Locating and Scheduling PHEV in V2G

Smart Grid FY2010 Review

Russell Bent, Alan Berscheid, David Izraelevitz, Feng Pan LANL Smart Grid Team

U N C L A S S I F I E D *Slide 1*

Renewable, PHEV, V2G

Renewable:

- Clean
- Variability in generation

Plug-in Hybrid Electric Vehicle:

- Clean
- **Increased demand for power**

U N C L A S S I F I E D *Slide 2*

Renewable, PHEV, V2G

- PHEVs are storage devices
- Vehicle-to-grid (V2G): valley filling and *peak shaving*

Understand the claimed benefits through model and simulation

U N C L A S S I F I E D

Outline

- **PHEV – Past, Present, Future**
- **PHEV – Supporting Infrastructures**
- **Locating PHEV Exchange Stations in V2G**
	- Two-stage Stochastic Program
	- Case Studies
- **Scheduling PHEV Charge in V2G**
- **Conclusion**

U N C L A S S I F I E D

PHEV Present

PHEV

- 2000: 9367, 2007: 324,318
- 8% increase per year
- Sales up 3% 2010
- 5/10: 28,202; 6/10: 21,679
- 40 miles of charge depleting range
- **Need additional supporting infrastructures**

1969

1977

1983

1990

(adj) **NHTS Surveys**

U N C L A S S I F I E D

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

1995 2001

PHEV Supporting Infrastructures

Charging Station

- Less cost and structures
- Ownership of batteries

- Higher cost
- Sizable battery bank (**important in V2G**)
- **Controllable** (**important in V2G**)

Exchange Station

U N C L A S S I F I E D

Locating PHEV Exchange Stations in V2G

Locate exchange stations to

- Serve PHEV demands
- Support power grid as power storages
- Connect to power grid without expansion

Similar research:

- Facility location: locate facility to minimize the cost of serving all demands
- Generation expansion: optimally site new generation on a power grid

U N C L A S S I F I E D

Slide 8

Two-stage Stochastic Program

First stage:

- Decide on the locations and capacities exchanges stations.
- Prior to know the exact battery demand, load, generation capacity (scenario).

A scenario: random variables battery demand, load, renewable generation capacity are realized.

Second stage (recourse action for each scenario):

- Distribute batteries for PHEV demand
- Discharge batteries for loads

U N C L A S S I F I E D

First Stage

fixed cost to open an exchange station at i f_i storage cost per battery at station i r_i 0-1 variable siting an exchange station at i x_i number of batteries stored at station i w_i

$$
\min_{x,w} \sum_{i \in I} (f_i x_i + r_i w_i) + E_{\Omega}[h(x, w, \xi)]
$$

$$
l_i x_i \le w_i \le u_i x_i, \ \forall i \in I.
$$

- Second stage objective value

 $h(x, w, \xi)$

Evaluate *x,w* at scenario ^ω

U N C L A S S I F I E D

Second Stage

At station *i*, batteries can be allocated for battery demand t_i^{ω} and for grid s_i^{ω}

 $s_i^{\omega} + t_i^{\omega} \leq w_i, \ \ i \in I.$

Serving battery demand is models as a *Transportation Problem*

- Traffics are modeled as routes
- cost of exchanging battery at station i from route j is c_{ij}

Linearized DC power flow is used for grid

Each exchange stations are linked to a bus and serves as power source

Objective function:

$$
h(x, w, \xi) = \min \sum_{i \in I, j \in J} c_{ij} y_{ij}^{\omega} + \sum_{j \in J} h_j^{\omega} q_j^{\omega} + \sum_{u \in N} o_u^{\omega} \beta_u^{\omega} + \sum_{u \in N} g_u \delta_u^{\omega}.
$$

U N C L A S S I F I E D

Slide 11

Simulation Setting

- Renewable generation
	- \circ Renewable level 0 1: for example, at level 0.3, a generator is renewable with probability 0.3
	- \circ Renewable capacity can be 0, 0.5, or 1 of its maximum capacity with equal probability
- Load at a bus is a uniform random variable between 0.5 and 1 of the maximum bus load
- **Battery demand**
	- ^o Vehicle-to-population: 0.78, PHEV-to-vehicle: 0.1, battery demand: 10%
	- o The total demand is equally distributed to each route as the average demand
	- ^o Battery demand at each route is a uniform random variable between 0.5 and 1.5 of the average demand
- -100 scenarios

