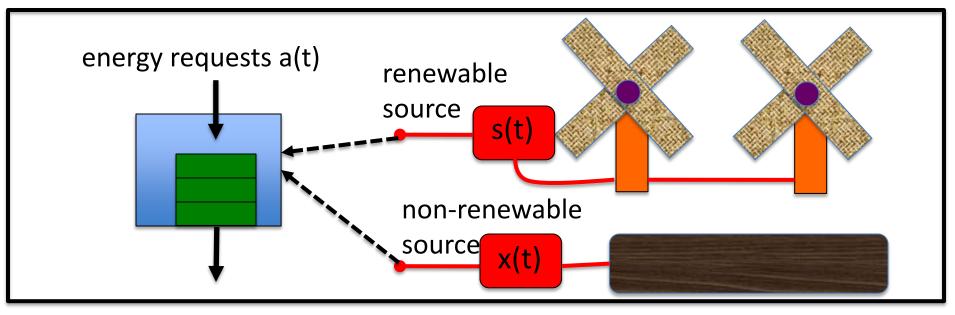


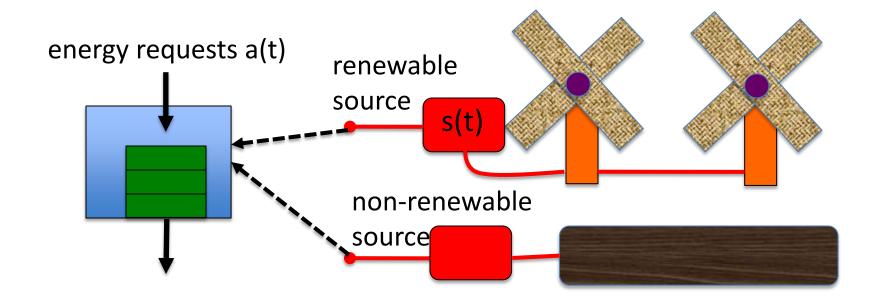
Efficient Algorithms for Renewable Energy Allocation to Delay Tolerant Consumers



Michael J. Neely, Arash Saber Tehrani, Alexandros G. Dimakis University of Southern California

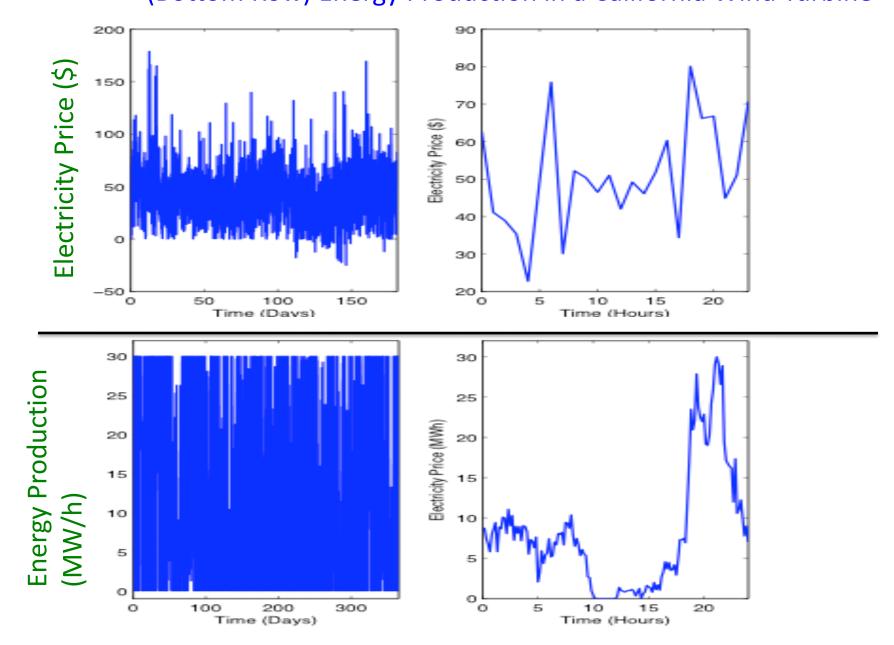
*Paper to appear at: 1st IEEE International Conf. on Smart Grid Communications, 2010 PDF on Stochastic Network Optimization Homepage: http://ee.usc.edu/stochastic-nets/

