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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Definitions: Network of M/M/m/∞ queues

Open Jackson (Queuing) Network
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Particles are identical (single
class)

Out of Detailed Balance

G = (G0,G1) =
(set of vertexes, set of edges)
- directed graph

self-loops are allowed

M/M/mi/∞ or shorter
M/M/mi

Markovian arrival

Markovian departure

mi servers at the node i

∞ - waiting room capacity
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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Agner Krarup Erlang (1878-1929)
Danish engineer, who worked for the
Copenhagen Telephone Exchange,
published the first paper on queueing
theory in 1909.
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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Queuing Theory Classics [Kelly ’76]

Explicit Solution for Steady Queues over ANY graph!

P(n) = Z−1
∏
i∈G0

hni

i∏ni

li=1 θmi (li )
, θm(l) = min(m, l)

∀i ∈ G0 : − hi

(i,j)∈G1∑
j 6=0

λij +

(j,i)∈G1∑
j 6=0

λjihj + λ0i − λi0hi = 0

Product Form .. but not a Gibbs distribution!

Stability: hi < mi

h is a “single-particle” object

It is a version of the “zero range process” model
in math/physics [Spitzer ’70]

... not the story of the Asymmetric Exclusion
Process
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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Master Equation

Many-particle Interacting System

∂

∂t
P(n; t) =

∑
(i,j)∈G1

λij

(
θmi (ni + 1)P(· · · , ni + 1, · · · , nj − 1, · · · ; t)

−θmi (ni )P(· · · , ni , · · · , nj , · · · ; t)

)
+
∑
i∈G0

λ0i (P(· · · , ni − 1, · · · ; t)− P(· · · , ni , · · · ; t))

+
∑
i∈G0

λi0 (θmi (ni +1)P(· · · , ni + 1, · · · ; t)−θmi (ni )P(· · · , ni , · · · ; t))

θm(n) = min(n,m).

And still the system allows explicit solution for the stationary distribution !
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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Doi-Peliti Technique

Allows interpetation as an auxiliary Quantum Mechanics

Ĥ =

i,j 6=0∑
(i,j)∈G1

λij(â
+
j − â+

i )b̂
(mi )
i +

∑
i∈G0

(
λ0i (â

+
i − 1) + λi0(1− â+

i )b̂
(mi )
i

)
b̂(m)|n〉 = θm(n)|n − 1〉.

Peliti [’85] for death-birth + extended to the Q-networks by Zeitak [’07]

|s〉 =
∑

n

P(n)|n〉,
∑

n

P(n) = 1,

â+
j | · · · , nj , · · · 〉 = | · · · , nj + 1, · · · 〉

âj | · · · , nj , · · · 〉 = nj | · · · , nj − 1, · · · 〉.
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Definitions. Product Form for Distribution of Queues.
Master Equation. Doi-Peliti technique.

Coherent State Solutions

Ground State of the Hamiltonian is constructed explicitly

Ĥ|cohm(h)〉 = 0

b̂(m)|cohm(h)〉 = h|cohm(h)〉, |cohm(h)〉 ≡ gm(hâ+)|0〉

gm(x) ≡
∞∑

k=0

xk∏k
l=1 θm(l)

=
mm

m!

1

1− x/m
+

m−1∑
k=0

xk

(
1

k!
− mm−k

m!

)

∀i ∈ G0 : − hi

(i,j)∈G1∑
j 6=0

λij +

(j,i)∈G1∑
j 6=0

λjihj + λ0i − λi0hi = 0

Related Operator Technique (and results !!) by Massey [’84]

Notice: the entire spectrum does not allow explicit expression!
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Joint Distribution function of queues and currents

Assume that the system is stable: ∀i : hi < mi

Currents are defined on edges: Jij is the number of particles
which traversed the edge in time t

Our study:

Joint probability distribution function of queues and currents
accumulated in time t: P(n, J|t)

When t is sufficiently large (larger than correlation time) we
are in the Large Deviation regime:
P(n, J|t) ∼ exp(−tS(J/t))Φ(n; J/t)

How universal is the Crámer function, S(J/t)?

How does Φ(n; J/t) change with increase in J? Anomaly?
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Non-Congested to Congested (I)

P(n, J|t) ∼ exp(−tS(J/t))Φ(n; J/t)

Our statements (I)

For typical and moderate J the network is uncongested

In this regime S(J/t) is a “single-particle” object - does not
feel interaction, and in particular does not depend on the
number of servers

Uncongested= all moments of n, calculated according to
Φ(n; J/t), are finite

Pick direction in J/t-space, start from sufficiently small value
and go towards the length of the vector increase. At
sufficiently large J/t you will observe a non-equilibrium second
order transition from uncongested regime to congested regime.

