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One Problem and One Idea

The Problem
Standard Solution

Take snapshots often = Avoid
trajectory overlap

Consequence = A lot of data

Gigabit/s to monitor a
two-dimensional slice of a 10cm3

experimental cell with a pixel size of
0.1mm and exposition time of 1ms

Still need to “learn” velocity
(diffusion) from matching

This Talk [suggestions to Eberhard, Victor, Jean-Francois, Charles ++]

Take fewer snapshots = Let particles overlap

Put extra efforts into Learning/Inference

Use our (turbulence community) knowledge of Lagrangian evolution

Focus on learning (rather than matching)
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Lagrangian Dynamics under the Viscous Scale

Plausible (for PIV) Modeling Assumptions

Particles are normally seed with mean separation few times smaller
than the viscous scale.

The Lagrangian velocity at these scales is spatially smooth.

Moreover the velocity gradient, ŝ, at these scales and times is frozen
(time independent).

Batchelor (diffusion + smooth advection) Model

Trajectory of i ’s particles obeys: dri (t)/dt = ŝri (t) + ξi (t)

tr(ŝ) = 0 - incompressible flow

〈ξαi (t1)ξβj (t2)〉 = κδijδ
αβδ(t1 − t2)
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Inference & Learning (I)

Main Task: Learning parameters of the flow and of the medium

Given positions of N identical particles at t = 0 and t = 1:
∀i , j = 1, · · · ,N, xi = ri (0) and yj = rj(1)

To output MOST PROBABLE values of the flow, ŝ, and the
medium, κ, characterizing the inter-snapshot span: θ = (ŝ;κ).

Sub-task: Inference [reconstruction] of Matchings

Given parameters of the medium and the flow, θ

To reconstruct Most Probable matching between identical particles
in the two snapshots [“ground state”]

Even more generally - Probabilistic Reconstruction: to assign
probability to each matchings and evaluate marginal probabilities
[“magnetizations”]
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Inference & Learning (II)

All of the above — Formally

P
j
i (xi , y

j ) = (det M)
− 1

2 exp
(
− 1

2
rα(M−1)αβ rβ

)
r = yj −W (∆) xi W (t) = exp(t ŝ)

M = κW (∆)
∫∆

0 W−1(t)W−1,T (t)dt WT (∆)

Inference [of matchings]

Maximum Likelihood: argmaxσL({σ}|θ)

Marginal Probability of a link (j
i ):
∑
σ\σj

i
L({σ}|θ)

L({σ}|θ) = C ({σ})
∏

(i,j)

[
P

j
i

(
xi , y

j |θ
)]σj

i , C ({σ}) ≡
∏

j δ
(∑

i σ
j
i , 1
)∏

i δ
(∑

j σ
j
i , 1
)

Learning [of parameters]

The best one can do: θ∗ = argmaxθZ (θ)

P(θ|xi , y
j ) ∝

∑
{σ} L ({σ}|θ) ≡ Z (θ) - partition function
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Easy vs Difficult

Difficult = Exponential in the system size, 2N

Easy [theory] = Polynomial in the system size

Really Easy [can work “on the fly”] = Linear in the system size

To find Maximum Likelihood Assignment is EASY

To evaluate ALL other aforementioned tasks [Evaluation of the
Partition function, Learning] are DIFFICULT

Belief Propagation is Heuristics of OUR choice

Trades optimality for efficiency. Really Easy.

Shows good performance in simulation test

Has some pleasant theoretical guarantees
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Belief Propagation (BP) and Message Passing

Bethe Free Energy formulation of BP [Yedidia, Freeman, Weiss ’01]

Minimize the Kubblack-Leibler functional

F{b({σ})} ≡
∑
{σ}

b({σ}) ln
b({σ})
L({σ})

Difficult/Exact

under the following “almost variational” substitution” for beliefs:

b({σ}) ≈
∏

i bi (σi )
∏

j bj(σj)∏
(i,j) bj

i (σ
j
i )

Easy/Approximate

Message Passing is a Distributed
Implementation of BP

Graphical Models = the language
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Tracking Particles as a Graphical Model

L({σ}|θ) = C ({σ})
∏
(i,j)

[
P j

i

(
xi , y

j |θ
)]σj

i

C ({σ}) ≡
∏

j

δ

(∑
i

σj
i , 1

)∏
i

δ

∑
j

σj
i , 1



Surprising Exactness of BP for ML-assignement

Exact Polynomial Algorithms (auction, Hungarian) are available for the problem

Generally BP is exact only on a graph without loops [tree]

In this [Perfect Matching on Bipartite Graph] case it is still exact in spite of
many loops!! [Bayati, Shah, Sharma ’08], also Linear Programming/TUM
interpretation [MC ’08]
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Can you guess who went where?

N particles are placed uniformly at
random in a d-dimensional box of
size N1/d

Choose θ = (κ, s) in such a way

that after rescaling, ŝ∗ = ŝN1/d ,
κ∗ = κ, all the rescaled
parameters are O(1).

Produce a stochastic map for the
N particles from the original
image to respective positions in
the consecutive image.

N = 400 particles. 2D.

ŝ =

(
a b − c

b + c a

)
Actual values: κ = 1.05, a∗ = 0.28, b∗ = 0.54, c∗ = 0.24
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Can you guess who went where?

N particles are placed uniformly at
random in a d-dimensional box of
size N1/d

Choose θ = (κ, s) in such a way

that after rescaling, ŝ∗ = ŝN1/d ,
κ∗ = κ, all the rescaled
parameters are O(1).

Produce a stochastic map for the
N particles from the original
image to respective positions in
the consecutive image.

N = 400 particles. 2D.

