
Efficient Algorithms for Renewable Energy 
Allocation to Delay Tolerant Consumers

Michael J. Neely ,  Arash Saber Tehrani ,  Alexandros G. Dimakis
University of Southern California

*Paper to appear at: 1st IEEE International Conf. on Smart Grid Communications, 2010
PDF on Stochastic Network Optimization Homepage: http://ee.usc.edu/stochastic-nets/

*Sponsored in part  by the NSF Career CCF-0747525

energy requests a(t)

s(t)

x(t)

renewable
source

non-renewable
source

http://www-rcf.usc.edu/~mjneely�
http://www-rcf.usc.edu/~mjneely�
http://www-rcf.usc.edu/~mjneely�


energy requests a(t)

s(t)

renewable
source

non-renewable
source

•Renewable sources of energy can have variable and 
unpredictable supplies s(t).
•We can integrate renewable sources more easily if 
consumers tolerate service within some maximum 
allowable delay Dmax.
•Might sometimes need to purchase energy from non-
renewable source to meet the deadlines, and purchase 
price can be highly variable. 



Example Data:  (Top Row) Spot Market Price
(Bottom Row) Energy Production in a California Wind Turbine
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•First Problem: Minimize time average cost of purchasing 
non-renewable energy (i.i.d. case)

•Second Problem: Joint pricing of customers and purchasing 
of non-renewables (i.i.d. case).  

•Generalize to arbitrary sample paths using “Universal 
Scheduling Theory” of Lyapunov Optimization.

•Simulation results using CAISO spot market prices γ(t) and 
10-minute energy production s(t) from Western Wind 
resources Dataset (from National Renewable Energy Lab). 

Talk Outline: 
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•Slotted Time:  t = {0, 1, 2, …} 
•a(t) = energy requests on slot t (serve with max delay Dmax).
•s(t) = renewable energy supply on slot t. (“use-it-or-loose-it”)
•x(t) = amount non-renewable energy purchased on slot t.
•γ(t) = $$/unit energy price of non-renewables on slot t.
•Q(t) = Energy request queue

Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t)   ,       cost(t) = x(t)γ(t)
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(random)
(use-it-or-loose-it)
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Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t)   ,       cost(t) = x(t)γ(t)
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Assumptions:
• For all slots t we have: 

0 ≤ a(t) ≤ amax , 0 ≤ s(t) ≤ smax , 0 ≤ γ(t) ≤ γmax , 0 ≤ x(t) ≤ xmax

• xmax units of energy always available for purchase from
non-renewable (but at variable price γ(t)).

•amax ≤ xmax (possible to meet all demands in 1 slot at high cost)

•(a(t), s(t), γ(t)) vector is i.i.d. over slots with unknown distribution



Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t)   ,       cost(t) = x(t)γ(t)

Possible formulation via Dynamic Programming (DP):

“Minimize average cost subject to max-delay Dmax.” 

• This can be written as a DP, but requires distribution knowledge.
• Recent work on delay tolerant electricity consumers using DP is: 

[Papavasiliou and Oren, 2010]

We will not use DP.  We will take a different approach... 



Problem 1: Minimize Average Cost of Non-Renewable Purchases

Q(t+1) = max[Q(t) – s(t) – x(t), 0] + a(t)   ,       cost(t) = x(t)γ(t)

Relaxed Formulation via Lyapunov Optimization for Queue Networks:

Minimize:     E{cost}   (time average)
Subject to:  (1)   E{Q} < infinity   (a “queue stability” constraint)

(2)   0 ≤ x(t) ≤ xmax for all t

•Define cost* = min cost subject to stability
•By definition: cost* ≤ cost delivered by any other alg (including DP)
•We will get within O(δ) of cost*, with worst-case delay of 1/δ.

Worst Case Delay

Avg. Cost

cost*

our performance
optimal DP

Ο(δ)



Advantages of Lyapunov Optimization for Queueing Networks:
•No knowledge of distribution information is required.

•Explicit [O(δ), O(1/δ)] performance guarantees.

•Robust to changes in statistics, arbitrary correlations, non-
ergodic, arbitrary sample paths (as we will show in this work). 

•Worst case delay bounds (as we will show in this work). 

