Based on this input, one can evaluate now the electrostatic contribution independent on
the external bias potential, ∆ν2

e (x, V0), and further subtract it from electrostatic contribution
dependent on the external bias evaluate at the minimizing potential, ν2

m(x, V = V0) (i.e., the
maximum of each parabola in Fig. 3). The result is shown in Fig. 13, where the dashed
and dotted-dashed curves are relative to the choice of the V0 dependence on distance, as given
in Fig. 12 (either exponential or logarithmic). We see that the plotted quantities ν2

m(x, V =
V0) − ∆ν2

e (x, V0) indicate that there are further distance-dependent residuals ν2
p + ∆ν2(x) of

non-electrostatic nature. In this analysis it is critical to have the most accurate control on
the dependence of V0 on distance. In case of runs 2, 3, and 4 such a control is quite limited,
and neither an exponential function nor a logarithmic function adequately describe its spatial
dependence. In the remainder of this section we will concentrate on run 1.

Given the serious limitations of our electrostatic calibration, it is difficult to perform a
rigorousanalysis of these extra residuals, as they could be Casimir-Lifshitz forces, patch potential
forces,etc. In the following we will assume that these extra residuals are only due to the
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Casimir-Lifshitz force, and evaluate the corresponding prediction for ν2
p + ∆ν2

Cas(x). As a
first attempt, one can fit either the exponential (dashed line) or the logarithmic (dotted-
dashed line) residuals in Fig. 13 with the plain Casimir formula for zero temperature
and perfect metals. In the proximity force approximation,the sphere-plane Casimir force is
FCas(x) = 2πREPP(x), where EPP(x) is the Casimir energy per unit area for the plane-
plane configuration, EPP(x) = −~cπ2/720x3. Therefore, the frequency shift due to the
Casimir force in the sphere-plane case is ∆ν2

Cas(x) = −KCas/x4, with KCas = π~cR/480meff .
Fitting the above curves with ν2

p − KCas/x4, we obtain ν2
p = (790440 ± 19.3)Hz2, KCas =

(5.5164 ± 0.3390) × 10−27Hz2/m4 for the dashed line (exponential formula for V0(x)), and
ν2

p = (790450 ± 18.3)Hz2, KCas = (6.5795 ± 0.3220) × 10−27Hz2/m4 for the dashed-dotted
line (logarithmic formula for V0(x)). Using the values for the radius of curvature of the sphere
of R = 30.9mm, and an effective mass of meff = 0.46g, the obtained coefficients KCas are lower
than theideal Casimir prediction(KCas,th = 1.3× 10−26Hz2/m4)by about a factor 2, in line with
the expectation that conductivity corrections could play a role.

In order to analyze possible conductivity (and temperature) corrections to the Casimir force
we now use the Lifshitz formalism [53], written in terms of the frequency-dependent reflection
coefficients of the two gold surfaces. The plane-plane free energy is

EPP(x) =
kBT

2πx2

∑
p

∞′∑

m=0

∫ ∞

mγ
dy y2 log(1− r2

p e−2y). (14)

Here p denotes the two possible polarizations (TE and TM), γ = 2πkBTx/~c, and the prime on
the summation sign indicates that the m = 0 term is counted with half weight. The reflection
amplitudes are given by the usual Fresnel formulas,

rTM(y, ξm) =
sm − ε(iξm)pm

sm + ε(iξm)pm
; rTE(y, ξm) = −sm − pm

sm + pm
, (15)

where ξm = 2πkBTm/~ are the Matsubara frequencies, pm = y/mγ, and sm =√
ε(iξm)− 1 + p2

m. The dielectric permittivity at imaginary frequencies is evaluated using
Kramers-Kronig relations with gold optical data from Palik [54], extrapolated to low frequencies
using a Drude model with parameters: ωp = 7.5eV for the plasma frequency, and γp = 0.061eV
for the plasma relaxation parameter. The resulting theoretical prediction (using once again
PFA for the sphere-plane case) for ν2

p + ∆ν2
Cas(x) at T = 300K is plotted as the dotted line in

Fig. 13, using as the free cantilever square frequency ν2
p = 7.9047767× 105 Hz2. It is apparent

