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Frustrated arrays of interacting single-domain nanomagnets provide important model systems for

statistical mechanics, as they map closely onto well-studied vertex models and are amenable to direct

imaging and custom engineering. Although these systems are manifestly athermal, we demonstrate that an

effective temperature, controlled by an external magnetic drive, describes their microstates and therefore

their full statistical properties.
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The physical meaning of temperature can be approached
on several distinct levels. Operatively and macroscopically,
one appeals to the notion of thermal equilibrium. More
formally, temperature measures the variation of energy
with disorder. In statistical mechanics, temperature
emerges as the Lagrange multiplier in an energy-
constrained optimization. Traditionally, a ‘‘thermal’’ sys-
tem at equilibrium supports all three of these notions. Yet
the concept of temperature has been extended to athermal
systems, such as driven granular materials where the char-
acteristic interaction energies greatly exceed the standard
thermodynamic temperature [1–3] (often in the context of
glassy transitions, jamming, and rheology [4–7]) on the
grounds that the large number of grains would still warrant
statistical descriptions [8]. Effective temperatures have
thus been introduced theoretically [9], extracted from
simulations of slowly sheared granular matter [10], and
from experiments of Brownian motion in vibrofluidized
grains, in which it increases with the magnitude of the
vibratory external drive [11].

While these seminal results reflect the granular kinetics
of systems interacting only through hard-core repulsion
and possibly friction, in this Letter we demonstrate that
an energy-based effective temperature can be defined,
extracted, and used to make predictions, in a recently
introduced nanometer-scale metamaterial, ‘‘artificial spin
ice’’ [12–17], which is controlled by nontrivial interac-
tions, can be engineered to replicate complex models of
statistical mechanics [18–20], and whose microstates can
be directly imaged.

Our artificial spin ice system is a two-dimensional array
of elongated single-domain permalloy islands (80�
220� 25 nm3, with a magnetic moment �107�B) whose
shape anisotropy defines Ising-like spins arranged along
the sides of a regular lattice. The microstate of island
moments in this system can be directly imaged via mag-
netic force microscopy (MFM) [12,13,21], in contrast to
the naturally occurring magnetically frustrated materials

such as the spin ice pyrochlores [22–25]. The system is
athermal: The magnetostatic interaction and anisotropy
energies of the islands are �105 K, and thus thermal ex-
citations cannot induce spin flips. However, as for granular
systems, the large number of islands suggests the viability
of statistical treatments, if activated by an external drive.
Artificial spin ice can be driven into a low-energy,
interaction-dominated state [12,13,21,26,27] by rotating
the sample in a decreasing magnetic field. In our experi-
ments, the field decreases from 2000 Oe (far above coer-
cive field) to 0 in steps of Hs, holding each step for
5 seconds while the sample rotates at 1000 rpm, with a
reversal of field direction at each step. This demagnetiza-
tion protocol was implemented for a range of field step
sizes (Hs) and for two lattice geometries, square ice and
hexagonal ice, as depicted in Fig. 1, of different lattice
constants.
The dominant interactions in the lattice occur between

neighboring islands across a given vertex. Hence we follow
a previously established approach [12,27,28] and describe
the data within a vertex model [20] thus considering pop-
ulations of distinct vertex types, each with a given magne-
tostatic energy. Square ice has 4 topologically distinct
vertex types, which we call types I, II, III, and IV, with
multiplicities qI ¼ 2, qII ¼ 4, qIII ¼ 8, and qIV ¼ 2 as
defined in Fig. 1. We call the magnetostatic self-energies
of these vertices EI, EII, EIII, and EIV with fractional
populations nI, nII, nIII, and nIV; these can be extracted
from MFM images. The specific vertex energy is then
simply �E ¼ EInI þ EIInII þ EIIInIII þ EIVnIV. Hexagonal
ice has just two vertex topologies of multiplicity qI ¼ 6
and qII ¼ 2 with specific vertex energy �E ¼ EInI þ EIInII.
The two lattice geometries have very different entropy vs
energy curves within the vertex model: Square ice has a
twofold ground state of antiferromagnetically tiled type-I
vertices, whereas hexagonal ice has an extensively degen-
erate ground-state tiling of type-I vertices with a substan-
tial residual entropy. Not surprisingly, they behave
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differently under ac demagnetization: Square ice never
finds (or closely approaches) the ground state, whereas
demagnetized hexagonal ice returns the vertex-model
ground state with at most sparse excitations.