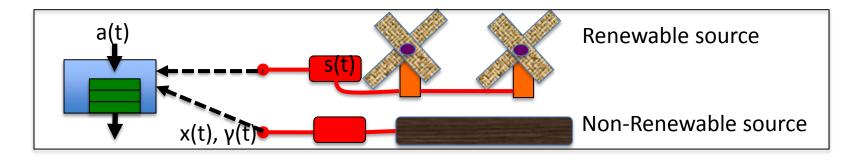
^{*}Sponsored in part by the NSF Career CCF-0747525



- •Renewable sources of energy can have *variable* and *unpredictable* supplies s(t).
- •We can integrate renewable sources more easily if consumers tolerate service within some maximum allowable delay D_{max} .
- •Might sometimes need to purchase energy from nonrenewable source to meet the deadlines, and *purchase price can be highly variable*.

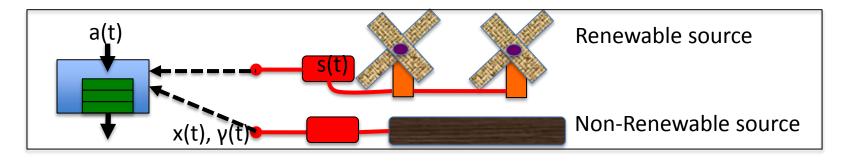
Example Data: (Top Row) Spot Market Price (Bottom Row) Energy Production in a California Wind Turbine





Talk Outline:

- •<u>First Problem</u>: Minimize time average cost of purchasing non-renewable energy (i.i.d. case)
- •<u>Second Problem</u>: Joint pricing of customers and purchasing of non-renewables (i.i.d. case).
- •Generalize to *arbitrary sample paths* using "Universal Scheduling Theory" of Lyapunov Optimization.
- •Simulation results using CAISO spot market prices γ(t) and 10-minute energy production s(t) from Western Wind resources Dataset (from National Renewable Energy Lab).



- •Slotted Time: t = {0, 1, 2, ...}
- •a(t) = energy requests on slot t (serve with max delay D_{max}).
- •s(t) = renewable energy supply on slot t. ("use-it-or-loose-it")
- •x(t) = amount non-renewable energy purchased on slot t.
- • $\gamma(t) = \$$ /unit energy price of non-renewables on slot t.
- •Q(t) = Energy request queue

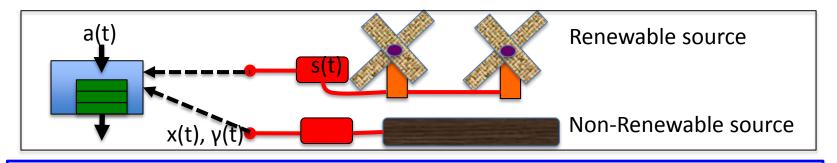
requests (random)

$$Q(t+1) = max[Q(t) - s(t) - x(t), 0] + a(t)$$
, $cost(t) = x(t)\gamma(t)$

Renewable supply (random) (use-it-or-loose-it)

Non-Renewables purchased (decision variable)

purchase price (random)



$$Q(t+1) = max[Q(t) - s(t) - x(t), 0] + a(t)$$
, $cost(t) = x(t)\gamma(t)$

Assumptions:

• For all slots t we have:

$$0 \leq a(t) \leq a_{max} \;, \quad 0 \leq s(t) \leq s_{max} \;, \quad 0 \leq \gamma(t) \leq \gamma_{max} \quad, \; 0 \leq x(t) \leq x_{max}$$

- x_{max} units of energy always available for purchase from non-renewable (but at variable price $\gamma(t)$).
- • $a_{max} \le x_{max}$ (possible to meet all demands in 1 slot at high cost)
- •(a(t), s(t), γ(t)) vector is i.i.d. over slots with *unknown distribution*

$$Q(t+1) = max[Q(t) - s(t) - x(t), 0] + a(t)$$
, $cost(t) = x(t)\gamma(t)$

<u>Possible formulation via Dynamic Programming (DP):</u>

"Minimize average cost subject to max-delay D_{max} ."

