
Efficient Algorithms for Renewable Energy
Allocation to Delay Tolerant Consumers

Michael J. Neely , Arash Saber Tehrani , Alexandros G. Dimakis
University of Southern California

*Paper to appear at: 1st IEEE International Conf. on Smart Grid Communications, 2010
PDF on Stochastic Network Optimization Homepage: http://ee.usc.edu/stochastic-nets/

*Sponsored in part by the NSF Career CCF-0747525

energy requests a(t)

s(t)

x(t)

renewable
source

non-renewable
source

http://www-rcf.usc.edu/~mjneely�
http://www-rcf.usc.edu/~mjneely�
http://www-rcf.usc.edu/~mjneely�

energy requests a(t)

s(t)

renewable
source

non-renewable
source

•Renewable sources of energy can have variable and
unpredictable supplies s(t).
•We can integrate renewable sources more easily if
consumers tolerate service within some maximum
allowable delay Dmax.
•Might sometimes need to purchase energy from non-
renewable source to meet the deadlines, and purchase
price can be highly variable.

Example Data: (Top Row) Spot Market Price
(Bottom Row) Energy Production in a California Wind Turbine

El
ec

tr
ic

ity
 P

ri
ce

 ($
)

En
er

gy
 P

ro
du

ct
io

n
(M

W
/h

)

•First Problem: Minimize time average cost of purchasing
non-renewable energy (i.i.d. case)

•Second Problem: Joint pricing of customers and purchasing
of non-renewables (i.i.d. case).

•Generalize to arbitrary sample paths using “Universal
Scheduling Theory” of Lyapunov Optimization.

•Simulation results using CAISO spot market prices γ(t) and
10-minute energy production s(t) from Western Wind
resources Dataset (from National Renewable Energy Lab).

Talk Outline:

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

•Slotted Time: t = {0, 1, 2, …}
•a(t) = energy requests on slot t (serve with max delay Dmax).
•s(t) = renewable energy supply on slot t. (“use-it-or-loose-it”)
•x(t) = amount non-renewable energy purchased on slot t.
•γ(t) = $$/unit energy price of non-renewables on slot t.
•Q(t) = Energy request queue

Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t) , cost(t) = x(t)γ(t)

Renewable supply
(random)
(use-it-or-loose-it)

Non-Renewables purchased
(decision variable)

purchase price
(random)

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

requests (random)

Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t) , cost(t) = x(t)γ(t)

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

Assumptions:
• For all slots t we have:

0 ≤ a(t) ≤ amax , 0 ≤ s(t) ≤ smax , 0 ≤ γ(t) ≤ γmax , 0 ≤ x(t) ≤ xmax

• xmax units of energy always available for purchase from
non-renewable (but at variable price γ(t)).

•amax ≤ xmax (possible to meet all demands in 1 slot at high cost)

•(a(t), s(t), γ(t)) vector is i.i.d. over slots with unknown distribution

Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t) , cost(t) = x(t)γ(t)

Possible formulation via Dynamic Programming (DP):

“Minimize average cost subject to max-delay Dmax.”

• This can be written as a DP, but requires distribution knowledge.
• Recent work on delay tolerant electricity consumers using DP is:

[Papavasiliou and Oren, 2010]

We will not use DP. We will take a different approach...

Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t) , cost(t) = x(t)γ(t)

Relaxed Formulation via Lyapunov Optimization for Queue Networks:

Minimize: E{cost} (time average)
Subject to: (1) E{Q} < infinity (a “queue stability” constraint)

(2) 0 ≤ x(t) ≤ xmax for all t

•Define cost* = min cost subject to stability
•By definition: cost* ≤ cost delivered by any other alg (including DP)
•We will get within O(δ) of cost*, with worst-case delay of 1/δ.

Worst Case Delay

Avg. Cost

cost*

our performance
optimal DP

Ο(δ)

Advantages of Lyapunov Optimization for Queueing Networks:
•No knowledge of distribution information is required.

