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Introduction

Objective design the network, both the graph structure and
the line sizes, to achieve best trade-off between efficiency (low
power loss) and construction costs.

Our approach was inspired by work of Ghosh, Boyd and
Saberi, Minimizing effective resistance of a graph, '09.

Overview
» resistive network model (DC approximation)
» convex network optimization (line sizing)
» non-convex optimization for sparse network design

» robust network design



Resistive Network Model

Basic current flow problem (power flow in AC grid):

snant
» injected currents b; u

» sources b; > 0
» sinks b; < 0
» junction points b; =0

» line conductances 6;; > 0 l—o—l—<>—l

Network conductance matrix:

oy ki Oy 1=
Kis(6) ‘{ 9, {ij)eG

Solve K(0)u = b for node potentials u;. Line currents given by
bi—j = 0(u; — uj).



Resistive Power Loss
For connected G and 6 > 0,
u=K1lh2 (K+117)b.
Power loss due to resistive heating of the lines:

L(O) =D 05(ui — u)* = u"K(0)u = bTK(6)*b

For random b, we obtain the expected power loss:
L(0) = (bTK(0)71h) = tr(K(0)™* - (bbT)) £ tr(K(0)'B)

Importantly, this power loss is a convex function of 6.



Convex Network Optimization

We may size the lines (conductances) to minimize power loss
subject to linear budget on available conductance:

minimize  L(0)
subjectto 0 >0
ald< C

oy is cost of conductance on line £.
Alternatively, one may find the most cost-effective network:
mingzo{L(e) + )\OéTg}

where A\~ represents the cost of power loss (accrued over
lifetime of network).






Imposing Sparsity (Non-convex continuation)
We now add a zero-conductance cost on lines:

min{L(0) + a0+ 376(0)}
where ¢(t) is (element-wise) unit step function.

We smooth this combinatorial problem to a continuous one,
replacing the discrete step ¢ by a smooth one:

The convex optimization is recovered as v — oo and the
combinatorial one as 7 — 0.



Majorization-Minimization Algorithm

Approach inspired by Candes and Boyd, Enhancing sparsity by
reweighted L, optimization, 2009.

Uses majorization-minimization heuristic for non-convex
optimization. lteratively linearize ¢, about previous solution:

o0+ = arg r9n>iQ{L(9) +[a+ 3o Ve, (076}

results in a sequence of convex network optimization problems
with reweighted a.

Monotonically decreases the objective and (almost always)
converges to a local minimum.



Four Examples — Sparse Network Design

GAMMA - 0.023811
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Adding Robustness

To obtain solutions that are robust of failure of k lines, we
replace L(#) by the worst-case power dissipation after
removing k lines:

L\K(0) = L((1— 0
0= o B, HA=2)e)

This is still a convex function. It is tractable to compute only
for small values of k.

Method can be extended to also treat failures of generators.

Solved using essentially the same methods as before...



Four Examples — Robust Network Design

MMA = 0.02581
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Conclusion

A promising heuristic approach to design of power transmission
networks. However, cannot guarantee global optimality.

Future Work:
» Bounding optimality gap?
» Use non-convex continuation approach to place generators
» possibly useful for graph partitioning problems
» adding further constraints (e.g. don't overload lines)

» better approximations to AC power flow?

Thanks!