- This can be written as a DP, but requires distribution knowledge.
- Recent work on delay tolerant electricity consumers using DP is: [Papavasiliou and Oren, 2010]

We will not use DP. We will take a different approach...

$$Q(t+1) = max[Q(t) - s(t) - x(t), 0] + a(t)$$
, $cost(t) = x(t)\gamma(t)$

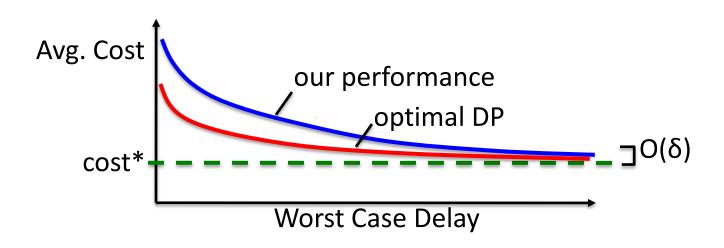
Relaxed Formulation via Lyapunov Optimization for Queue Networks:

Minimize: E{cost} (time average)

Subject to: (1) E{Q} < infinity (a "queue stability" constraint)

(2) $0 \le x(t) \le x_{max}$ for all t

- Define cost* = min cost subject to stability
- •By definition: cost* ≤ cost delivered by *any other alg* (including DP)
- •We will get within $O(\delta)$ of cost*, with worst-case delay of $1/\delta$.



Advantages of Lyapunov Optimization for Queueing Networks:

- No knowledge of distribution information is required.
- •Explicit $[O(\delta), O(1/\delta)]$ performance guarantees.
- •Robust to changes in statistics, arbitrary correlations, nonergodic, arbitrary sample paths (as we will show in this work).
- •Worst case delay bounds (as we will show in this work).
- •No curse of dimensionality: Implementation is just as easy in extended formulations with many dimensions:

Virtual Queue for Worst-Case Delay Guarantee (fix ε>0):

$$a(t) \longrightarrow Q(t) \longrightarrow s(t) + x(t) \qquad \text{Actual Queue}$$

$$\epsilon 1\{Q(t)>0\} \longrightarrow Z(t) \longrightarrow s(t) + x(t) \qquad \text{Virtual Queue}$$
 (enforces ϵ -persistent service)

Theorem: Any algorithm with bounded queues $Q(t) \le Q_{max}$, $Z(t) \le Z_{max}$ for all t yields worst-case delay of:

$$D_{\text{max}} = \left[\frac{Q_{\text{max}} + Z_{\text{max}}}{\varepsilon} \right] \quad \text{slots}$$

Proof Sketch: Suppose not. Consider slot t, a(t):

$$O(t) > O(t)$$

$$t+D_{max}$$

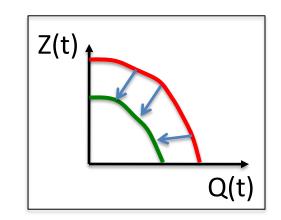
Then:
$$\sum_{\tau=t}^{t + D_{max}} [s(\tau) + x(\tau)] \le Q_{max}$$

Implies:
$$Z(t+D_{max}) > Z_{max}$$
 (contradiction)

Stabilize Z(t) and Q(t) while minimizing average cost cost(t):

Lyapunov Function: $L(t) = Z(t)^2 + Q(t)^2$

Lyapunov Drift: $\Delta(t) = E\{L(t+1) - L(t) | Z(t), Q(t)\}$



Take actions to greedily minimize "Drift-Plus-Weighted-Penalty":

Minimize: $\Delta(t) + V\gamma(t)x(t)$

where V is a postiive constant that affects the [O(1/V), O(V)] Cost-delay tradeoff.