•No curse of dimensionality: Implementation is just as easy in 
extended formulations with many dimensions:  

Minimize :    E{y}
Subject to:    (1) E{xi} ≤ 0  for all i in {1, …, N}

(2)  Queue k is stable for all k in {1, …, K} 
(3) Control action on slot t in ActionSpace(t)

(for all t in {0, 1, 2, …} )   

General Lyapunov Optimization Problem: [Georgiadis, Neely, Tassiulas, F&T 2006] 



Virtual Queue for Worst-Case Delay Guarantee (fix ε>0):

Z(t)

Q(t)a(t) s(t)+x(t)

s(t)+x(t)ε1{Q(t)>0}

Actual Queue

Virtual Queue
(enforces ε-persistent 

service)

Theorem: Any algorithm with bounded queues Q(t) ≤ Qmax, Z(t) ≤Zmax

for all t yields worst-case delay of: 

Dmax =      Qmax + Zmax

Z(t+1) = max[Z(t) – s(t) – x(t) + ε1{Q(t)>0}, 0]

ε
slots

Proof Sketch:  Suppose not. Consider slot t, a(t):

a(t)

tQ
(t

) ≤
 Q

m
ax

t+Dmax

τ=t

t +Dmax

[s(τ)+x(τ)] ≤ Qmax

Implies:   Z(t+Dmax) > Zmax

(contradiction)

Then: 



Stabilize Z(t) and Q(t) while minimizing average cost cost(t): 

Lyapunov Function:  L(t) = Z(t)2 + Q(t)2

Lyapunov Drift:  Δ(t) = E{L(t+1) – L(t)|Z(t), Q(t)}

Take actions to greedily minimize “Drift-Plus-Weighted-Penalty”:

Minimize: Δ(t) + Vγ(t)x(t) 

where V is a postiive constant that affects the [O(1/V), O(V)]
Cost-delay tradeoff.

(using V=1/δ recovers the [O(δ), O(1/δ)] tradeoff.)

Q(t)

Z(t)



Resulting Algorithm: Every slot t, observe (Z(t), Q(t), γ(t)). Then:

• Choose x(t) =   {  0  ,    if Q(t) + Z(t) ≤ Vγ(t) 
{ xmax,  if  Q(t) + Z(t) > Vγ(t)

•Update virtual queues Q(t) and Z(t) according to their equations

Define:  Qmax = Vγmax + amax , Zmax = Vγmax + ε

Theorem: Under the above algorithm:
(a) Q(t) ≤ Qmax,  Z(t) ≤ Zmax for all t. 
(b) Delay ≤ (Qmax + Zmax)/ε = O(V)

Further, if (s(t), a(t), γ(t)) i.i.d. over slots, and if ε≤ max[E{a(t)}, E{s(t)}]
Then:   

E{cost} ≤ cost* + B/V
[where B = (smax + xmax) 2 + amax

2 + ε2] 



Same system model, with following extensions:
•a(t) = arrivals = Random function of pricing decision p(t)
•h(t) = additional “demand state” (e.g. “HIGH, MED, LOW”)
•E{a(t)|p(t), h(t), γ(t)} = F(p(t), h(t), γ(t)) = Demand Function

E{a(t)} = F(p(t), h(t), γ(t))
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Problem 2: Joint Pricing and Energy Allocation



Same system model, with following extensions:
•a(t) = arrivals = Random function of pricing decision p(t)
•h(t) = additional “demand state” (e.g. “HIGH, MED, LOW”)
•E{a(t)|p(t), h(t), γ(t)} = F(p(t), h(t), γ(t)) = Demand Function

E{a(t)} = F(p(t), h(t), γ(t))
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New Problem:
• Profit(t) = a(t)p(t) – x(t)γ(t)

•Maximize Time Average Profit!

•Profit* = Optimal Time Avg. Profit Subject to Stability

Problem 2: Joint Pricing and Energy Allocation



Problem 2: Joint Pricing and Energy Allocation

E{a(t)} = F(p(t), h(t), γ(t))

s(t)
Renewable source

Non-Renewable sourcex(t), γ(t)

p(t)

Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve: 

Maximize:    F(p(t),h(t),γ(t))(Vp(t) – Q(t))
Subject to:  0 ≤ p(t) ≤  pmax

•(Purchasing)  Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:



E{a(t)} = F(p(t), h(t), γ(t))
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Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve: 

Maximize: F(p(t),h(t),γ(t))(Vp(t) – Q(t))
Subject to:  0 ≤ p(t) ≤  pmax

•(Purchasing)  Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

*If F(p,h,γ) = β(h)G(p,γ), don’t need to know demand state h(t)! 