We first consider the case of the square ice arrays, with
lattice constant a ¼ 400, 440, 480, 560, 680, and 880 nm.
The external field in our rotational demagnetization is
initially strong enough to coerce every island into follow-
ing the external field, but, as its magnitude decreases,
successive islands presumably begin to ‘‘fall away’’ from
the field, locked in by favorable magnetostatic interactions
with their neighbors. The accumulation of these distinct
‘‘defects’’ carved in the initial uniform set of aligned type-
II vertices generates a well-defined statistical system. In an
isotropic, vertex-gas approximation, where each vertex is
treated as an independent entity, there are M ¼

N!
ðN�DÞ!

Q
�
qN��
N�!

ways to choose D defected vertices among

the N vertices of a given lattice, each allocated among the
four degenerate vertex types according to a distribution N�

of degeneracy q�, � ¼ I; . . . ; IV. Calling � ¼ D=N and
�� ¼ N�=D, we consider S ¼ lnM and maximize it under
a vertex-energy constraint on the ensemble of de-
fected vertices, or ��� � ln�� ð1� �Þ lnð1� �Þ �
��eðPIV

�¼I E��� � EÞ, where � ¼ �P
IV
�¼I �� ln

v�

q�
is the

‘‘entropy’’ of the defected ensemble. We obtain a canoni-
cal distribution for the defects

�� ¼ q� expð��eE�Þ
Zð�eÞ (1)

[Zð�eÞ is defined by normalization of ��] as well as an
expression for the auxiliary quantity �

�ð�eÞ ¼ 1

exp½��ð�eÞ� þ 1
; (2)

where �ð�eÞ is obtained by substitution of Eq. (1) into the
expression for �. Equations (1) and (2) provide the relative
�� vertex population densities as

nI ¼ ��I; nIII ¼ ��III; nIV ¼ ��IV;

nII ¼ ð1� �Þ þ ��II:
(3)

We compute the vertex energies by using a ‘‘dumbbell’’
model (as in Ref. [29]), in which the magnetic dipole is
treated as a finite-size dumbbell of monopoles, and we
consider only interactions between monopoles converging
in each vertex: Energies then scale as ða� lÞ�1 (where a is
the lattice constant and l the length of the islands). By

imposing EI ¼ 0 and EIII ¼ 1, one finds EII ¼
ð ffiffiffi

2
p � 1Þ=ð ffiffiffi

2
p � 1=2Þ and EIV ¼ 4

ffiffiffi
2

p
=ð2 ffiffiffi

2
p � 1Þ. In this

simple dumbbell model of the energetics, the ratios be-
tween different vertex energies are independent of the
array lattice constant.
As a simple test of the basic assumptions of the model

above [1], we consider the quantities lnð5nI=2nIIÞ and
lnð8nI=2nIIIÞ as deduced from the measured nI, nII, and
nIII. These quantities should be proportional to the recip-
rocal effective temperatures EII�e and EIII�e, since our
predictions for the vertex populations [Eq. (3)] at high
temperatures are well approximated by a purely canonical
distribution that assigns an anomalous multiplicity of 5
rather than 4 to type-II vertices—a fact that can be checked
by direct calculation but which also seems reasonable as
there are four different multiplicities in the defected sam-
ple and one in the background. In Fig. 2, we plot these two
quantities against each other. A linear fit returns EII=EIII ¼
0:441, very close to the expected theoretical value

EII=EIII ¼ ð ffiffiffi
2

p � 1Þ=ð ffiffiffi
2

p � 1=2Þ ¼ 0:453 obtained from
the dumbbell approximation.
In Fig. 3(a), we plot the experimentally observed pop-

ulations of each vertex type vs the effective reciprocal

temperature extracted from �eEIII ¼ ln4nInIII
and the theoreti-

cal curves for the vertex populations as a function of the
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FIG. 1 (color online). Square and hexagonal artificial spin ice.
(a) Schematics (top left) and MFM (top right) of the square
arrays and the 16 vertices of the square artificial ice (bottom).
(b) Schematics (top left) and MFM (top right) of the hexagonal
arrays with the 8 vertices of the hexagonal. White arrows show
the vertex ground states, and the percentages indicate the vertex
multiplicity.
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effective temperatures, based on Eqs. (1)–(3). The excel-
lent agreement between theory and the experimental data
demonstrates the predictive power of the effective
temperature.