U N C L A S S I F I E D

Slide 12

Power grid (IEEE-RTS-79)

Generation capacity is 2999 MW, load is 2880 MW

Transportation

- 8 by 11 grid, 10 traffic routes, 28 exchange station locations
- Population is 344850

U N C L A S S I F I E D

Case I: Grid Only

- GE-1 is the base case
- In GE-2 to GE-5, increase penalty cost for load shedding to stimulate opening exchange stations
- Below renewable level 0.3, no much load shedding
- With stations, below renewable level 0.8, less than 10% load shedding
- Maximally 25 of 28 stations without expanding the grid
- Some relief from exchange stations

Slide 14

U N C L A S S I F I E D

Case 1: V2G

- Without the grid, opening 6 stations will satisfy all battery demand
- \blacksquare In V2G-1, 6 stations are fixed. In V2G-2 to V2G-5, open 6, 8, 10, 12 stations.
- Reduction in load shedding is limited
- Large increase in unmet battery demand
- 25 stations are needed to reduce load shedding
- The positions of stations in V2G1 limit the discharging capacity

U N C L A S S I F I E D

Slide 15

- V2G reduces the load shedding caused by renewable variability at low renewable level.
- At higher level of renewable, trade-offs between load shedding and unmet battery demand is high. The benefit of V2G is not obvious.
- The synthetic city has relatively low population.

U N C L A S S I F I E D

Power grid

Generation capacity is 8200 MW, load is 6400 MW

Transportation

- 100 traffic routes, 316 exchange station locations
- Population is 5414712

U N C L A S S I F I E D

Slide 17

Case II: Grid Only

 There is 2% load shedding without renewable.

- In GE-3 to GE-5, load shedding is less 5%
- In GE-2, opening $2 4$ stations reduces load shedding at low renewable level
- Maximally 180 stations without expanding the grid

U N C L A S S I F I E D

Slide 18

Case II: V2G

- Without the grid, opening 106 stations will satisfy all battery demand
- In V2G-1, 106 stations are fixed. In V2G-2 to V2G-5, open 0%, 10%, 20%, 50% more stations.
- In V2G-1, reduce load shedding but increase unmet battery demand
- In V2G-2, by relocating 106 stations, reduce load shedding and almost serve all demand at low renewable levels
- In V2G-3, V2G has obvious benefit even at renewable level 0.5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

- Proposed a two-stage stochastic program for locating exchange stations
- Locations of exchange stations are important.
- The benefit of V2G is more obvious at renewable level ≤ 0.5 .
- The benefit of V2G is more obvious with higher population-toload ratio.

U N C L A S S I F I E D

Slide 20

- Scheduling of charging batteries
	- Uncertainty in demand
	- Centralized charging v.s. decentralized charging (pricing)
- Scheduling of charging and discharging batteries
	- Storing power for later use

U N C L A S S I F I E D

Slide 21

Scheduling Battery Charging in V2G

Available generation capacity, cost

U N C L A S S I F I E D

Slide 22

A Scheduling Model

Assumption:

- No penalty on preemption
- Parameter (random): Uniform charge rate
- **Demand: size (d_i), starting time (a_i) and end time (b_i)**
- **-** Supply: generation capacity (g_i), cost (c_i) Variable:
- *Xit*: 1 if charging demand *i* at time *t*

Multi-stage optimization problem – Online Optimization

U N C L A S S I F I E D

Slide 23

Deterministic Version

Transportation Problem

$$
\min_{x} \sum_{t} c_{t} \sum_{i} x_{i} + L \sum_{i} x_{i(T+1)}
$$

s.t.
$$
\sum_{t} m_{it} x_{it} + x_{i(T+1)} \ge d_{i}
$$

$$
\sum_{i} x_{it} \le g_{t}
$$

Bipartite graph links demands and time step

$$
m_{it} = 1 \text{ if } a_i \le t \le b_i
$$

Polynomial time algorithms

U N C L A S S I F I E D

Slide 24

Future Work

- Scheduling problem:
	- Online optimization make here-and-now decision hedge future uncertainty
	- Control decentralized decision through pricing
- Location problem:
	- Algorithms to solve large instances

U N C L A S S I F I E D

Slide 25