(using V=1/ δ recovers the [O(δ), O(1/ δ)] tradeoff.)

Resulting Algorithm: Every slot t, observe $(Z(t), Q(t), \gamma(t))$. Then:

- Choose $x(t) = \{ 0, \text{ if } Q(t) + Z(t) \le V\gamma(t)$ $\{ x_{max}, \text{ if } Q(t) + Z(t) > V\gamma(t) \}$
- Update virtual queues Q(t) and Z(t) according to their equations

Define:
$$Q_{max} = V\gamma_{max} + a_{max}$$
 $Z_{max} = V\gamma_{max} + \epsilon$

Theorem: Under the above algorithm:

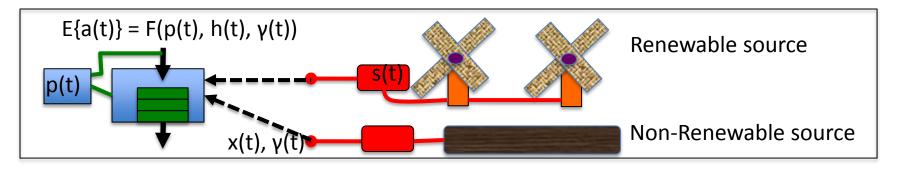
- (a) $Q(t) \le Q_{max}$, $Z(t) \le Z_{max}$ for all t.
- (b) Delay $\leq (Q_{max} + Z_{max})/\epsilon = O(V)$

Further, if $(s(t), a(t), \gamma(t))$ i.i.d. over slots, and if $\epsilon \le \max[E\{a(t)\}, E\{s(t)\}]$

Then:

$$E\{cost\} \le cost^* + B/V$$

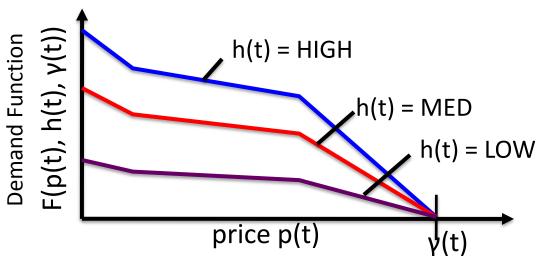
[where B =
$$(s_{max} + x_{max})^2 + a_{max}^2 + \epsilon^2$$
]

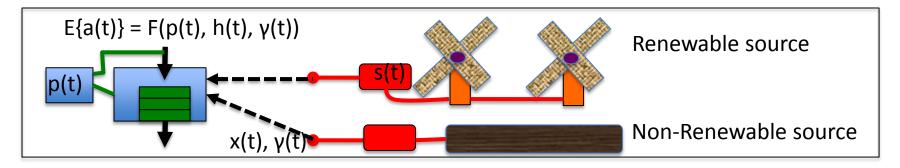


Same system model, with following extensions:

- •a(t) = arrivals = Random function of pricing decision p(t)
- •h(t) = additional "demand state" (e.g. "HIGH, MED, LOW")
- •E{a(t)|p(t), h(t), $\gamma(t)$ } = F(p(t), h(t), $\gamma(t)$) = Demand Function

Example:



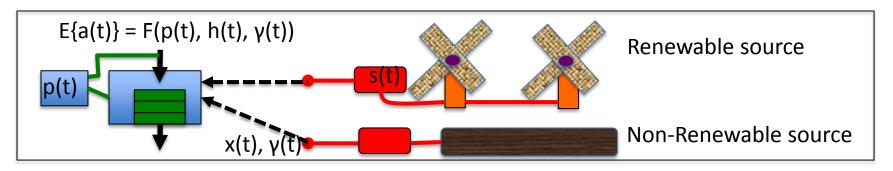


Same system model, with following extensions:

- a(t) = arrivals = Random function of pricing decision p(t)
- •h(t) = additional "demand state" (e.g. "HIGH, MED, LOW")
- •E{a(t)|p(t), h(t), $\gamma(t)$ } = F(p(t), h(t), $\gamma(t)$) = Demand Function

New Problem:

- Profit(t) = $a(t)p(t) x(t)\gamma(t)$
- •Maximize Time Average Profit!
- Profit* = Optimal Time Avg. Profit Subject to Stability



Drift-Plus-Penalty for New Problem:

$$\Delta(t) - VE\{Profit(t)|Z(t),Q(t)\} = \Delta(t) - VE\{a(t)p(t) - x(t)\gamma(t)|Z(t),Q(t)\}$$

Resulting Algorithm:

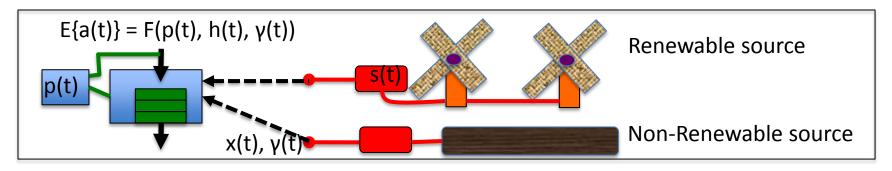
Every slot t, observe $(h(t), Z(t), Q(t), \gamma(t))$. Then:

•(Pricing) Choose p(t) in [0, p_{max}] to solve:

Maximize: $F(p(t),h(t),\gamma(t))(Vp(t)-Q(t))$

Subject to: $0 \le p(t) \le p_{max}$

- •(Purchasing) Choose x(t) same as before.
- •Update queues Q(t), Z(t) same as before.



Drift-Plus-Penalty for New Problem:

$$\Delta(t) - VE\{Profit(t)|Z(t),Q(t)\} = \Delta(t) - VE\{a(t)p(t) - x(t)\gamma(t)|Z(t),Q(t)\}$$

Resulting Algorithm:

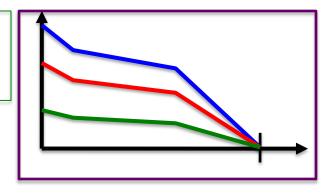
Every slot t, observe (h(t), Z(t), Q(t), γ (t)). Then:

•(Pricing) Choose p(t) in [0, p_{max}] to solve:

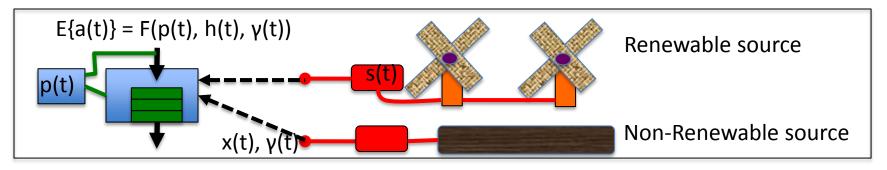
Maximize: $F(p(t),h(t),\gamma(t))(Vp(t)-Q(t))$

Subject to: $0 \le p(t) \le p_{max}$

- •(Purchasing) Choose x(t) same as before.
- •Update queues Q(t), Z(t) same as before.



*If $F(p,h,\gamma) = \beta(h)G(p,\gamma)$, don't need to know demand state h(t)!