•Explicit [O(δ), O(1/δ)] performance guarantees.

•Robust to changes in statistics, arbitrary correlations, non-
ergodic, arbitrary sample paths (as we will show in this work).

•Worst case delay bounds (as we will show in this work).

•No curse of dimensionality: Implementation is just as easy in
extended formulations with many dimensions:

Minimize : E{y}
Subject to: (1) E{xi} ≤ 0 for all i in {1, …, N}

(2) Queue k is stable for all k in {1, …, K}
(3) Control action on slot t in ActionSpace(t)

(for all t in {0, 1, 2, …})

General Lyapunov Optimization Problem: [Georgiadis, Neely, Tassiulas, F&T 2006]

Virtual Queue for Worst-Case Delay Guarantee (fix ε>0):

Z(t)

Q(t)a(t) s(t)+x(t)

s(t)+x(t)ε1{Q(t)>0}

Actual Queue

Virtual Queue
(enforces ε-persistent

service)

Theorem: Any algorithm with bounded queues Q(t) ≤ Qmax, Z(t) ≤Zmax

for all t yields worst-case delay of:

Dmax = Qmax + Zmax

Z(t+1) = max[Z(t) – s(t) – x(t) + ε1{Q(t)>0}, 0]

ε
slots

Proof Sketch: Suppose not. Consider slot t, a(t):

a(t)

tQ
(t

) ≤
 Q

m
ax

t+Dmax

τ=t

t +Dmax

[s(τ)+x(τ)] ≤ Qmax

Implies: Z(t+Dmax) > Zmax

(contradiction)

Then:

Stabilize Z(t) and Q(t) while minimizing average cost cost(t):

Lyapunov Function: L(t) = Z(t)2 + Q(t)2

Lyapunov Drift: Δ(t) = E{L(t+1) – L(t)|Z(t), Q(t)}

Take actions to greedily minimize “Drift-Plus-Weighted-Penalty”:

Minimize: Δ(t) + Vγ(t)x(t)

where V is a postiive constant that affects the [O(1/V), O(V)]
Cost-delay tradeoff.

(using V=1/δ recovers the [O(δ), O(1/δ)] tradeoff.)

Q(t)

Z(t)

Resulting Algorithm: Every slot t, observe (Z(t), Q(t), γ(t)). Then:

• Choose x(t) = { 0 , if Q(t) + Z(t) ≤ Vγ(t)
{ xmax, if Q(t) + Z(t) > Vγ(t)

•Update virtual queues Q(t) and Z(t) according to their equations

Define: Qmax = Vγmax + amax , Zmax = Vγmax + ε

Theorem: Under the above algorithm:
(a) Q(t) ≤ Qmax, Z(t) ≤ Zmax for all t.
(b) Delay ≤ (Qmax + Zmax)/ε = O(V)

Further, if (s(t), a(t), γ(t)) i.i.d. over slots, and if ε≤ max[E{a(t)}, E{s(t)}]
Then:

E{cost} ≤ cost* + B/V
[where B = (smax + xmax) 2 + amax

2 + ε2]

Same system model, with following extensions:
•a(t) = arrivals = Random function of pricing decision p(t)
•h(t) = additional “demand state” (e.g. “HIGH, MED, LOW”)
•E{a(t)|p(t), h(t), γ(t)} = F(p(t), h(t), γ(t)) = Demand Function

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Example:

F(
p(

t)
, h

(t
),

γ(
t)

)

price p(t) γ(t)

h(t) = HIGH

h(t) = MED

h(t) = LOW

D
em

an
d

Fu
nc

tio
n

Problem 2: Joint Pricing and Energy Allocation

Same system model, with following extensions:
•a(t) = arrivals = Random function of pricing decision p(t)
•h(t) = additional “demand state” (e.g. “HIGH, MED, LOW”)
•E{a(t)|p(t), h(t), γ(t)} = F(p(t), h(t), γ(t)) = Demand Function

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

New Problem:
• Profit(t) = a(t)p(t) – x(t)γ(t)

•Maximize Time Average Profit!