from the figure that the Casimir curve ν2
p + ∆ν2

Cas(x) approximately follows the behavior of the
curves ν2

m(x, V = V0) −∆ν2
e (x, V0) (that is, the electrostatic residuals after substraction of the

distance-dependent contact potential term). Note that ∆ν2
e (x, V0) > 0, that means a positive

frequency shift associated to a repulsive electrostatic residual (V -independent) force. Had we
not taken this term into account, the Lifshitz theory curve would noticeably depart from the
electrostatic residuals ν2

m(x, V = V0).
Finally, it is important to emphasize once again that, due to the anomalous exponentwe

found in our electrostatic calibration, we cannot make any precision measurement claims on
the Casimir force after the residual analysis. Nor does our data have enough sensitivity to
detect corrections due to temperature effects or sample dependence. On the other hand, it is
quite possible that part of the residuals are due not only to Casimir-like forcesbut also to other
external voltage-independent forces, not taken into account in a simple Coulomb law, such as
patch potentials.
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Figure 13. Plot of the electrostatic residuals versus distance. The dots correspond to the
maximum value of each parabola in Fig. 3 as a function of distance, ν2

m(x, V = V0). The
dashed (exponential fit for V0(x)) and dotted-dashed (logarithmic fit for V0(x)) lines result from
substracting from ν2

m(x, V = V0) the extra term ∆ν2
e (x, V0) due to the distance-dependence of the

contact potential Vc(x). The dotted line is the Lifshitz prediction for ν2
p +∆ν2

Cas(x). Parameters
are an effective mass meff =0.46 g and a cantilever free oscillation frequency νp = 889.09Hz.
Optical data of gold are from Palik [54], and Drude parameters are ωp = 7.5eV andγ = 0.061eV.
Temperature is set to T = 300K.

5. Systematic effects and relationship to previous Casimir and AFM experiments
Our experiment spans between two different classes of experiments. In previous short-distance
Casimir force experiments, the minimum explored distance is on the order of few hundred
nanometers. This is due to the fact that typically, in order to increase the sensitivity at larger
distances, the stiffness of the resonator is designed to be low. While this yields a stronger signal
at large distances with respect to harder resonators, this also results in an earlier snapping of
the resonator to the attracting surface. On the other hand, typical AFM experiments aimed
at mapping the profile of a surface at subnanometer resolution (both depth and lateral) do not
need to reach distances larger than 10-20 nm. We discuss here more in general the specific issues
we have found that could affect at least in principle the analysis of previous measurements, or
at least the assessment of their accuracy.

5.1. Distance dependence of the contact potential
Our finding of the dependence of the contact potential Vc upon the distance calls for a more
careful study of previous experiments in which the contact potential was assessed at relatively
larger gaps than the one used for looking at the Casimir force. In order to seek for similar
regularities in previous Casimir force experiments, we have requested electrostatic calibration
data kindly provided by various groups. The result of the analysis for the data of the Lucent
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Laboratories group [17] working with spheres of much smaller radius of curvature (100 µm) is
reported in the top-right plot in Fig. 14, showing a small but clearly visible linear correlation
between V0 and the sphere-plane distance. The data of the AFM group in Grenoble (with
microspheres of radius 20 µm) in Fig. 14 bottom-left show also a strong dependence of V0

at large distances, with a more complex behavior as evident from the change in polarity of
the minimizing potential around 5 µm. In the case of the experiment performed at Indiana
University-Purdue University Indianapolis (IUPUI), with a microsphere of radius (148.7 ± 0.2)
µm, see bottom-right plot, no evident dependence on the distance can be assessed, and in that
experiment a constant counterbias equal to the average value was assumed. A linear trend, with
a systematic difference in the contact potential in the explored range of about 3 mV around
random fluctuations of comparable size, seems also present in Fig. 4 of [55] using microspheres
of radius 200 µm, although the coarse scale used for the vertical units makes harder a more
careful and quantitative assessment.

Although it would be necessary to collect more data, one noticeable emerging pattern from
the comparison of the experiments in Fig. 14 is that experiments with intermediate radii of
curvature generally seem to provide a milder dependence of V0 within a comparable distance
range. It is plausible that spheres with very small radius of curvature as in the example from the
Grenoble group are more vulnerable to local defects or impurities, while large radii of curvature
(and therefore large active interaction surfaces) like in our case are sensitive to large scale
variations in the patch potentials. It will be interesting to investigate, beside the obvious material
composition, the geometry dependence of minimizing and contact potentials. An interesting
study of the minimizing potential and its dependence upon distance and drift in time has been
recently reported for the more macroscopic setup of a torsional balance [56].

