Null-length springs: Some curious properties
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Null-length springs, in spite of being apparently simple, reveal several unexpected properties. All
of these stem from the fact that these springs, lacking a characteristic length, show no differences
between longitudinal and transverse vibrations. Some of these qualities are demonstrated in an
elementary way so as to show the underlying physics. The properties proved are used to obtain
certain well-known results of introductory physics. Finally, an experimental setup is described

briefly to simulate null-length springs.

Elementary demonstrations of physical properties of
chosen systems, being unencumbered by excessive math-
ematics, tend to build up intuition and lead to surer and
more physical reasoning. Hence their pedagogical value.'-
Some problems dealing with null-length springs are par-
ticularly interesting for this kind of discussion.

In Secs. I, II, and III we show some examples dealing
with null-length springs. In Sec. IV we apply the obtained
results to two well-known problems of elementary mechan-
ics. Finally, in Sec. V we describe briefly a way of making
null-length springs and we make reference to a commercial
device that uses them.

I. A SINGLE SPRING

We shall start by considering a spring that behaves like
an ideal Hooke’s law spring, no matter how much it is
stretched. One of its ends is joined to a mass that can move
only along a straight line without damping, and the other
one is fixed at a distance d from this line (Fig. 1). If the
unstretched length of the spring L,— i.e., its length when
no forces are applied— is different from zero, the motion of
the mass can be considered harmonic only when its ampli-
tude is small enough (unless d = 0). Besides, the frequency
of the motion depends to a great extent on the distance d
from the fixed point of the spring to the line of movement.
When the unstretched length L, is zero (a “null-length”
spring) the result changes appreciably: The movement is
exactly harmonic for any amplitude and its frequency does
not depend on the position of the spring’s fixed end.

To understand these results, consider (Fig. 1) a spring
with a fixed end at B. (Springs will be null length hereafter,
unless we expressly state the contrary.) A mass is attached
to the spring and is constrained to move along the line AC;
the mass has its equilibrium position at A. At that point,
the spring exerts on the mass a force F, that balances the
constraint force F\.. Due to the fact that the force exerted
by the spring is strictly proportional to its length (and not
merely a linear function as would be the case if we had a
nonzero unstretched length), the forces at points A and C
are in the geometric relation shown in Fig. 1 (this is just
Thales’ theorem of elementary geometry). It follows that
the restoring force along the line of movement is equal to
the displacement from the equilibrium position times X,
the spring constant; i.e., the motion is harmonic for any
amplitude.

As far as the angular frequency is concerned, we can find
it in the following way: It can only depend on the three
relevant parameters of the problem— the spring constant
K, the mass M, and the distance d from the fixed point to
the line of movement. On dimensional grounds, the only
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combination of these magnitudes having frequency units is

VK /M ;* hence the frequency must necessarily be propor-
tional to such a value. Since the frequency is obviously

VK /M whend =0,itisyK /M in all cases. In particular,
it cannot depend on the distance d.

The previous results are not altered if we suppose that
there exists a uniform gravitational field, regardless of its
direction: Since the force exerted on the mass by such a
field is constant at every point of space, its only effect is to
modify the equilibrium position of the mass. The oscilla-
tion frequency is unaffected.

In fact, a mass hanging from a spring in a uniform gravi-
tational field has a vertical oscillation period equal to that
corresponding to horizontal oscillations.

To see this we refer to Fig. 2. In the first place, it is clear
from what we have said that the frequencies of the motions
(a) and (b) are equal. Second, the constraint force F,
[case (b)] is independent of the position of the mass on the
line of movement, as can be seen in Fig. 1. This last proper-
ty enables us to replace the constraint AC by a uniform
gravitational field g = F,/M = Kd /M without altering
the motion. It is interesting to notice that the mass now
performs a pendular motion with the peculiarity that it
remains on a straight line. This characteristic may be im-
mediately generalized to a uniform gravitational field of
arbitrary value g: We just have to take the distance d to
satisfy the relation Mg = Kd. From the two points we have
mentioned it follows that vertical oscillations and pendular
oscillations (without constraint) have the same frequency.

The previous result is useful to explain the curious fact
that a mass hanging from a spring—of nonzero un-
stretched length— in a uniform gravitational field has a

Fig. 1. A mass joined to a null-length spring fixed at B moves along the line
AC. The forces exerted on the mass at two different positions are shown.
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Fig. 2. Vertical and constrained pendular oscillations of a mass immersed
in a uniform gravitational field g.

vertical oscillation period that cannot be greater than that
corresponding to pendulumlike oscillations. To see this we
can think of the nonzero unstretched length spring as a
null-length spring with a rope joined to it. This rope does
not alter the vertical oscillation period but it clearly raises
the pendular period (as in a standard pendulum).

II. A MASS JOINED TO MANY SPRINGS

We shall now tackle the following problem: Let us sup-
pose a mass is joined to the ends of several null-length
springs fixed to arbitrary positions by their other ends.
How will the mass move if it is removed from its equilibri-
um position and it is left free?’

The first thing we can assert is that it will move along the
straight line joining the initial position and the equilibrium
one. This is so because, as can be seen in Fig. 1, the force
that each spring exerts along the transverse direction to a
displacement is not altered as a result of the latter and, just
as it is zero at the equilibrium position, so is it zero at every
point. Consequently, the force on the mass is always direct-
ed toward the equilibrium position. Since the forces exerted
by the springs vary linearly with the displacement, their
sum is proportional to such displacement, the constant of
proportionality being the sum of the elastic constants.
Hence, the movement is harmonic regardless of the ampli-
tude.