•Profit* = Optimal Time Avg. Profit Subject to Stability

Problem 2: Joint Pricing and Energy Allocation

Problem 2: Joint Pricing and Energy Allocation

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve:

Maximize: F(p(t),h(t),γ(t))(Vp(t) – Q(t))
Subject to: 0 ≤ p(t) ≤ pmax

•(Purchasing) Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve:

Maximize: F(p(t),h(t),γ(t))(Vp(t) – Q(t))
Subject to: 0 ≤ p(t) ≤ pmax

•(Purchasing) Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

*If F(p,h,γ) = β(h)G(p,γ), don’t need to know demand state h(t)!

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:

Problem 2: Joint Pricing and Energy Allocation

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve:

Maximize: β(h(t))G(p(t),γ(t))(Vp(t) – Q(t))
Subject to: 0 ≤ p(t) ≤ pmax

•(Purchasing) Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

*If F(p,h,γ) = β(h)G(p,γ), don’t need to know demand state h(t)!

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:

Problem 2: Joint Pricing and Energy Allocation

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Theorem: Under the joint pricing and energy allocation algorithm:

(a) Worst case queue bounds Qmax, Zmax same as before.

(b) Worst case delay bound Dmax same as before, i.e., O(V).

(c) If (s(t), γ(t), h(t)) i.i.d. over slots, and ε ≤ E{s(t)}, then:

E{profit} ≥ profit* - O(1/V)

Problem 2: Joint Pricing and Energy Allocation

Universal Scheduling for Arbitrary Sample Paths…

Consider the first problem again (x(t) = only decision variable):
Suppose (s(t), γ(t), a(t)) have arbitrary sample path!
(assume they are still bounded: [0, smax], [0, γmax], [0, amax].)

Universal Scheduling Theorem:
(a) Worst case queue bounds Qmax, Zmax same as before.
(b) Worst case delay bound Dmax same as before, i.e., O(V).
(c) For any integers T>0, R>0:

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

x(t)γ(t) ≤
t=0

RT-1

RT
1

R
1

r=0

R-1

Cr* + BT/V

“Genie-Aided” T-Slot Lookahead Cost!

x(t)γ(t) ≤
t=0

RT-1

RT
1

R
1

r=0

R-1

Cr* + BT/V
For every R>0, T>0:

R frames of size T slots:

Frame 1 Frame 2 Frame 3 … Frame R

T-Slot Lookahead Problem for frame r in {0, …, R-1}:
cr* computed below, assuming future values of (a(τ), s(τ), γ(τ))
are fully known in frame r:

Simulations over Real Data Sets:
•We used 10 minute slot sizes (granularity of the available data)
•Compare to simple “Purchase at Deadline” algorithm.
•We chose V=100  Dmax = 400 slots (70 hours)

Same experiment: Histogram of Delay (V=100, ε= 87.5):
Our algorithm yields worst-case delay considerably less than
the bound Dmax. Worst case observed delay was 60 slots (10 hours)

Some more simulations: Changing the ε parameter:

Some more simulations: Changing the V parameter:

Concluding Slide:

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

•Lyapunov Optimization for Renewable Energy Allocation
•No need to know distribution. Robust to arbitrary sample paths.
•Explicit [O(1/V), O(V)] performance-delay tradeoff

Explanation of Why Delay is small even with ε=0…

τ=t

t +T

[s(τ)+x(τ)] ≥ Q(t)

Even with ε=0, we still get the same Qmax bound.
(Q(t) ≤ Qmax for all t).

Delay of requests that arrive on slot t is equal to
the smallest integer T such that:

So delay will be less than or equal to T whenever:

τ=t

t +T

s(τ) ≥ Qmax

There is no guarantee on how long this will take for arbitrary s(t)
processes, but one can compute probabilities of exceeding a certain
value if we try to use a stochastic model for s(t).

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