To assess the impact of the distance-dependent minimizing potential on the precision of the
Casimir force measurements, following [57], we evaluate the equivalent voltage necessary to
mimic the ideal (zero temperature, perfect conductors) Casimir force at a given distance, and
in the sphere-plane case we have

Veq(x) =
π

120

(
~c
ε0

)1/2 1
x

, (16)

implying that the Casimir force can be simulated, at a distance of 1 µm, by just having 17.5
mV of uncompensated voltage between the two surfaces. For real materials the Casimir force
is weaker, and can therefore be mimicked by an even smaller uncompensated voltage. If
the minimizing potential V0 is independent of the distance over the entire range of explored
distances, it is legitimate to use an external counterbias to cancel its effect. Otherwise, a fixed
counterbias will only cancel out the minimizing potential at a given distance and, depending
on the slope of V0 versus distance at smaller gaps, most if not all of the measured force could
be due to the uncompensated potential. Some of the determinations of the contact potential
in previous experiments have been performed at relatively large gaps with respect to those
at which the Casimir forces observations are reported. In some cases, in particular for low
stiffness microcantilevers, this is necessary because electrostatic forces at small distances will
cause snapping or instabilities, unless very small bias voltages, limited by the voltage supply
specifics, are applied. This suggests that a reanalysis of the data collected on Casimir forces
so far will be beneficial in the light of these findings, also including a more careful scrutiny
in the next round of measurements. Notice also that to have for instance a 0.1 % precision
in the determination of the Casimir force the electrostatic background should be controlled
with an accuracy better than 550 µV at 1 µm, which it is also equivalent to perform precision
electrometry. In other words, the precision of 0.1 % is equivalent to be able to discern a minimum
voltage of 550 µV applied to the gap, a very difficult task considering the presence of comparable
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Figure 14. Minimizing voltage versus sphere-cantilever distance resulting for the data analysis
of various experiments. Shown are data from run 1 and run 2 of our experiment (top-left, with
a zero minimizing potential at the closest approach for run 1, and a non-zero value of V0 '-150
mV for the closest approach of run 2), data from [17] (top-right, courtesy of F. Capasso and H.B.
Chan), results from the experiment of the Grenoble group (bottom-left, courtesy of J. Chevrier
and G. Jourdan) , and the experiment at IUPUI (bottom-right, courtesy of R. Decca). The first
three sets of data evidence a distance dependence of V0 upon the sphere-plane separation, which
could affect significantly the accuracy without taking into account this systematic effect, while
this behaviour is absent in the bottom-right plot.

voltage drifts and patch potentials, although other groups have instead concluded that the
estimated patch potential contributions are under control in their experiments [23, 58].

5.2. Thermal expansion
Even though the temperature of the cantilever clamping system is actively stabilized by a Peltier
cooler, the rest of the system is still subject to global thermal variation as large as 1 K during the
measurement runs. In order to understand the stability issues of our apparatus, we have studied
the cantilever frequency for a time interval much longer (12 hours) than the typical duration of
a run (of 3-4 hours) and we have show the temporal evolution of the curvature coefficient Kel

at a given nominal distance in Fig. 8.
To understand the impact of thermal expansions let us consider an aluminum slab of L =1 cm

with its coefficient of linear expansion α = 24×10−6/K, situated underneath the cantilever. For
a typical temperature change over a period of 12 hours of ∆T = 1K, the incremental expansion
due to temperature is then ∆L = αL∆T =240 nm, which is almost identical as the total distance
variation shown in Fig. 8. This translates into a range of 5-10 nm of average variation in the
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Figure 15. Time behaviour of V0 in the same long run of Fig. 8. The apparent lack of
correlation between this drift and the one presented in Fig. 8, which is mainly due to the drift
in the sphere-plane gap distance, seems to imply that there are genuine time-dependent drifts
of the minimizing potential even if the sphere-plane distance is kept constant, consistently with
the finding in [56].

