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Introduction

Objective design the network, both the graph structure and
the line sizes, to achieve best trade-off between efficiency (low
power loss) and construction costs.

Our approach was inspired by work of Ghosh, Boyd and
Saberi, Minimizing effective resistance of a graph, ’09.

Overview

I resistive network model (DC approximation)

I convex network optimization (line sizing)

I non-convex optimization for sparse network design

I robust network design



Resistive Network Model
Basic current flow problem (power flow in AC grid):

I graph G

I injected currents bi

I sources bi > 0
I sinks bi < 0
I junction points bi = 0

I line conductances θij ≥ 0

ui

θij

Network conductance matrix:

Ki ,j(θ) =

{ ∑
k 6=i θik , i = j

−θij , {i , j} ∈ G

Solve K (θ)u = b for node potentials ui . Line currents given by
bi→j = θij(uj − ui).



Resistive Power Loss

For connected G and θ > 0,

u = K̂−1b , (K + 11T )−1b.

Power loss due to resistive heating of the lines:

L(θ) =
∑

ij

θij(ui − uj)
2 = uT K (θ)u = bT K̂ (θ)−1b

For random b, we obtain the expected power loss:

L(θ) = 〈bT K̂ (θ)−1b〉 = tr(K̂ (θ)−1 · 〈bbT 〉) , tr(K̂ (θ)−1B)

Importantly, this power loss is a convex function of θ.



Convex Network Optimization

We may size the lines (conductances) to minimize power loss
subject to linear budget on available conductance:

minimize L(θ)

subject to θ ≥ 0

αTθ ≤ C

α` is cost of conductance on line `.

Alternatively, one may find the most cost-effective network:

minθ≥0{L(θ) + λαTθ}

where λ−1 represents the cost of power loss (accrued over
lifetime of network).



Four Examples – Optimal Network Design



Imposing Sparsity (Non-convex continuation)
We now add a zero-conductance cost on lines:

min
θ≥0
{L(θ) + αTθ + βTφ(θ)}

where φ(t) is (element-wise) unit step function.

We smooth this combinatorial problem to a continuous one,
replacing the discrete step φ by a smooth one:

φγ(t) =
t

t + γ

t
0 1

0

1

The convex optimization is recovered as γ →∞ and the
combinatorial one as γ → 0.



Majorization-Minimization Algorithm

Approach inspired by Candes and Boyd, Enhancing sparsity by
reweighted L1 optimization, 2009.

Uses majorization-minimization heuristic for non-convex
optimization. Iteratively linearize φγ about previous solution:

θ(t+1) = arg min
θ≥0
{L(θ) + [α + β ◦ ∇φγ(θ(t))]Tθ}

results in a sequence of convex network optimization problems
with reweighted α.

Monotonically decreases the objective and (almost always)
converges to a local minimum.



Four Examples – Sparse Network Design



Adding Robustness

To obtain solutions that are robust of failure of k lines, we
replace L(θ) by the worst-case power dissipation after
removing k lines:

L\k(θ) = max
z∈{0,1}m|1T z=k

L((1− z) ◦ θ)

This is still a convex function. It is tractable to compute only
for small values of k .

Method can be extended to also treat failures of generators.

Solved using essentially the same methods as before...



Four Examples – Robust Network Design



Conclusion

A promising heuristic approach to design of power transmission
networks. However, cannot guarantee global optimality.

Future Work:

I Bounding optimality gap?

I Use non-convex continuation approach to place generators

I possibly useful for graph partitioning problems

I adding further constraints (e.g. don’t overload lines)

I better approximations to AC power flow?

Thanks!