Drift-Plus-Penalty for New Problem:

$$\Delta(t) - VE\{Profit(t)|Z(t),Q(t)\} = \Delta(t) - VE\{a(t)p(t) - x(t)\gamma(t)|Z(t),Q(t)\}$$

Resulting Algorithm:

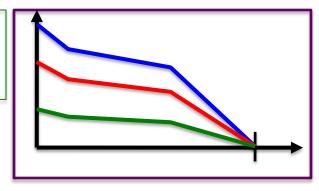
Every slot t, observe (h(t), Z(t), Q(t), γ (t)). Then:

•(Pricing) Choose p(t) in [0, p_{max}] to solve:

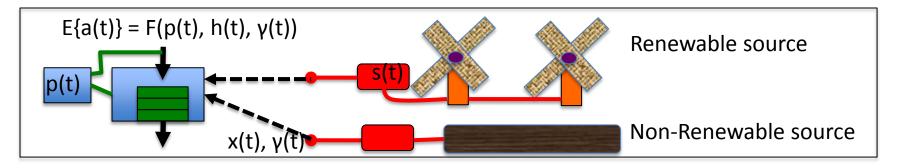
Maximize: $\beta(h(t))G(p(t),\gamma(t))(Vp(t)-Q(t))$

Subject to: $0 \le p(t) \le p_{max}$

- •(Purchasing) Choose x(t) same as before.
- •Update queues Q(t), Z(t) same as before.



*If $F(p,h,\gamma) = \beta(h)G(p,\gamma)$, don't need to know demand state h(t)!

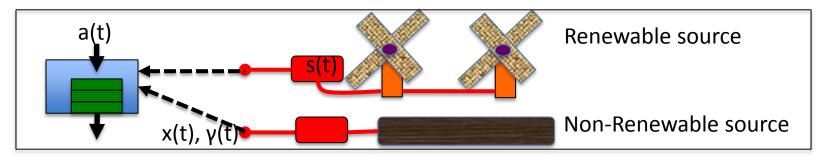


Theorem: Under the joint pricing and energy allocation algorithm:

- (a) Worst case queue bounds Q_{max} , Z_{max} same as before.
- (b) Worst case delay bound D_{max} same as before, i.e., O(V).
- (c) If $(s(t), \gamma(t), h(t))$ i.i.d. over slots, and $\varepsilon \le E\{s(t)\}$, then:

$$E\{profit\} \ge profit^* - O(1/V)$$

Universal Scheduling for Arbitrary Sample Paths...



Consider the first problem again (x(t) = only decision variable): Suppose $(s(t), \gamma(t), a(t))$ have *arbitrary sample path!* (assume they are still bounded: $[0, s_{max}]$, $[0, \gamma_{max}]$, $[0, a_{max}]$.)

Universal Scheduling Theorem:

- (a) Worst case queue bounds Q_{max} , Z_{max} same as before.
- (b) Worst case delay bound D_{max} same as before, i.e., O(V).
- (c) For any integers T>0, R>0:

$$\frac{1}{RT} \sum_{t=0}^{RT-1} x(t) \gamma(t) \leq \frac{1}{R} \sum_{r=0}^{R-1} C_r^* + BT/V$$
"Genie-Aided" T-Slot Lookaher

"Genie-Aided" T-Slot Lookahead Cost!

For every R>0, T>0:

$$\frac{1}{RT} \sum_{t=0}^{RT-1} x(t) \gamma(t) \le \frac{1}{R} \sum_{r=0}^{R-1} C_r^* + BT/V$$

R frames of size T slots:

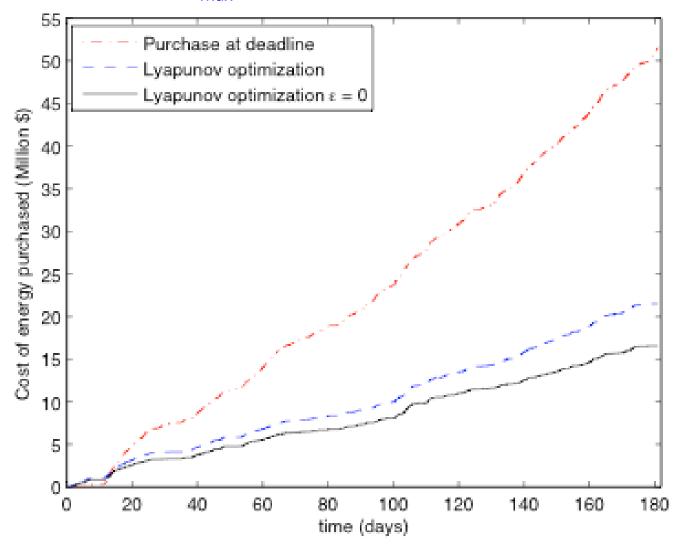
T-Slot Lookahead Problem for frame r in {0, ..., R-1}:

 c_r^* computed below, assuming future values of $(a(\tau), s(\tau), \gamma(\tau))$ are fully known in frame r:

Minimize:
$$c_r^* \triangleq \frac{1}{T} \sum_{\tau=rT}^{(r+1)T-1} \gamma(\tau) x(\tau)$$
Subject to: (1)
$$\sum_{\tau=rT}^{(r+1)T-1} [s(\tau) + x(\tau) - a(\tau)] \geq 0$$
(2)
$$\sum_{\tau=rT}^{(r+1)T-1} [s(\tau) + x(\tau) - \epsilon] \geq 0$$
(3)
$$0 \leq x(\tau) \leq x_{max} \forall \tau \in \{rT, \dots, (r+1)T-1\}$$

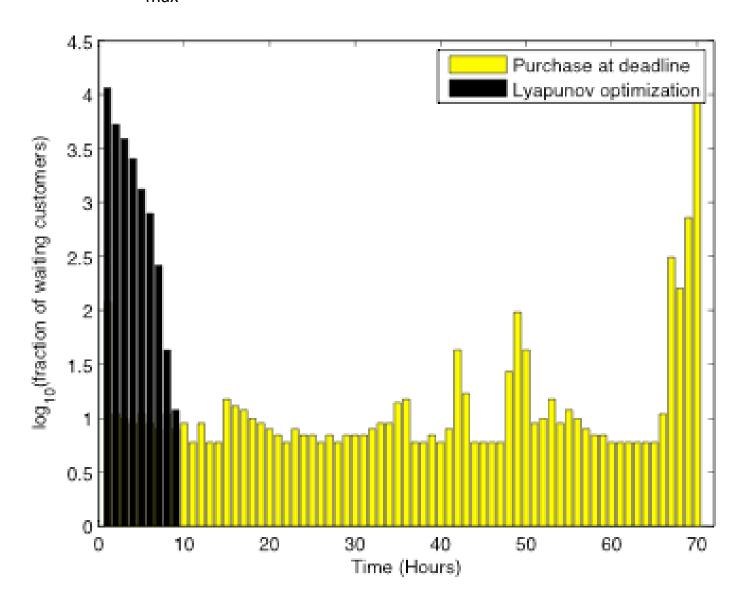
Simulations over Real Data Sets:

- •We used 10 minute slot sizes (granularity of the available data)
- Compare to simple "Purchase at Deadline" algorithm.
- •We chose V=100 \rightarrow D_{max} = 400 slots (70 hours)

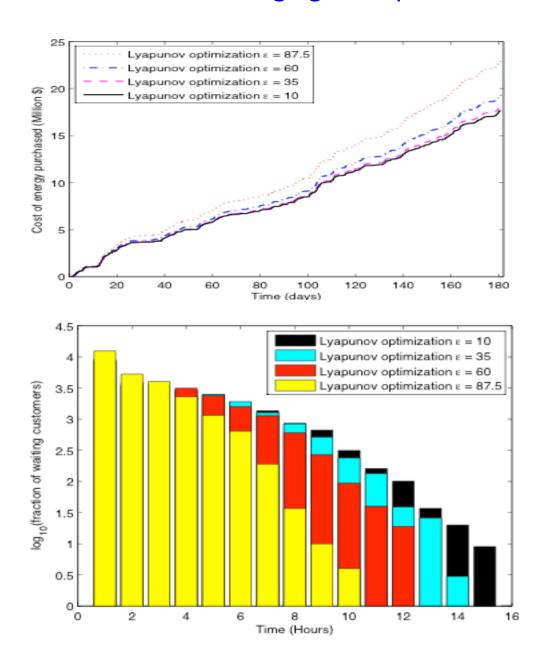


Same experiment: Histogram of Delay (V=100, ε = 87.5):