In order to find the oscillation frequency we can think
that the mass is removed a great distance compared with
the distances between the fixed ends of the springs. There-
fore, we can consider, as far as the force they exert is con-
cerned, that all of them are fixed to the same point. As a
result, they behave as though they were a single spring
whose spring constant is the sum of the individual ones. It
is straightforward to see that the square of the oscillation
frequency is the sum of the squares of all individual fre-
quencies. In particular, it is absolutely independent of the
positions to which the springs are fixed.

If some of the spring constants are smaller than zero,
what has already been said is valid as long as there exists an
equilibrium point for the mass. There will be such a point if
and only if the sum of all spring constants is greater than
zero. If this sum equals zero, it implies that a displacement
along a line does not modify the force exerted on the mass
because the change is proportional to the sum of all the
spring constants; i.e., the system of springs is equivalent to
a uniform force field in all space.
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III. A MASSIVE SPRING

So far the springs we have dealt with have had no mass.
We wish to show in an example another curious property of
null-length springs, now having mass. We shall restrict
ourselves to the case in which the mass is uniformly distrib-
uted when the spring is stretched, no other types of forces
being present.

When an inextensible string hangs from its ends in the
presence of a gravitational field it takes a particular shape
known as a catenary. The mathematical expression for this
curve is that of a hyperbolic cosine. We are interested in
knowing the shape a spring takes under similar conditions.
One who faces this problem for the first time may believe
that the solution is more complicated than in the case of the
string. Nevertheless, this is not so.

Let us first suppose that we stretch a spring between two
points, S, and S,, without gravity. Imagine that equally
spaced marks are drawn on it. When the spring is immersed
in a gravitational field, it sags (Fig. 3). To ensure the sys-
tem’s mechanical equilibrium, each little section of the
spring exerts the same horizontal force on its neighbors.
But that force is proportional to the horizontal distance
between marks, each section being by itself a null-length
spring. Therefore, horizontal spacing between marks is
equal for all of them. Since the distance between the first
(S)) and the last (S,) mark is constant, it is clear that each
mark moves vertically as gravity is switched on. Let us take
a point A on the spring. Since the portion MA is at equilib-
rium, the torque of all forces acting on it must be equal to
zero, no matter which point the torque is referred to (these
forces are shown in Fig. 3). Let A be this point. Then F,yis
equal to F,x', where F, is the weight of the portion MA.
The fact that the marks do not move horizontally implies
that x’ is equal to x/2 and F, is proportional to x. As F,
does not vary with 4, y turns out to be proportional to x?,
i.e., the curve is a parabola.

A curious property of this problem is that the vertical
position of the minimum M stays invariant when the points
S and S, move horizontally. To justify our statement, we
notice that the vertical forces at every mark do not vary
because they are equal to the weight of the portion from M
to each mark. The vertical distance between marks, being
proportional to these forces, do not change either. Finally,
it is straightforward to see that this implies the mentioned
result.

Fig. 3. A massive null-length spring hangs from S, and S, under the influ-
ence of gravity. The forces exerted on the portion MA are shown.
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Fig. 4. The motion of a mass inside a spherical hole in a sphere of uniform
mass density is equivalent to that of the mass joined to two null-length
springs of elastic constants K and — K; the arrangement is shown in the
figure.

IV. APPLICATIONS TO TWO SIMPLE
PROBLEMS

The properties dealt with in this article may be useful to
give elementary demonstrations of some classical problems
of introductory physics. In the following lines, we shall
analyze two simple examples.

The problem of the frequency and harmonicity (or not)
of the oscillation of a mass along a tunnel, not necessarily
radial, across a homogeneous sphere, can be solved know-
ing that the force on the mass is proportional to the dis-
tance to the sphere’s center. Since the mass can be thought
of as joined to the sphere’s center by means of a null-length
spring, by previous reasoning we know that the motion is
harmonic and of the same frequency for any direction of
the tunnel.

The other example consists in determining the move-
ment of a mass inside a spherical hole in a sphere with
uniform mass density. We can consider the hollow sphere
as two superimposed spherical masses of appropriate val-
ues (one positive and the other one negative). It is then
clear that the movement inside the hole is equivalent to that
of a mass joined to two null-length springs fixed to the
centers of the spheres (Fig. 4). The spring constants of
these springs have the same absolute value and opposite
sign because the two spheres have the same mass density
(in absolute value). Therefore, their sum is zero. It follows
from what has been previously mentioned that there exists
a uniform force field inside the hole having the direction of
the line joining the two centers. In particular, if the hole is
concentric, the field must be zero, by symmetry. This is the
well-known result that a shell with uniform mass density
creates no gravitational field inside it.

V. PRACTICAL REALIZATION

Finally, we shall make a comment on the possibility of
making springs of this kind in the laboratory. Figure 5
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Fig. 5. An experimental setup for simulating a null-length spring: a spring
of unstretched length L, fixed to B slips through A when a force F is
exerted. The portion CA behaves like a null-length spring.

shows a suitable setup: a spring with unstretched length L,
is fixed to B and can slip through A with the least possible
damping. Therefore, the force Fexerted on Cis proportion-
al to the distance CA. It follows that the portion CA of the
spring acts as a null-length spring. This arrangement could
be used to show experimentally the properties proved, ex-
cept in the case of the parabola. For the latter, a spring that
can be stretched a distance much greater than its un-
stretched length (as in the slinky’s case) could prove to be
useful.

Null-length springs are not a theoretical lucubration but
they are actually used, for example, in the commercial La-
coste—Romberg gravity meter, whose function is described
in Refs. 6 and 7.
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