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:

Problem 2: Joint Pricing and Energy Allocation



E{a(t)} = F(p(t), h(t), γ(t))
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Δ(t) – VE{Profit(t)|Z(t),Q(t)} = Δ(t) – VE{a(t)p(t) – x(t)γ(t)|Z(t),Q(t)}

Every slot t, observe (h(t), Z(t), Q(t),γ(t)). Then:
•(Pricing) Choose p(t) in [0, pmax] to solve: 

Maximize: β(h(t))G(p(t),γ(t))(Vp(t) – Q(t))
Subject to:  0 ≤ p(t) ≤  pmax

•(Purchasing)  Choose x(t) same as before.
•Update queues Q(t), Z(t) same as before.

*If F(p,h,γ) = β(h)G(p,γ), don’t need to know demand state h(t)! 

Drift-Plus-Penalty for New Problem:

Resulting Algorithm:

Problem 2: Joint Pricing and Energy Allocation



E{a(t)} = F(p(t), h(t), γ(t))
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Theorem:  Under the joint pricing and energy allocation algorithm:

(a) Worst case queue bounds Qmax, Zmax same as before.

(b) Worst case delay bound Dmax same as before, i.e.,  O(V).

(c)  If (s(t), γ(t), h(t)) i.i.d. over slots, and ε ≤ E{s(t)}, then: 

E{profit}  ≥  profit*  - O(1/V)

Problem 2: Joint Pricing and Energy Allocation



Universal Scheduling for Arbitrary Sample Paths…

Consider the first problem again (x(t) = only decision variable):
Suppose (s(t), γ(t), a(t)) have arbitrary sample path! 
(assume they are still bounded: [0, smax], [0, γmax], [0, amax].) 

Universal Scheduling Theorem: 
(a) Worst case queue bounds Qmax, Zmax same as before.
(b) Worst case delay bound Dmax same as before, i.e.,  O(V).
(c)  For any integers T>0, R>0: 

a(t)
s(t)

Renewable source

Non-Renewable sourcex(t), γ(t)

x(t)γ(t)   ≤        
t=0

RT-1

RT
1

R
1

r=0

R-1

Cr*   + BT/V        

“Genie-Aided” T-Slot Lookahead Cost!



x(t)γ(t)   ≤        
t=0

RT-1

RT
1

R
1

r=0

R-1

Cr*   + BT/V        
For every R>0, T>0:

R frames of size T slots:

Frame 1 Frame 2 Frame 3 … Frame R

T-Slot Lookahead Problem for frame r in {0, …, R-1}:
cr* computed below, assuming future values of (a(τ), s(τ), γ(τ)) 
are fully known in frame r:



Simulations over Real Data Sets:
•We used 10 minute slot sizes (granularity of the available data)
•Compare to simple “Purchase at Deadline” algorithm.
•We chose V=100  Dmax = 400 slots (70 hours) 



Same experiment: Histogram of Delay (V=100, ε= 87.5): 
Our algorithm yields worst-case delay considerably less than
the bound Dmax.  Worst case observed delay was 60 slots (10 hours) 



Some more simulations: Changing the ε parameter:



Some more simulations: Changing the V parameter:



Concluding Slide:
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•Lyapunov Optimization for Renewable Energy Allocation
•No need to know distribution.  Robust to arbitrary sample paths. 
•Explicit [O(1/V), O(V)] performance-delay tradeoff



Explanation of Why Delay is small even with ε=0…

τ=t

t +T

[s(τ)+x(τ)] ≥ Q(t) 

Even with ε=0, we still get the same Qmax bound.  
(Q(t) ≤ Qmax for all t).

Delay of requests that arrive on slot t is equal to 
the smallest integer T such that: 

So delay will be less than or equal to T whenever: 

τ=t

t +T

s(τ) ≥ Qmax

There is no guarantee on how long this will take for arbitrary s(t)
processes, but one can compute probabilities of exceeding a certain
value if we try to use a stochastic model for s(t). 
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