Is the effective temperature derived above only a
Lagrange multiplier, or does it provide physical informa-
tion about the ‘‘fluidizing’’ external magnetic drive, as an
actual physical temperature provides information about the
surrounding thermodynamic bath? We found that effective
temperature can be controlled via the external drive in a
way strikingly analogous to that reported for vibrofluidized
granular materials [11]—but here in a system with an
explicit energetic description of interactions. As seen in
Fig. 3(b), we find a strikingly linear dependence of h�ei in
the magnetic step size of the ac demagnetization, indicat-
ing that the effective temperature description does indeed
have a physical basis akin to actual temperature.

We now consider the effective temperature of the hex-
agonal ice arrays, in which ac demagnetization consis-
tently returns the vertex ground state (all type-I vertices)
for arrays of small lattice constant. For a ¼ 225, 260, 320,
and 425 nm, the frequency of excitations is �10�3, below
experimental error. Hence hexagonal ice is a good candi-
date to study effective temperature only for larger lattice
constants a ¼ 650, 910, 1135, 1395, and 1620 nm, wherein
the occurrence of excitations nII is significant. As the
density of excitations nII completely defines the thermo-
dynamics, the introduction of an effective temperature as
for the square ice, �eEII ¼ lnðnI=3nIIÞ, might seem only a
reparametrization with little predictive power. In Fig. 4(a),
however, we extract lnðnI=nIIÞ from arrays of different
lattice constant a, but annealed with the same magnetic
step Hs, and plot that ratio against the respective energy

EII. Somewhat surprisingly, we find a linear behavior,
which suggests an effective temperature that is indepen-
dent of the lattice constant. In this calculation, the vertex
energies are obtained via micromagnetic calculations that
describe the full vertex interaction of dipole islands [30],
since we now study much larger lattices for which the
dumbbell approximation (which treats only the monopole
tips that converge at a vertex) is less accurate. The intercept
of the fits in Fig. 4(a) is surprisingly close to the expected
lnðqI=qIIÞ ¼ ln3, lending further credence to the analy-
sis. The extracted effective temperature �e is plotted in
Fig. 4(b) against the magnetic step size Hs. As in the case
of the square ice, we again find a remarkable linear depen-
dence of �e on the anneal step size Hs, although with
different parameters (different geometries apparently ex-
perience different effective temperatures under the same
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FIG. 3 (color online). (a) Vertex frequency from square arrays
of different lattice constants and Hs, plotted against their effec-
tive reciprocal temperature �e in units of EIII. Data are from
averaging at least three MFM images from the same array with
the same Hs. Lines are theoretical curves from Eqs. (1)–(3).
(b) Linear dependence between �e and the magnetic step sizeHs

(data are averaged over the lattice constant a). Negative tem-
peratures are possible, because of high-energy, low-entropy
states.
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FIG. 2 (color online). The effective temperature of the square
arrays, plotted as lnð5nI=2nIIÞ vs lnð8nI=2nIIIÞ: The linear fit
returns a ratio very close to the theoretical value. (nI, nII, and nIII
are average values from the MFM images taken on the same
array and at same magnetic step size.)
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magnetic drive). These results support the physical nature
of the effective temperature, one that can be generalized to
multiple geometries of artificial ice systems, although the
reason for the linearity in Hs is not obvious.

In conclusion, we have introduced a predictive notion of
effective temperature in a complex interacting system of
magnetostatically interacting nanomagnets. We have found
that the external drive, in the form of an agitating magnetic
field, behaves as a thermal bath and controls the tempera-
ture. The formalism successfully predicts microstates on a
wide spectrum of different energies and vertex popula-
tions. Unlike granular materials in which effective tem-
perature has been previously explored, the nanomagnet
arrays can be engineered to reproduce known models of

statistical mechanics, and the interactions can be controlled
by design, suggesting that a range of other statistical
physics may be accessed in these systems.
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FIG. 4 (color online). (a) Linear fits of lnðnII=nIÞ for the
hexagonal arrays vs the energy EII, for the larger lattice spacing.
The intercept falls very close to the expected multiplicity
qI=qII ¼ 3 [i.e., ln(3), since the graph plots the logarithm].
(b) Linear dependence of �e as a function of the magnetic
step size; �e obtained from the fitting slope in (a).
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