shot-to-shot electrostatic measurement, i.e. the change in the absolute gap separation during
the acquisition of an individual data point. To evaluate the robustness of the fits, let us assume
that the last position registered by the PZT right before hard contact is misplaced by 8 nm
either closer or away from the surface, for instance due to thermal expansion. One underlying
assumption held throughout our analysis has been the distance measurement is solely controlled
by the action of the piezoelectric transducer, but it is evident at this point that the actual
distances could be also affected by thermal expansion. In order to see how this small variation
due to temperature change influences the final results of the fitting procedure, we have adjusted
the last data point of the closest approach by 8 nm forward or backward in an attempt to mimic
the effect of a thermal expansion hypothetically affecting only the last collected point.

The relocation of the single data point of the final distance has modified the entire set of
fitting parameters as shown in Table 2. For the case of the calibration factor α, variations due to
the modification of the single last data point were 14%, 6.4%, 18%, 21% for Run 1-4, respectively.
Even larger changes in the values of the distance offset x0 were found, up to 40 %.

The exponent e of the electrostatic power law, however, remains stable over the forward
and backward displacements of the single data point, although its overall variation is evidently
greater than the fitting uncertainties at a given position, demonstrating how vulnerable fitting
parameters are to small changes in the absolute gap distance. It should be emphasized that
only a single data point is readjusted in this analysis. Because the thermal expansion is present
throughout the whole measurement at all distances, what has been shown here only represents
a subset of many other possibilities.

Another source of drift has been identified in the minimizing potential, as evidenced in Fig.
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15. This is consistent with recent reports of dedicated experiments studying the long term drift
of the surface potential using torsional balances [56]. The presence of a minimizing potential
slowly drifting in time implies severe limitations on the possibility to integrate for long time
intervals precision force measurements.

5.3. Relationship between Casimir and AFM measurements
For the sphere-plane geometry, Casimir force experiments have used sphere radii much larger
than typical in AFM apparatus (R ' 100µm versus 10-100 nm respectively) due to different
motivations (mesoscopic effective surface versus higher image resolution, respectively). However,
the physics ruling the instrument should be the same and one expects a smooth transition
between the two regimes, and a close comparison between the accuracies reachable in these two
regimes. Many of the systematic effects that can potentially mimic the Casimir force have been
extensively studied in the AFM experiments [59, 44, 50], in particular for the investigation of
adhesion and friction surface forces [60, 61, 62, 63], many years before Lamoreaux’s landmark
experiment [15]. Dürig et al. have studied metallic adhesion and short range forces using
Scanning Tunneling Microscopy (STM) [64, 65], while a number of papers are devoted to the
subject of radiative transfer [66], noncontact friction [67], and dissipative interaction between a
resonant cantilever and various sample surfaces in the dynamic AFM mode [36, 68, 69, 70, 71, 72],
still an active topic of research. It would be productive to bridge the short-range AFM
measurements and Casimir force measurements that, after the pioneering measurements of
the macroscopic van der Waals force [73], seem to have developed with somewhat divergent
methodologies.

The Casimir force may be considered as the van der Waals force in the long-range, retarded
regime and therefore the study of its nature may be seen as an extension of the general studies
of the previous van der Waals force measurements with AFM techniques. From this perspective,
the measurement of forces between macroscopic surfaces at small distances becomes a rich field of
study, including also the possible role played by the meniscus force, double-layer force, capillary
force, hydration force, hydrophobic force, and steric, depletion, and bridge forces, all ultimately
of electromagnetic origin, yet different in distance scaling and strength [47]. Although not all

Run 1 Run 2 Run 3 Run 4
F α(Hz2V−2me) 3194± 97 3200± 158 4265± 155 1749± 75

x0 (nm) 35.7± 0.1 53.9± 0.3 43.5± 0.2 28.7± 0.2
e −1.74± 0.01 −1.78± 0.02 −1.84± 0.01 −1.60± 0.01

χ2/DOF 1.6 0.5 2.2 7.0
α(Hz2V−2me) 2805± 92 3021± 153 3732± 144 1415± 69

x0 (nm) 29.6± 0.1 49.6± 0.2 35.7± 0.2 20.0± 0.2
e −1.70± 0.01 −1.77± 0.02 −1.80± 0.01 −1.54± 0.02