Technical Details
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Non-Congested to Congested (II)

P(n, J|t) ∼ exp(−tS(J/t))Φ(n; J/t)

Our statements (II)

In the congested regime one or more nodes are congested =
all respective moments of n grow (to become infinite)

The transition is second order = 1/〈ni 〉 is the order
parameter, → 0 at the transition point

Technical Details

Extension of the Doi-Peliti technique for generation function
(over currents)

Explicit construction of the effective Hamiltonian ground state
in the coherent state form
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Universality of the uncongested regime

Consider a trajectory (red or green)
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Statistics of currents is interaction independent !

Statistics of trajectories (and of the passing time!) is not sensitive
(in the leading order) to interaction

Statistics of passing time is interaction sensitive

# of particles which went through the system in a large time is
much larger than # of these which did not leave the system
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Congested regime is as simple to describe

Graph Reduction Procedure

in the congested regime reduces the problem to the previous one
on a less connected network
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Station with a Feedback: Uncongested to Congested

)1(11 p 

p 10
 01

)1( p

p 1 2 3 4

0.1

0.2

0.3

0.4

j < jc : S(j) = λ(1− p/2)−
√

pλ(4j + pλ)

2
+ j ln

(
2j + pλ−

√
pλ(4j + pλ)

2j(1− p)

)
.

j > jc : S(j) =
λ2 + m2pµ2 − 2λmpµ− m2p(1− p)µ2 ln(µpm/λ)

λ
+ j ln(

j

emµ(1− p)
)

The transition is of the second order = jump in the Crámer function
derivative
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Numerical Exploration of the Spectrum
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m = 5, λ = 0.5, µ = 2, p = 0.5,N = 50

At q = 1 ∆ = 0. Three discrete states and continuous band

Gap is closing at qc (variable conjugated to jc)

Supported by analytical analysis

Consistent with the general (ground state) picture
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Conclusions

Studied Generating function of currents over Jackson
(queuing) network

Adopted Doi-Peliti (Massey) technique

Explicit coherent state (product form) solution for the ground
state

Observed second order dynamical transition from uncongested
to congested network

Illustrated and validated the story on example of a single
station with feedback
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Path Forward

Sequence of phase transitions. Algorithmically and
Analytically.

Random Queuing Network - thermodynamic limit.

Generalization to rates dependent on the outgoing (and much
more difficult incoming or all) queues

Generalization to multi-class (priorities)

Finite waiting room - makes the problem really difficult (truly
multi-particle, quantum)

Extension to semi-open and open networks

Changing with time rates - fluctuation theorem and Jarzynski
relations?

Some rigorous proofs are required (would not hurt)

Applications to optimization and control, e.g. in energy and
more specifically power grid networks
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An application of interest

PHEV charging, power and traffic control
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Thank you !
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Extension of the operator (Doi-Peliti) technique

∂t |s(n; J)〉 =

Ĥ +
∑

(i,j)∈G1

Ĵ ij

 |s(n; J)〉,

∀i , j 6= 0 : Ĵij = λij(â
+
ij − 1)â+

j b̂
(mi )
i ,

Ĵ0i = λ0i (1− â+
0i )â

+
i , Ĵi0 = λi0(â+

i0 − 1)b̂
(mi )
i

|s(n; J)〉 = P(n; J)|n; J〉. |sq(n)〉 =
∑

J

∏
(i,j)∈G1

q
Jij

ij |s(n; J)〉

∂t |sq(n)〉 = Ĥq|sq(n)〉,

Ĥq =
∑

(i,j)∈G1

λij(â
+
j − â+

i )b̂
(mi )
i +

i 6=0,j 6=0∑
(i,j)∈G1

λij(qij − 1)â+
j b̂

(mi )
i

+
∑

(0,i)∈G1

λ0i (q0ia
+
i − 1) +

∑
(i,0)∈G1

λi0(qi0 − a+
i )b̂

(mi )
i .

Congested vs Uncongested
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Key trick = Extension of the coherent state formalism

Assume that the network is not congested

|sq(n)〉 ∼ exp(−∆(q)t)|cohm(h(q))∑
i∈G0

(q0iλ0i − λi0qi0hi (q)) = ∆(q),

∀i ∈ G0 : −hi (q)

(i,j)∈G1∑
j∈G0

λij +

(j,i)∈G1∑
j∈G0

qjiλjihj(q)+λ0i−λi0hi (q)=0

Pq(t) = Ψ(q) exp(−t∆(q)) ∼ exp

t

i,j∈G0∑
(i,j)∈G1

hi (q)λij(qij − 1)


Ψ(q) ≡ 〈0| exp

(∑
i∈G0

h̄i (q)âi

)
|cohm(h(q)〉

Congested vs Uncongested
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