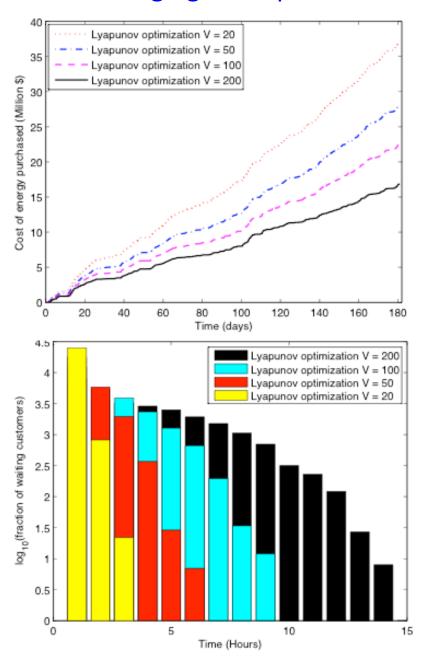
Our algorithm yields worst-case delay considerably less than the bound D_{max} . Worst case observed delay was 60 slots (10 hours)



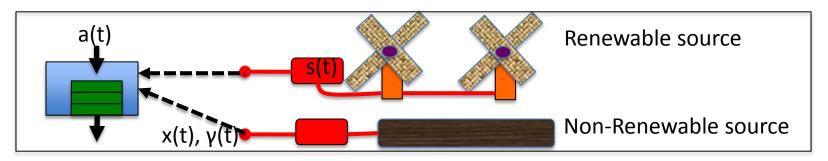
Some more simulations: Changing the ϵ parameter:



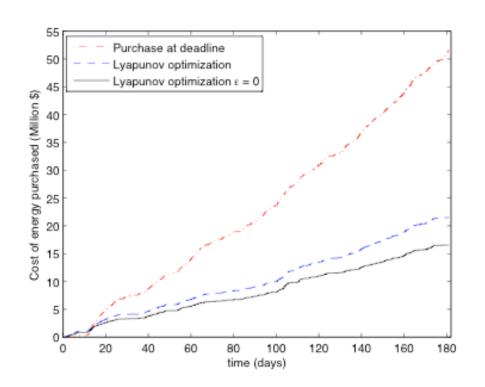
Some more simulations: Changing the V parameter:

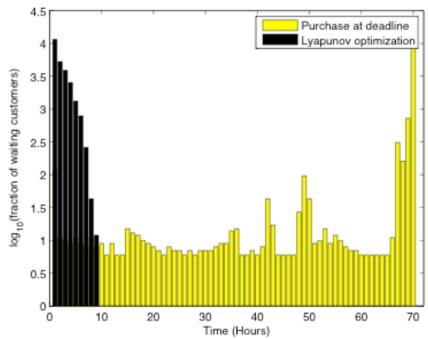


Concluding Slide:



- Lyapunov Optimization for Renewable Energy Allocation
- •No need to know distribution. Robust to arbitrary sample paths.
- •Explicit [O(1/V), O(V)] performance-delay tradeoff





Explanation of Why Delay is small even with $\varepsilon=0...$

Even with $\varepsilon=0$, we still get the same Q_{max} bound. $(Q(t) \le Q_{max}$ for all t).

Delay of requests that arrive on slot t is equal to the smallest integer T such that:

$$\sum_{\tau=t}^{t+T} [s(\tau)+x(\tau)] \ge Q(t)$$

So delay will be less than or equal to T whenever:

$$\sum_{\tau=t}^{t+T} s(\tau) \ge Q_{\max}$$

There is no guarantee on how long this will take for arbitrary s(t) processes, but one can compute probabilities of exceeding a certain value if we try to use a stochastic model for s(t).