χ2/DOF 1.0 0.8 1.2 7.0
B α(Hz2V−2me) 2788± 97 3006± 162 3608± 149 1451± 78

x0(nm) 28.7± 0.2 48.7± 0.3 33.9± 0.2 20.0± 0.2
e −1.70± 0.01 −1.77± 0.02 −1.79± 0.01 −1.54± 0.02

χ2/DOF 2.8 1.6 1.7 11.5

Table 2. Stability test of the fitting parameters for the electrostatic calibrations. The middle
rows present the fitting parameters α and x0 for the electrostatic calibrations with a power law
exponent e taken to be a free parameter, such that Kel ∝ de. F and B in the first and third
rows represent hypothetical situations in which the last data point right before hard contact
were moved by 8 nm forward (F) and backward (B) from the original position, respectively.
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of these forces may be relevant in a given experimental situation, one must carefully check the
presence of each of these forces and must be able to distinguish them, on the top of residual
electrostatic forces and Casimir forces in themselves. It is plausible that, especially at the level
of accuracy reachable in current and future high precision measurements of the Casimir force
at small distances, some of these forces should appear already at the level of residuals from the
best fits.

A similar argument may be also applied to the electrostatic calibrations. The AFM
community has already discussed issues such as friction, electrification, patch charges and
potentials, while these have received little attention so far in the Casimir framework (apart
from the estimates for the effect of the patch potentials discussed in [23, 58]), in spite of relevant
analysis appearing in the recent literature [37, 74, 75]. Also, Burnham et al. [63] have evaluated
the effect of patch charges by means of the image method, and compared with the previously
observed long-range interaction of van der Waals force in the surface force microscopy. In [36],
the force fluctuations between a cantilever tip (R = 1µm) and a surface (both gold-coated)
are interpreted in terms of inhomogeneous electric fields due to the presence of atomic steps,
adsorbates, hillocks, pits, and other defects. The ubiquity of these electric fields may significantly
limit precision and accuracy of Casimir force measurements. It is therefore of great relevance to
aim also at calibrations with other physical effects, such as through radiation pressure [26] and
hydrodynamic forces in the case of the Casimir-Lifshitz force in the presence of liquid media
[76], and to perform detailed comparisons among the various calibration techniques, especially
to filter out issues specific to the electrostatic calibrations.

6. Conclusions
We have discussed electrostatic calibrations in a sphere-plane setup different from the previous
ones for two features, namely a large radius of curvature of the sphere and a microresonator
with large stiffness. This combination allows us to extend electrostatic calibrations to small
gap distances in the presence of large spherical surfaces. We have evidenced anomalies in the
expected scaling of the electrostatic force, and a distance dependent potential minimizing the
electrostatic contribution. In the absence of a complete control of the underlying electrostatic
physics, it is difficult to calibrate the apparatus at the extent to meaningfully discuss the residuals
signal. By using the electrostatic expectations, we have found evidence of the Casimir-Lifshitz
force at small separation in one out of the four runs for which optimal working conditions
were found and a complete data analysis have been performed. While we believe that some
systematic effects are being emphasized by using spheres with large radius of curvature and small
sphere-plane distances, we draw two conclusions from our results which may be of more general
interest. Firstly, we have shown that the determination at all distances of the contact potential
V0 is crucial, and its uncertainty can affect the entire data analysis procedure. This implies
that electrostatic calibrations have to be performed in the entire range of explored distances,
rather than being limited to larger separations for which the Casimir force is expected to be
negligible. Secondly, we have discussed the stability of the determination of the fit parameters,
like distance offset, minimizing potential, and effective mass, coming from the electrostatic
calibrations. Various groups are now trying to confirm or rule out the anomalies we have
observed in our experimental setup [77]. Apart from pointing out some limitations of the
sphere-plane geometry, we believe that our discussion of systematic effects and data fitting
robustness is beneficial for more rigorous data analysis in the next generation of experiments
for any geometrical configuration, allowing to explore non-Coulombian forces, in the spirit of
an experiment able to discover unknown physics rather than the demonstration of an a priori
known effect [31].
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[64] Dürig U, Züger O, and Pohl D W 1990 Phys. Rev. Lett. 65 349
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