ŝ =

(
a b − c

b + c a

)
Actual values: κ = 1.05, a∗ = 0.28, b∗ = 0.54, c∗ = 0.24

Output of OUR LEARNING algorithm: [accounts for multiple matchings !!]
κBP = 1, aBP = 0.32, bBP = 0.55, cBP = 0.19 [within the “finite size” error]
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Combined Message Passing with Parameters’ Update

Fixed Point Equations for Messages

BP equations: h
i→j

= − 1
β

ln
∑

k 6=j Pk
i eβhk→i

; hj→i = − 1
β

ln
∑

k 6=i P
j
keβh

k→j

BP estimation for ZBP(θ) = Z(θ|h solves BP eqs. at β = 1)

MPA estimation for ZMPA(θ) = Z(θ|h solves BP eqs. at β =∞)

Z(θ|h; β) =
∑

(ij) ln

(
1 + P

j
i e
βhi→j +βhj→i

)
−
∑

i ln

(∑
j P

j
i e
βhj→i

)
−
∑

j ln

(∑
i P

j
i e
βhi→j

)

Learning: argminθZ(θ)

Solved using Newton’s method in combination with message-passing: after each
Newton step, we update the messages

Even though (theoretically) the convergence is not guaranteed, the scheme
always converges

Complexity [in our implementation] is O(N2), even though reduction to O(N) is
straightforward
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BP vs “Exact” Markov Chain Monte Carlo

Fully Polynomial Randomized Scheme
FPRS/MCMC “exact” is available [for
estimating a permanent of a positive
matrix Jerrum, Sinclair, Vigoda ’04]

Honest complexity of FPRS/MCMC is
O(N11) ... still O(N3) even after an
acceleration

MCMC is not distributed

Accuracy of BP prediction (for
maximum) is perfect!!

Our (BP) scheme is significantly faster
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BP vs MPA (I): Pure Diffusion. Relative Error.

The relative error
√∑

(κBP/MPA − κactual)2/K/κactual in the estimates of the

diffusivity over K measurements vs. the actual value of the diffusivity.

κactual is the actual value of the
mean-square displacement of the
particles, i.e., it includes fluctuations
around κ∗ due to the finite number N of
particles.

The data are averaged over 1000 (for
N = 100) and 250 (for N = 400)
realizations and compared to relative
statistical error

√
2/dN (dashed

horizontal lines).

Quality of BP is significantly higher!
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BP vs MPA (II): Scatter Plots.

Scatter plot of the diffusivity estimated
by BP and by MPA vs. the actual value
of the diffusivity. 3D. κ∗ = 1.

The number of tracked particles is N = 100
(red) and N = 400 (blue) using 1000
measurements.

The BP predictions correspond to the
maximum of the log-likelihood.

MPA underestimates while the cloud of BP
predictions is centered around κ∗.

Scatter plot of the parameter
estimations using the BP method in the
case of a 2D incompressible flow:
a∗ = 0.1, b∗ = 0.5, c∗ = 0.2 and
κ∗ = 1.

The number of measurements is 50.

BP estimates both the parameters of
the flow and the diffusivity very reliably!
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Quality of the Predicition [is good]

2D. a∗ = b∗ = c∗ = 1, κ∗ = 0.5. N = 200.
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The BP Bethe free
energy vs κ and b. Every
point is obtained by
minimizing wrt a, c

Perfect maximum at
b = 1 and κ = 0.5
achieved at
aBP = 1.148(1),
bBP = 1.026(1),
cBP = 0.945(1),
κBP = 0.509(1).
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Simplified Model to Understand BP approximation [Theory]

Random Distance Model

Decouple N2 distances d j
i assuming that they are independent

Choose a permutation π∗. d
π∗(i)
i are i.i.d. Gaussian with κ∗ = O(1).

Other distances d j
i are drawn independently at random from a given distribution.

Units of length are chosen so that the typical inter-particle distance is O(1).

The model is solvable

Imitates advection at d →∞ [diffusion without “geometry”]

Similar to Random Matching model of Parisi, Mezard ’85-’01

Exact cavity [replica symmetric] analysis for distribution of messages at N →∞

The quality of prediction improves with dimensionality increase. All
asymptotical errors made by BP can be attributed to the non-vanishing
inter-particle correlations.

Observe an interesting “reconstruction” transition at κc ≈ 0.174. At κ∗ < κc

MPA is as good as BP, while at κ∗ > κc BP is a clear winner.
Michael Chertkov – chertkov@lanl.gov http://arxiv.org/abs/0909.4256
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Summary

The message-passing algorithms have been shown to ensure efficient, distributed
and accurate learning of the parameters governing the stochastic map between
two consecutive images recording the positions of many identical
elements/particles.

Introduced two techniques. MPA is based on finding the most probable
trajectories of the particles between the times of the two images. BP
corresponds to evaluating the probabilistically weighted sum over all possible
trajectories. BP method generally gives more accurate results and its
computational burden is comparable to identifying the most probable
trajectories. Both methods are much more rapid than the MCMC algorithm.

BP was shown to become exact for the simplified “random-distance” model we
introduced here. In general, the effect of loops in the graphical model for the
tracking problem remains nonzero even in the thermodynamic limit of a large
number of tracked particles.
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Path Forward

Implement the algorithm in an experimental setting.

“On-the-fly” software is the goal.

Some generalizations are obvious (multiple sequential images,
lost particles & new arrivals, other stochastic models for
non-interacting particles, e.g. for other applications)

To account for inter-particle interaction is more difficult but
possible.

Beyond BP. Loop calculus +. Preliminary analysis of the loop
corrections to BP did not display any immediately visible
structure, yet detailed analysis of this point is left for future
work.
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